Advertisement

Advertisement

A review of the global climate change impacts, adaptation, and sustainable mitigation measures

  • Review Article
  • Published: 04 April 2022
  • Volume 29 , pages 42539–42559, ( 2022 )

Cite this article

research paper on environmental problems

  • Kashif Abbass 1 ,
  • Muhammad Zeeshan Qasim 2 ,
  • Huaming Song 1 ,
  • Muntasir Murshed   ORCID: orcid.org/0000-0001-9872-8742 3 , 4 ,
  • Haider Mahmood   ORCID: orcid.org/0000-0002-6474-4338 5 &
  • Ijaz Younis 1  

249k Accesses

563 Citations

33 Altmetric

Explore all metrics

Climate change is a long-lasting change in the weather arrays across tropics to polls. It is a global threat that has embarked on to put stress on various sectors. This study is aimed to conceptually engineer how climate variability is deteriorating the sustainability of diverse sectors worldwide. Specifically, the agricultural sector’s vulnerability is a globally concerning scenario, as sufficient production and food supplies are threatened due to irreversible weather fluctuations. In turn, it is challenging the global feeding patterns, particularly in countries with agriculture as an integral part of their economy and total productivity. Climate change has also put the integrity and survival of many species at stake due to shifts in optimum temperature ranges, thereby accelerating biodiversity loss by progressively changing the ecosystem structures. Climate variations increase the likelihood of particular food and waterborne and vector-borne diseases, and a recent example is a coronavirus pandemic. Climate change also accelerates the enigma of antimicrobial resistance, another threat to human health due to the increasing incidence of resistant pathogenic infections. Besides, the global tourism industry is devastated as climate change impacts unfavorable tourism spots. The methodology investigates hypothetical scenarios of climate variability and attempts to describe the quality of evidence to facilitate readers’ careful, critical engagement. Secondary data is used to identify sustainability issues such as environmental, social, and economic viability. To better understand the problem, gathered the information in this report from various media outlets, research agencies, policy papers, newspapers, and other sources. This review is a sectorial assessment of climate change mitigation and adaptation approaches worldwide in the aforementioned sectors and the associated economic costs. According to the findings, government involvement is necessary for the country’s long-term development through strict accountability of resources and regulations implemented in the past to generate cutting-edge climate policy. Therefore, mitigating the impacts of climate change must be of the utmost importance, and hence, this global threat requires global commitment to address its dreadful implications to ensure global sustenance.

Similar content being viewed by others

research paper on environmental problems

Morocco’s climate change impacts, adaptation and mitigation—a stocktake

research paper on environmental problems

Climate change adaptation (CCA) research in Nepal: implications for the advancement of adaptation planning

research paper on environmental problems

A comprehensive review of climate change impacts, adaptation, and mitigation on environmental and natural calamities in Pakistan

Explore related subjects.

  • Environmental Chemistry

Avoid common mistakes on your manuscript.

Introduction

Worldwide observed and anticipated climatic changes for the twenty-first century and global warming are significant global changes that have been encountered during the past 65 years. Climate change (CC) is an inter-governmental complex challenge globally with its influence over various components of the ecological, environmental, socio-political, and socio-economic disciplines (Adger et al.  2005 ; Leal Filho et al.  2021 ; Feliciano et al.  2022 ). Climate change involves heightened temperatures across numerous worlds (Battisti and Naylor  2009 ; Schuurmans  2021 ; Weisheimer and Palmer  2005 ; Yadav et al.  2015 ). With the onset of the industrial revolution, the problem of earth climate was amplified manifold (Leppänen et al.  2014 ). It is reported that the immediate attention and due steps might increase the probability of overcoming its devastating impacts. It is not plausible to interpret the exact consequences of climate change (CC) on a sectoral basis (Izaguirre et al.  2021 ; Jurgilevich et al.  2017 ), which is evident by the emerging level of recognition plus the inclusion of climatic uncertainties at both local and national level of policymaking (Ayers et al.  2014 ).

Climate change is characterized based on the comprehensive long-haul temperature and precipitation trends and other components such as pressure and humidity level in the surrounding environment. Besides, the irregular weather patterns, retreating of global ice sheets, and the corresponding elevated sea level rise are among the most renowned international and domestic effects of climate change (Lipczynska-Kochany  2018 ; Michel et al.  2021 ; Murshed and Dao 2020 ). Before the industrial revolution, natural sources, including volcanoes, forest fires, and seismic activities, were regarded as the distinct sources of greenhouse gases (GHGs) such as CO 2 , CH 4 , N 2 O, and H 2 O into the atmosphere (Murshed et al. 2020 ; Hussain et al.  2020 ; Sovacool et al.  2021 ; Usman and Balsalobre-Lorente 2022 ; Murshed 2022 ). United Nations Framework Convention on Climate Change (UNFCCC) struck a major agreement to tackle climate change and accelerate and intensify the actions and investments required for a sustainable low-carbon future at Conference of the Parties (COP-21) in Paris on December 12, 2015. The Paris Agreement expands on the Convention by bringing all nations together for the first time in a single cause to undertake ambitious measures to prevent climate change and adapt to its impacts, with increased funding to assist developing countries in doing so. As so, it marks a turning point in the global climate fight. The core goal of the Paris Agreement is to improve the global response to the threat of climate change by keeping the global temperature rise this century well below 2 °C over pre-industrial levels and to pursue efforts to limit the temperature increase to 1.5° C (Sharma et al. 2020 ; Sharif et al. 2020 ; Chien et al. 2021 .

Furthermore, the agreement aspires to strengthen nations’ ability to deal with the effects of climate change and align financing flows with low GHG emissions and climate-resilient paths (Shahbaz et al. 2019 ; Anwar et al. 2021 ; Usman et al. 2022a ). To achieve these lofty goals, adequate financial resources must be mobilized and provided, as well as a new technology framework and expanded capacity building, allowing developing countries and the most vulnerable countries to act under their respective national objectives. The agreement also establishes a more transparent action and support mechanism. All Parties are required by the Paris Agreement to do their best through “nationally determined contributions” (NDCs) and to strengthen these efforts in the coming years (Balsalobre-Lorente et al. 2020 ). It includes obligations that all Parties regularly report on their emissions and implementation activities. A global stock-take will be conducted every five years to review collective progress toward the agreement’s goal and inform the Parties’ future individual actions. The Paris Agreement became available for signature on April 22, 2016, Earth Day, at the United Nations Headquarters in New York. On November 4, 2016, it went into effect 30 days after the so-called double threshold was met (ratification by 55 nations accounting for at least 55% of world emissions). More countries have ratified and continue to ratify the agreement since then, bringing 125 Parties in early 2017. To fully operationalize the Paris Agreement, a work program was initiated in Paris to define mechanisms, processes, and recommendations on a wide range of concerns (Murshed et al. 2021 ). Since 2016, Parties have collaborated in subsidiary bodies (APA, SBSTA, and SBI) and numerous formed entities. The Conference of the Parties functioning as the meeting of the Parties to the Paris Agreement (CMA) convened for the first time in November 2016 in Marrakesh in conjunction with COP22 and made its first two resolutions. The work plan is scheduled to be finished by 2018. Some mitigation and adaptation strategies to reduce the emission in the prospective of Paris agreement are following firstly, a long-term goal of keeping the increase in global average temperature to well below 2 °C above pre-industrial levels, secondly, to aim to limit the rise to 1.5 °C, since this would significantly reduce risks and the impacts of climate change, thirdly, on the need for global emissions to peak as soon as possible, recognizing that this will take longer for developing countries, lastly, to undertake rapid reductions after that under the best available science, to achieve a balance between emissions and removals in the second half of the century. On the other side, some adaptation strategies are; strengthening societies’ ability to deal with the effects of climate change and to continue & expand international assistance for developing nations’ adaptation.

However, anthropogenic activities are currently regarded as most accountable for CC (Murshed et al. 2022 ). Apart from the industrial revolution, other anthropogenic activities include excessive agricultural operations, which further involve the high use of fuel-based mechanization, burning of agricultural residues, burning fossil fuels, deforestation, national and domestic transportation sectors, etc. (Huang et al.  2016 ). Consequently, these anthropogenic activities lead to climatic catastrophes, damaging local and global infrastructure, human health, and total productivity. Energy consumption has mounted GHGs levels concerning warming temperatures as most of the energy production in developing countries comes from fossil fuels (Balsalobre-Lorente et al. 2022 ; Usman et al. 2022b ; Abbass et al. 2021a ; Ishikawa-Ishiwata and Furuya  2022 ).

This review aims to highlight the effects of climate change in a socio-scientific aspect by analyzing the existing literature on various sectorial pieces of evidence globally that influence the environment. Although this review provides a thorough examination of climate change and its severe affected sectors that pose a grave danger for global agriculture, biodiversity, health, economy, forestry, and tourism, and to purpose some practical prophylactic measures and mitigation strategies to be adapted as sound substitutes to survive from climate change (CC) impacts. The societal implications of irregular weather patterns and other effects of climate changes are discussed in detail. Some numerous sustainable mitigation measures and adaptation practices and techniques at the global level are discussed in this review with an in-depth focus on its economic, social, and environmental aspects. Methods of data collection section are included in the supplementary information.

Review methodology

Related study and its objectives.

Today, we live an ordinary life in the beautiful digital, globalized world where climate change has a decisive role. What happens in one country has a massive influence on geographically far apart countries, which points to the current crisis known as COVID-19 (Sarkar et al.  2021 ). The most dangerous disease like COVID-19 has affected the world’s climate changes and economic conditions (Abbass et al. 2022 ; Pirasteh-Anosheh et al.  2021 ). The purpose of the present study is to review the status of research on the subject, which is based on “Global Climate Change Impacts, adaptation, and sustainable mitigation measures” by systematically reviewing past published and unpublished research work. Furthermore, the current study seeks to comment on research on the same topic and suggest future research on the same topic. Specifically, the present study aims: The first one is, organize publications to make them easy and quick to find. Secondly, to explore issues in this area, propose an outline of research for future work. The third aim of the study is to synthesize the previous literature on climate change, various sectors, and their mitigation measurement. Lastly , classify the articles according to the different methods and procedures that have been adopted.

Review methodology for reviewers

This review-based article followed systematic literature review techniques that have proved the literature review as a rigorous framework (Benita  2021 ; Tranfield et al.  2003 ). Moreover, we illustrate in Fig.  1 the search method that we have started for this research. First, finalized the research theme to search literature (Cooper et al.  2018 ). Second, used numerous research databases to search related articles and download from the database (Web of Science, Google Scholar, Scopus Index Journals, Emerald, Elsevier Science Direct, Springer, and Sciverse). We focused on various articles, with research articles, feedback pieces, short notes, debates, and review articles published in scholarly journals. Reports used to search for multiple keywords such as “Climate Change,” “Mitigation and Adaptation,” “Department of Agriculture and Human Health,” “Department of Biodiversity and Forestry,” etc.; in summary, keyword list and full text have been made. Initially, the search for keywords yielded a large amount of literature.

figure 1

Source : constructed by authors

Methodology search for finalized articles for investigations.

Since 2020, it has been impossible to review all the articles found; some restrictions have been set for the literature exhibition. The study searched 95 articles on a different database mentioned above based on the nature of the study. It excluded 40 irrelevant papers due to copied from a previous search after readings tiles, abstract and full pieces. The criteria for inclusion were: (i) articles focused on “Global Climate Change Impacts, adaptation, and sustainable mitigation measures,” and (ii) the search key terms related to study requirements. The complete procedure yielded 55 articles for our study. We repeat our search on the “Web of Science and Google Scholars” database to enhance the search results and check the referenced articles.

In this study, 55 articles are reviewed systematically and analyzed for research topics and other aspects, such as the methods, contexts, and theories used in these studies. Furthermore, this study analyzes closely related areas to provide unique research opportunities in the future. The study also discussed future direction opportunities and research questions by understanding the research findings climate changes and other affected sectors. The reviewed paper framework analysis process is outlined in Fig.  2 .

figure 2

Framework of the analysis Process.

Natural disasters and climate change’s socio-economic consequences

Natural and environmental disasters can be highly variable from year to year; some years pass with very few deaths before a significant disaster event claims many lives (Symanski et al.  2021 ). Approximately 60,000 people globally died from natural disasters each year on average over the past decade (Ritchie and Roser  2014 ; Wiranata and Simbolon  2021 ). So, according to the report, around 0.1% of global deaths. Annual variability in the number and share of deaths from natural disasters in recent decades are shown in Fig.  3 . The number of fatalities can be meager—sometimes less than 10,000, and as few as 0.01% of all deaths. But shock events have a devastating impact: the 1983–1985 famine and drought in Ethiopia; the 2004 Indian Ocean earthquake and tsunami; Cyclone Nargis, which struck Myanmar in 2008; and the 2010 Port-au-Prince earthquake in Haiti and now recent example is COVID-19 pandemic (Erman et al.  2021 ). These events pushed global disaster deaths to over 200,000—more than 0.4% of deaths in these years. Low-frequency, high-impact events such as earthquakes and tsunamis are not preventable, but such high losses of human life are. Historical evidence shows that earlier disaster detection, more robust infrastructure, emergency preparedness, and response programmers have substantially reduced disaster deaths worldwide. Low-income is also the most vulnerable to disasters; improving living conditions, facilities, and response services in these areas would be critical in reducing natural disaster deaths in the coming decades.

figure 3

Source EMDAT ( 2020 )

Global deaths from natural disasters, 1978 to 2020.

The interior regions of the continent are likely to be impacted by rising temperatures (Dimri et al.  2018 ; Goes et al.  2020 ; Mannig et al.  2018 ; Schuurmans  2021 ). Weather patterns change due to the shortage of natural resources (water), increase in glacier melting, and rising mercury are likely to cause extinction to many planted species (Gampe et al.  2016 ; Mihiretu et al.  2021 ; Shaffril et al.  2018 ).On the other hand, the coastal ecosystem is on the verge of devastation (Perera et al.  2018 ; Phillips  2018 ). The temperature rises, insect disease outbreaks, health-related problems, and seasonal and lifestyle changes are persistent, with a strong probability of these patterns continuing in the future (Abbass et al. 2021c ; Hussain et al.  2018 ). At the global level, a shortage of good infrastructure and insufficient adaptive capacity are hammering the most (IPCC  2013 ). In addition to the above concerns, a lack of environmental education and knowledge, outdated consumer behavior, a scarcity of incentives, a lack of legislation, and the government’s lack of commitment to climate change contribute to the general public’s concerns. By 2050, a 2 to 3% rise in mercury and a drastic shift in rainfall patterns may have serious consequences (Huang et al. 2022 ; Gorst et al.  2018 ). Natural and environmental calamities caused huge losses globally, such as decreased agriculture outputs, rehabilitation of the system, and rebuilding necessary technologies (Ali and Erenstein  2017 ; Ramankutty et al.  2018 ; Yu et al.  2021 ) (Table 1 ). Furthermore, in the last 3 or 4 years, the world has been plagued by smog-related eye and skin diseases, as well as a rise in road accidents due to poor visibility.

Climate change and agriculture

Global agriculture is the ultimate sector responsible for 30–40% of all greenhouse emissions, which makes it a leading industry predominantly contributing to climate warming and significantly impacted by it (Grieg; Mishra et al.  2021 ; Ortiz et al.  2021 ; Thornton and Lipper  2014 ). Numerous agro-environmental and climatic factors that have a dominant influence on agriculture productivity (Pautasso et al.  2012 ) are significantly impacted in response to precipitation extremes including floods, forest fires, and droughts (Huang  2004 ). Besides, the immense dependency on exhaustible resources also fuels the fire and leads global agriculture to become prone to devastation. Godfray et al. ( 2010 ) mentioned that decline in agriculture challenges the farmer’s quality of life and thus a significant factor to poverty as the food and water supplies are critically impacted by CC (Ortiz et al.  2021 ; Rosenzweig et al.  2014 ). As an essential part of the economic systems, especially in developing countries, agricultural systems affect the overall economy and potentially the well-being of households (Schlenker and Roberts  2009 ). According to the report published by the Intergovernmental Panel on Climate Change (IPCC), atmospheric concentrations of greenhouse gases, i.e., CH 4, CO 2 , and N 2 O, are increased in the air to extraordinary levels over the last few centuries (Usman and Makhdum 2021 ; Stocker et al.  2013 ). Climate change is the composite outcome of two different factors. The first is the natural causes, and the second is the anthropogenic actions (Karami 2012 ). It is also forecasted that the world may experience a typical rise in temperature stretching from 1 to 3.7 °C at the end of this century (Pachauri et al. 2014 ). The world’s crop production is also highly vulnerable to these global temperature-changing trends as raised temperatures will pose severe negative impacts on crop growth (Reidsma et al. 2009 ). Some of the recent modeling about the fate of global agriculture is briefly described below.

Decline in cereal productivity

Crop productivity will also be affected dramatically in the next few decades due to variations in integral abiotic factors such as temperature, solar radiation, precipitation, and CO 2 . These all factors are included in various regulatory instruments like progress and growth, weather-tempted changes, pest invasions (Cammell and Knight 1992 ), accompanying disease snags (Fand et al. 2012 ), water supplies (Panda et al. 2003 ), high prices of agro-products in world’s agriculture industry, and preeminent quantity of fertilizer consumption. Lobell and field ( 2007 ) claimed that from 1962 to 2002, wheat crop output had condensed significantly due to rising temperatures. Therefore, during 1980–2011, the common wheat productivity trends endorsed extreme temperature events confirmed by Gourdji et al. ( 2013 ) around South Asia, South America, and Central Asia. Various other studies (Asseng, Cao, Zhang, and Ludwig 2009 ; Asseng et al. 2013 ; García et al. 2015 ; Ortiz et al. 2021 ) also proved that wheat output is negatively affected by the rising temperatures and also caused adverse effects on biomass productivity (Calderini et al. 1999 ; Sadras and Slafer 2012 ). Hereafter, the rice crop is also influenced by the high temperatures at night. These difficulties will worsen because the temperature will be rising further in the future owing to CC (Tebaldi et al. 2006 ). Another research conducted in China revealed that a 4.6% of rice production per 1 °C has happened connected with the advancement in night temperatures (Tao et al. 2006 ). Moreover, the average night temperature growth also affected rice indicia cultivar’s output pragmatically during 25 years in the Philippines (Peng et al. 2004 ). It is anticipated that the increase in world average temperature will also cause a substantial reduction in yield (Hatfield et al. 2011 ; Lobell and Gourdji 2012 ). In the southern hemisphere, Parry et al. ( 2007 ) noted a rise of 1–4 °C in average daily temperatures at the end of spring season unti the middle of summers, and this raised temperature reduced crop output by cutting down the time length for phenophases eventually reduce the yield (Hatfield and Prueger 2015 ; R. Ortiz 2008 ). Also, world climate models have recommended that humid and subtropical regions expect to be plentiful prey to the upcoming heat strokes (Battisti and Naylor 2009 ). Grain production is the amalgamation of two constituents: the average weight and the grain output/m 2 , however, in crop production. Crop output is mainly accredited to the grain quantity (Araus et al. 2008 ; Gambín and Borrás 2010 ). In the times of grain set, yield resources are mainly strewn between hitherto defined components, i.e., grain usual weight and grain output, which presents a trade-off between them (Gambín and Borrás 2010 ) beside disparities in per grain integration (B. L. Gambín et al. 2006 ). In addition to this, the maize crop is also susceptible to raised temperatures, principally in the flowering stage (Edreira and Otegui 2013 ). In reality, the lower grain number is associated with insufficient acclimatization due to intense photosynthesis and higher respiration and the high-temperature effect on the reproduction phenomena (Edreira and Otegui 2013 ). During the flowering phase, maize visible to heat (30–36 °C) seemed less anthesis-silking intermissions (Edreira et al. 2011 ). Another research by Dupuis and Dumas ( 1990 ) proved that a drop in spikelet when directly visible to high temperatures above 35 °C in vitro pollination. Abnormalities in kernel number claimed by Vega et al. ( 2001 ) is related to conceded plant development during a flowering phase that is linked with the active ear growth phase and categorized as a critical phase for approximation of kernel number during silking (Otegui and Bonhomme 1998 ).

The retort of rice output to high temperature presents disparities in flowering patterns, and seed set lessens and lessens grain weight (Qasim et al. 2020 ; Qasim, Hammad, Maqsood, Tariq, & Chawla). During the daytime, heat directly impacts flowers which lessens the thesis period and quickens the earlier peak flowering (Tao et al. 2006 ). Antagonistic effect of higher daytime temperature d on pollen sprouting proposed seed set decay, whereas, seed set was lengthily reduced than could be explicated by pollen growing at high temperatures 40◦C (Matsui et al. 2001 ).

The decline in wheat output is linked with higher temperatures, confirmed in numerous studies (Semenov 2009 ; Stone and Nicolas 1994 ). High temperatures fast-track the arrangements of plant expansion (Blum et al. 2001 ), diminution photosynthetic process (Salvucci and Crafts‐Brandner 2004 ), and also considerably affect the reproductive operations (Farooq et al. 2011 ).

The destructive impacts of CC induced weather extremes to deteriorate the integrity of crops (Chaudhary et al. 2011 ), e.g., Spartan cold and extreme fog cause falling and discoloration of betel leaves (Rosenzweig et al. 2001 ), giving them a somehow reddish appearance, squeezing of lemon leaves (Pautasso et al. 2012 ), as well as root rot of pineapple, have reported (Vedwan and Rhoades 2001 ). Henceforth, in tackling the disruptive effects of CC, several short-term and long-term management approaches are the crucial need of time (Fig.  4 ). Moreover, various studies (Chaudhary et al. 2011 ; Patz et al. 2005 ; Pautasso et al. 2012 ) have demonstrated adapting trends such as ameliorating crop diversity can yield better adaptability towards CC.

figure 4

Schematic description of potential impacts of climate change on the agriculture sector and the appropriate mitigation and adaptation measures to overcome its impact.

Climate change impacts on biodiversity

Global biodiversity is among the severe victims of CC because it is the fastest emerging cause of species loss. Studies demonstrated that the massive scale species dynamics are considerably associated with diverse climatic events (Abraham and Chain 1988 ; Manes et al. 2021 ; A. M. D. Ortiz et al. 2021 ). Both the pace and magnitude of CC are altering the compatible habitat ranges for living entities of marine, freshwater, and terrestrial regions. Alterations in general climate regimes influence the integrity of ecosystems in numerous ways, such as variation in the relative abundance of species, range shifts, changes in activity timing, and microhabitat use (Bates et al. 2014 ). The geographic distribution of any species often depends upon its ability to tolerate environmental stresses, biological interactions, and dispersal constraints. Hence, instead of the CC, the local species must only accept, adapt, move, or face extinction (Berg et al. 2010 ). So, the best performer species have a better survival capacity for adjusting to new ecosystems or a decreased perseverance to survive where they are already situated (Bates et al. 2014 ). An important aspect here is the inadequate habitat connectivity and access to microclimates, also crucial in raising the exposure to climate warming and extreme heatwave episodes. For example, the carbon sequestration rates are undergoing fluctuations due to climate-driven expansion in the range of global mangroves (Cavanaugh et al. 2014 ).

Similarly, the loss of kelp-forest ecosystems in various regions and its occupancy by the seaweed turfs has set the track for elevated herbivory by the high influx of tropical fish populations. Not only this, the increased water temperatures have exacerbated the conditions far away from the physiological tolerance level of the kelp communities (Vergés et al. 2016 ; Wernberg et al. 2016 ). Another pertinent danger is the devastation of keystone species, which even has more pervasive effects on the entire communities in that habitat (Zarnetske et al. 2012 ). It is particularly important as CC does not specify specific populations or communities. Eventually, this CC-induced redistribution of species may deteriorate carbon storage and the net ecosystem productivity (Weed et al. 2013 ). Among the typical disruptions, the prominent ones include impacts on marine and terrestrial productivity, marine community assembly, and the extended invasion of toxic cyanobacteria bloom (Fossheim et al. 2015 ).

The CC-impacted species extinction is widely reported in the literature (Beesley et al. 2019 ; Urban 2015 ), and the predictions of demise until the twenty-first century are dreadful (Abbass et al. 2019 ; Pereira et al. 2013 ). In a few cases, northward shifting of species may not be formidable as it allows mountain-dwelling species to find optimum climates. However, the migrant species may be trapped in isolated and incompatible habitats due to losing topography and range (Dullinger et al. 2012 ). For example, a study indicated that the American pika has been extirpated or intensely diminished in some regions, primarily attributed to the CC-impacted extinction or at least local extirpation (Stewart et al. 2015 ). Besides, the anticipation of persistent responses to the impacts of CC often requires data records of several decades to rigorously analyze the critical pre and post CC patterns at species and ecosystem levels (Manes et al. 2021 ; Testa et al. 2018 ).

Nonetheless, the availability of such long-term data records is rare; hence, attempts are needed to focus on these profound aspects. Biodiversity is also vulnerable to the other associated impacts of CC, such as rising temperatures, droughts, and certain invasive pest species. For instance, a study revealed the changes in the composition of plankton communities attributed to rising temperatures. Henceforth, alterations in such aquatic producer communities, i.e., diatoms and calcareous plants, can ultimately lead to variation in the recycling of biological carbon. Moreover, such changes are characterized as a potential contributor to CO 2 differences between the Pleistocene glacial and interglacial periods (Kohfeld et al. 2005 ).

Climate change implications on human health

It is an understood corporality that human health is a significant victim of CC (Costello et al. 2009 ). According to the WHO, CC might be responsible for 250,000 additional deaths per year during 2030–2050 (Watts et al. 2015 ). These deaths are attributed to extreme weather-induced mortality and morbidity and the global expansion of vector-borne diseases (Lemery et al. 2021; Yang and Usman 2021 ; Meierrieks 2021 ; UNEP 2017 ). Here, some of the emerging health issues pertinent to this global problem are briefly described.

Climate change and antimicrobial resistance with corresponding economic costs

Antimicrobial resistance (AMR) is an up-surging complex global health challenge (Garner et al. 2019 ; Lemery et al. 2021 ). Health professionals across the globe are extremely worried due to this phenomenon that has critical potential to reverse almost all the progress that has been achieved so far in the health discipline (Gosling and Arnell 2016 ). A massive amount of antibiotics is produced by many pharmaceutical industries worldwide, and the pathogenic microorganisms are gradually developing resistance to them, which can be comprehended how strongly this aspect can shake the foundations of national and global economies (UNEP 2017 ). This statement is supported by the fact that AMR is not developing in a particular region or country. Instead, it is flourishing in every continent of the world (WHO 2018 ). This plague is heavily pushing humanity to the post-antibiotic era, in which currently antibiotic-susceptible pathogens will once again lead to certain endemics and pandemics after being resistant(WHO 2018 ). Undesirably, if this statement would become a factuality, there might emerge certain risks in undertaking sophisticated interventions such as chemotherapy, joint replacement cases, and organ transplantation (Su et al. 2018 ). Presently, the amplification of drug resistance cases has made common illnesses like pneumonia, post-surgical infections, HIV/AIDS, tuberculosis, malaria, etc., too difficult and costly to be treated or cure well (WHO 2018 ). From a simple example, it can be assumed how easily antibiotic-resistant strains can be transmitted from one person to another and ultimately travel across the boundaries (Berendonk et al. 2015 ). Talking about the second- and third-generation classes of antibiotics, e.g., most renowned generations of cephalosporin antibiotics that are more expensive, broad-spectrum, more toxic, and usually require more extended periods whenever prescribed to patients (Lemery et al. 2021 ; Pärnänen et al. 2019 ). This scenario has also revealed that the abundance of resistant strains of pathogens was also higher in the Southern part (WHO 2018 ). As southern parts are generally warmer than their counterparts, it is evident from this example how CC-induced global warming can augment the spread of antibiotic-resistant strains within the biosphere, eventually putting additional economic burden in the face of developing new and costlier antibiotics. The ARG exchange to susceptible bacteria through one of the potential mechanisms, transformation, transduction, and conjugation; Selection pressure can be caused by certain antibiotics, metals or pesticides, etc., as shown in Fig.  5 .

figure 5

Source: Elsayed et al. ( 2021 ); Karkman et al. ( 2018 )

A typical interaction between the susceptible and resistant strains.

Certain studies highlighted that conventional urban wastewater treatment plants are typical hotspots where most bacterial strains exchange genetic material through horizontal gene transfer (Fig.  5 ). Although at present, the extent of risks associated with the antibiotic resistance found in wastewater is complicated; environmental scientists and engineers have particular concerns about the potential impacts of these antibiotic resistance genes on human health (Ashbolt 2015 ). At most undesirable and worst case, these antibiotic-resistant genes containing bacteria can make their way to enter into the environment (Pruden et al. 2013 ), irrigation water used for crops and public water supplies and ultimately become a part of food chains and food webs (Ma et al. 2019 ; D. Wu et al. 2019 ). This problem has been reported manifold in several countries (Hendriksen et al. 2019 ), where wastewater as a means of irrigated water is quite common.

Climate change and vector borne-diseases

Temperature is a fundamental factor for the sustenance of living entities regardless of an ecosystem. So, a specific living being, especially a pathogen, requires a sophisticated temperature range to exist on earth. The second essential component of CC is precipitation, which also impacts numerous infectious agents’ transport and dissemination patterns. Global rising temperature is a significant cause of many species extinction. On the one hand, this changing environmental temperature may be causing species extinction, and on the other, this warming temperature might favor the thriving of some new organisms. Here, it was evident that some pathogens may also upraise once non-evident or reported (Patz et al. 2000 ). This concept can be exemplified through certain pathogenic strains of microorganisms that how the likelihood of various diseases increases in response to climate warming-induced environmental changes (Table 2 ).

A recent example is an outburst of coronavirus (COVID-19) in the Republic of China, causing pneumonia and severe acute respiratory complications (Cui et al. 2021 ; Song et al. 2021 ). The large family of viruses is harbored in numerous animals, bats, and snakes in particular (livescience.com) with the subsequent transfer into human beings. Hence, it is worth noting that the thriving of numerous vectors involved in spreading various diseases is influenced by Climate change (Ogden 2018 ; Santos et al. 2021 ).

Psychological impacts of climate change

Climate change (CC) is responsible for the rapid dissemination and exaggeration of certain epidemics and pandemics. In addition to the vast apparent impacts of climate change on health, forestry, agriculture, etc., it may also have psychological implications on vulnerable societies. It can be exemplified through the recent outburst of (COVID-19) in various countries around the world (Pal 2021 ). Besides, the victims of this viral infection have made healthy beings scarier and terrified. In the wake of such epidemics, people with common colds or fever are also frightened and must pass specific regulatory protocols. Living in such situations continuously terrifies the public and makes the stress familiar, which eventually makes them psychologically weak (npr.org).

CC boosts the extent of anxiety, distress, and other issues in public, pushing them to develop various mental-related problems. Besides, frequent exposure to extreme climatic catastrophes such as geological disasters also imprints post-traumatic disorder, and their ubiquitous occurrence paves the way to developing chronic psychological dysfunction. Moreover, repetitive listening from media also causes an increase in the person’s stress level (Association 2020 ). Similarly, communities living in flood-prone areas constantly live in extreme fear of drowning and die by floods. In addition to human lives, the flood-induced destruction of physical infrastructure is a specific reason for putting pressure on these communities (Ogden 2018 ). For instance, Ogden ( 2018 ) comprehensively denoted that Katrina’s Hurricane augmented the mental health issues in the victim communities.

Climate change impacts on the forestry sector

Forests are the global regulators of the world’s climate (FAO 2018 ) and have an indispensable role in regulating global carbon and nitrogen cycles (Rehman et al. 2021 ; Reichstein and Carvalhais 2019 ). Hence, disturbances in forest ecology affect the micro and macro-climates (Ellison et al. 2017 ). Climate warming, in return, has profound impacts on the growth and productivity of transboundary forests by influencing the temperature and precipitation patterns, etc. As CC induces specific changes in the typical structure and functions of ecosystems (Zhang et al. 2017 ) as well impacts forest health, climate change also has several devastating consequences such as forest fires, droughts, pest outbreaks (EPA 2018 ), and last but not the least is the livelihoods of forest-dependent communities. The rising frequency and intensity of another CC product, i.e., droughts, pose plenty of challenges to the well-being of global forests (Diffenbaugh et al. 2017 ), which is further projected to increase soon (Hartmann et al. 2018 ; Lehner et al. 2017 ; Rehman et al. 2021 ). Hence, CC induces storms, with more significant impacts also put extra pressure on the survival of the global forests (Martínez-Alvarado et al. 2018 ), significantly since their influences are augmented during higher winter precipitations with corresponding wetter soils causing weak root anchorage of trees (Brázdil et al. 2018 ). Surging temperature regimes causes alterations in usual precipitation patterns, which is a significant hurdle for the survival of temperate forests (Allen et al. 2010 ; Flannigan et al. 2013 ), letting them encounter severe stress and disturbances which adversely affects the local tree species (Hubbart et al. 2016 ; Millar and Stephenson 2015 ; Rehman et al. 2021 ).

Climate change impacts on forest-dependent communities

Forests are the fundamental livelihood resource for about 1.6 billion people worldwide; out of them, 350 million are distinguished with relatively higher reliance (Bank 2008 ). Agro-forestry-dependent communities comprise 1.2 billion, and 60 million indigenous people solely rely on forests and their products to sustain their lives (Sunderlin et al. 2005 ). For example, in the entire African continent, more than 2/3rd of inhabitants depend on forest resources and woodlands for their alimonies, e.g., food, fuelwood and grazing (Wasiq and Ahmad 2004 ). The livings of these people are more intensely affected by the climatic disruptions making their lives harder (Brown et al. 2014 ). On the one hand, forest communities are incredibly vulnerable to CC due to their livelihoods, cultural and spiritual ties as well as socio-ecological connections, and on the other, they are not familiar with the term “climate change.” (Rahman and Alam 2016 ). Among the destructive impacts of temperature and rainfall, disruption of the agroforestry crops with resultant downscale growth and yield (Macchi et al. 2008 ). Cruz ( 2015 ) ascribed that forest-dependent smallholder farmers in the Philippines face the enigma of delayed fruiting, more severe damages by insect and pest incidences due to unfavorable temperature regimes, and changed rainfall patterns.

Among these series of challenges to forest communities, their well-being is also distinctly vulnerable to CC. Though the detailed climate change impacts on human health have been comprehensively mentioned in the previous section, some studies have listed a few more devastating effects on the prosperity of forest-dependent communities. For instance, the Himalayan people have been experiencing frequent skin-borne diseases such as malaria and other skin diseases due to increasing mosquitoes, wild boar as well, and new wasps species, particularly in higher altitudes that were almost non-existent before last 5–10 years (Xu et al. 2008 ). Similarly, people living at high altitudes in Bangladesh have experienced frequent mosquito-borne calamities (Fardous; Sharma 2012 ). In addition, the pace of other waterborne diseases such as infectious diarrhea, cholera, pathogenic induced abdominal complications and dengue has also been boosted in other distinguished regions of Bangladesh (Cell 2009 ; Gunter et al. 2008 ).

Pest outbreak

Upscaling hotter climate may positively affect the mobile organisms with shorter generation times because they can scurry from harsh conditions than the immobile species (Fettig et al. 2013 ; Schoene and Bernier 2012 ) and are also relatively more capable of adapting to new environments (Jactel et al. 2019 ). It reveals that insects adapt quickly to global warming due to their mobility advantages. Due to past outbreaks, the trees (forests) are relatively more susceptible victims (Kurz et al. 2008 ). Before CC, the influence of factors mentioned earlier, i.e., droughts and storms, was existent and made the forests susceptible to insect pest interventions; however, the global forests remain steadfast, assiduous, and green (Jactel et al. 2019 ). The typical reasons could be the insect herbivores were regulated by several tree defenses and pressures of predation (Wilkinson and Sherratt 2016 ). As climate greatly influences these phenomena, the global forests cannot be so sedulous against such challenges (Jactel et al. 2019 ). Table 3 demonstrates some of the particular considerations with practical examples that are essential while mitigating the impacts of CC in the forestry sector.

Climate change impacts on tourism

Tourism is a commercial activity that has roots in multi-dimensions and an efficient tool with adequate job generation potential, revenue creation, earning of spectacular foreign exchange, enhancement in cross-cultural promulgation and cooperation, a business tool for entrepreneurs and eventually for the country’s national development (Arshad et al. 2018 ; Scott 2021 ). Among a plethora of other disciplines, the tourism industry is also a distinct victim of climate warming (Gössling et al. 2012 ; Hall et al. 2015 ) as the climate is among the essential resources that enable tourism in particular regions as most preferred locations. Different places at different times of the year attract tourists both within and across the countries depending upon the feasibility and compatibility of particular weather patterns. Hence, the massive variations in these weather patterns resulting from CC will eventually lead to monumental challenges to the local economy in that specific area’s particular and national economy (Bujosa et al. 2015 ). For instance, the Intergovernmental Panel on Climate Change (IPCC) report demonstrated that the global tourism industry had faced a considerable decline in the duration of ski season, including the loss of some ski areas and the dramatic shifts in tourist destinations’ climate warming.

Furthermore, different studies (Neuvonen et al. 2015 ; Scott et al. 2004 ) indicated that various currently perfect tourist spots, e.g., coastal areas, splendid islands, and ski resorts, will suffer consequences of CC. It is also worth noting that the quality and potential of administrative management potential to cope with the influence of CC on the tourism industry is of crucial significance, which renders specific strengths of resiliency to numerous destinations to withstand against it (Füssel and Hildén 2014 ). Similarly, in the partial or complete absence of adequate socio-economic and socio-political capital, the high-demanding tourist sites scurry towards the verge of vulnerability. The susceptibility of tourism is based on different components such as the extent of exposure, sensitivity, life-supporting sectors, and capacity assessment factors (Füssel and Hildén 2014 ). It is obvious corporality that sectors such as health, food, ecosystems, human habitat, infrastructure, water availability, and the accessibility of a particular region are prone to CC. Henceforth, the sensitivity of these critical sectors to CC and, in return, the adaptive measures are a hallmark in determining the composite vulnerability of climate warming (Ionescu et al. 2009 ).

Moreover, the dependence on imported food items, poor hygienic conditions, and inadequate health professionals are dominant aspects affecting the local terrestrial and aquatic biodiversity. Meanwhile, the greater dependency on ecosystem services and its products also makes a destination more fragile to become a prey of CC (Rizvi et al. 2015 ). Some significant non-climatic factors are important indicators of a particular ecosystem’s typical health and functioning, e.g., resource richness and abundance portray the picture of ecosystem stability. Similarly, the species abundance is also a productive tool that ensures that the ecosystem has a higher buffering capacity, which is terrific in terms of resiliency (Roscher et al. 2013 ).

Climate change impacts on the economic sector

Climate plays a significant role in overall productivity and economic growth. Due to its increasingly global existence and its effect on economic growth, CC has become one of the major concerns of both local and international environmental policymakers (Ferreira et al. 2020 ; Gleditsch 2021 ; Abbass et al. 2021b ; Lamperti et al. 2021 ). The adverse effects of CC on the overall productivity factor of the agricultural sector are therefore significant for understanding the creation of local adaptation policies and the composition of productive climate policy contracts. Previous studies on CC in the world have already forecasted its effects on the agricultural sector. Researchers have found that global CC will impact the agricultural sector in different world regions. The study of the impacts of CC on various agrarian activities in other demographic areas and the development of relative strategies to respond to effects has become a focal point for researchers (Chandioet al. 2020 ; Gleditsch 2021 ; Mosavi et al. 2020 ).

With the rapid growth of global warming since the 1980s, the temperature has started increasing globally, which resulted in the incredible transformation of rain and evaporation in the countries. The agricultural development of many countries has been reliant, delicate, and susceptible to CC for a long time, and it is on the development of agriculture total factor productivity (ATFP) influence different crops and yields of farmers (Alhassan 2021 ; Wu  2020 ).

Food security and natural disasters are increasing rapidly in the world. Several major climatic/natural disasters have impacted local crop production in the countries concerned. The effects of these natural disasters have been poorly controlled by the development of the economies and populations and may affect human life as well. One example is China, which is among the world’s most affected countries, vulnerable to natural disasters due to its large population, harsh environmental conditions, rapid CC, low environmental stability, and disaster power. According to the January 2016 statistical survey, China experienced an economic loss of 298.3 billion Yuan, and about 137 million Chinese people were severely affected by various natural disasters (Xie et al. 2018 ).

Mitigation and adaptation strategies of climate changes

Adaptation and mitigation are the crucial factors to address the response to CC (Jahanzad et al. 2020 ). Researchers define mitigation on climate changes, and on the other hand, adaptation directly impacts climate changes like floods. To some extent, mitigation reduces or moderates greenhouse gas emission, and it becomes a critical issue both economically and environmentally (Botzen et al. 2021 ; Jahanzad et al. 2020 ; Kongsager 2018 ; Smit et al. 2000 ; Vale et al. 2021 ; Usman et al. 2021 ; Verheyen 2005 ).

Researchers have deep concern about the adaptation and mitigation methodologies in sectoral and geographical contexts. Agriculture, industry, forestry, transport, and land use are the main sectors to adapt and mitigate policies(Kärkkäinen et al. 2020 ; Waheed et al. 2021 ). Adaptation and mitigation require particular concern both at the national and international levels. The world has faced a significant problem of climate change in the last decades, and adaptation to these effects is compulsory for economic and social development. To adapt and mitigate against CC, one should develop policies and strategies at the international level (Hussain et al. 2020 ). Figure  6 depicts the list of current studies on sectoral impacts of CC with adaptation and mitigation measures globally.

figure 6

Sectoral impacts of climate change with adaptation and mitigation measures.

Conclusion and future perspectives

Specific socio-agricultural, socio-economic, and physical systems are the cornerstone of psychological well-being, and the alteration in these systems by CC will have disastrous impacts. Climate variability, alongside other anthropogenic and natural stressors, influences human and environmental health sustainability. Food security is another concerning scenario that may lead to compromised food quality, higher food prices, and inadequate food distribution systems. Global forests are challenged by different climatic factors such as storms, droughts, flash floods, and intense precipitation. On the other hand, their anthropogenic wiping is aggrandizing their existence. Undoubtedly, the vulnerability scale of the world’s regions differs; however, appropriate mitigation and adaptation measures can aid the decision-making bodies in developing effective policies to tackle its impacts. Presently, modern life on earth has tailored to consistent climatic patterns, and accordingly, adapting to such considerable variations is of paramount importance. Because the faster changes in climate will make it harder to survive and adjust, this globally-raising enigma calls for immediate attention at every scale ranging from elementary community level to international level. Still, much effort, research, and dedication are required, which is the most critical time. Some policy implications can help us to mitigate the consequences of climate change, especially the most affected sectors like the agriculture sector;

Seasonal variations and cultivation practices

Warming might lengthen the season in frost-prone growing regions (temperate and arctic zones), allowing for longer-maturing seasonal cultivars with better yields (Pfadenhauer 2020 ; Bonacci 2019 ). Extending the planting season may allow additional crops each year; when warming leads to frequent warmer months highs over critical thresholds, a split season with a brief summer fallow may be conceivable for short-period crops such as wheat barley, cereals, and many other vegetable crops. The capacity to prolong the planting season in tropical and subtropical places where the harvest season is constrained by precipitation or agriculture farming occurs after the year may be more limited and dependent on how precipitation patterns vary (Wu et al. 2017 ).

New varieties of crops

The genetic component is comprehensive for many yields, but it is restricted like kiwi fruit for a few. Ali et al. ( 2017 ) investigated how new crops will react to climatic changes (also stated in Mall et al. 2017 ). Hot temperature, drought, insect resistance; salt tolerance; and overall crop production and product quality increases would all be advantageous (Akkari 2016 ). Genetic mapping and engineering can introduce a greater spectrum of features. The adoption of genetically altered cultivars has been slowed, particularly in the early forecasts owing to the complexity in ensuring features are expediently expressed throughout the entire plant, customer concerns, economic profitability, and regulatory impediments (Wirehn 2018 ; Davidson et al. 2016 ).

Changes in management and other input factors

To get the full benefit of the CO 2 would certainly require additional nitrogen and other fertilizers. Nitrogen not consumed by the plants may be excreted into groundwater, discharged into water surface, or emitted from the land, soil nitrous oxide when large doses of fertilizer are sprayed. Increased nitrogen levels in groundwater sources have been related to human chronic illnesses and impact marine ecosystems. Cultivation, grain drying, and other field activities have all been examined in depth in the studies (Barua et al. 2018 ).

The technological and socio-economic adaptation

The policy consequence of the causative conclusion is that as a source of alternative energy, biofuel production is one of the routes that explain oil price volatility separate from international macroeconomic factors. Even though biofuel production has just begun in a few sample nations, there is still a tremendous worldwide need for feedstock to satisfy industrial expansion in China and the USA, which explains the food price relationship to the global oil price. Essentially, oil-exporting countries may create incentives in their economies to increase food production. It may accomplish by giving farmers financing, seedlings, fertilizers, and farming equipment. Because of the declining global oil price and, as a result, their earnings from oil export, oil-producing nations may be unable to subsidize food imports even in the near term. As a result, these countries can boost the agricultural value chain for export. It may be accomplished through R&D and adding value to their food products to increase income by correcting exchange rate misalignment and adverse trade terms. These nations may also diversify their economies away from oil, as dependence on oil exports alone is no longer economically viable given the extreme volatility of global oil prices. Finally, resource-rich and oil-exporting countries can convert to non-food renewable energy sources such as solar, hydro, coal, wind, wave, and tidal energy. By doing so, both world food and oil supplies would be maintained rather than harmed.

IRENA’s modeling work shows that, if a comprehensive policy framework is in place, efforts toward decarbonizing the energy future will benefit economic activity, jobs (outweighing losses in the fossil fuel industry), and welfare. Countries with weak domestic supply chains and a large reliance on fossil fuel income, in particular, must undertake structural reforms to capitalize on the opportunities inherent in the energy transition. Governments continue to give major policy assistance to extract fossil fuels, including tax incentives, financing, direct infrastructure expenditures, exemptions from environmental regulations, and other measures. The majority of major oil and gas producing countries intend to increase output. Some countries intend to cut coal output, while others plan to maintain or expand it. While some nations are beginning to explore and execute policies aimed at a just and equitable transition away from fossil fuel production, these efforts have yet to impact major producing countries’ plans and goals. Verifiable and comparable data on fossil fuel output and assistance from governments and industries are critical to closing the production gap. Governments could increase openness by declaring their production intentions in their climate obligations under the Paris Agreement.

It is firmly believed that achieving the Paris Agreement commitments is doubtlful without undergoing renewable energy transition across the globe (Murshed 2020 ; Zhao et al. 2022 ). Policy instruments play the most important role in determining the degree of investment in renewable energy technology. This study examines the efficacy of various policy strategies in the renewable energy industry of multiple nations. Although its impact is more visible in established renewable energy markets, a renewable portfolio standard is also a useful policy instrument. The cost of producing renewable energy is still greater than other traditional energy sources. Furthermore, government incentives in the R&D sector can foster innovation in this field, resulting in cost reductions in the renewable energy industry. These nations may export their technologies and share their policy experiences by forming networks among their renewable energy-focused organizations. All policy measures aim to reduce production costs while increasing the proportion of renewables to a country’s energy system. Meanwhile, long-term contracts with renewable energy providers, government commitment and control, and the establishment of long-term goals can assist developing nations in deploying renewable energy technology in their energy sector.

Availability of data and material

Data sources and relevant links are provided in the paper to access data.

Abbass K, Begum H, Alam ASA, Awang AH, Abdelsalam MK, Egdair IMM, Wahid R (2022) Fresh Insight through a Keynesian Theory Approach to Investigate the Economic Impact of the COVID-19 Pandemic in Pakistan. Sustain 14(3):1054

Abbass K, Niazi AAK, Qazi TF, Basit A, Song H (2021a) The aftermath of COVID-19 pandemic period: barriers in implementation of social distancing at workplace. Library Hi Tech

Abbass K, Song H, Khan F, Begum H, Asif M (2021b) Fresh insight through the VAR approach to investigate the effects of fiscal policy on environmental pollution in Pakistan. Environ Scie Poll Res 1–14

Abbass K, Song H, Shah SM, Aziz B (2019) Determinants of Stock Return for Non-Financial Sector: Evidence from Energy Sector of Pakistan. J Bus Fin Aff 8(370):2167–0234

Google Scholar  

Abbass K, Tanveer A, Huaming S, Khatiya AA (2021c) Impact of financial resources utilization on firm performance: a case of SMEs working in Pakistan

Abraham E, Chain E (1988) An enzyme from bacteria able to destroy penicillin. 1940. Rev Infect Dis 10(4):677

CAS   Google Scholar  

Adger WN, Arnell NW, Tompkins EL (2005) Successful adaptation to climate change across scales. Glob Environ Chang 15(2):77–86

Article   Google Scholar  

Akkari C, Bryant CR (2016) The co-construction approach as approach to developing adaptation strategies in the face of climate change and variability: A conceptual framework. Agricultural Research 5(2):162–173

Alhassan H (2021) The effect of agricultural total factor productivity on environmental degradation in sub-Saharan Africa. Sci Afr 12:e00740

Ali A, Erenstein O (2017) Assessing farmer use of climate change adaptation practices and impacts on food security and poverty in Pakistan. Clim Risk Manag 16:183–194

Allen CD, Macalady AK, Chenchouni H, Bachelet D, McDowell N, Vennetier M, Hogg ET (2010) A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. For Ecol Manag 259(4):660–684

Anwar A, Sinha A, Sharif A, Siddique M, Irshad S, Anwar W, Malik S (2021) The nexus between urbanization, renewable energy consumption, financial development, and CO2 emissions: evidence from selected Asian countries. Environ Dev Sust. https://doi.org/10.1007/s10668-021-01716-2

Araus JL, Slafer GA, Royo C, Serret MD (2008) Breeding for yield potential and stress adaptation in cereals. Crit Rev Plant Sci 27(6):377–412

Aron JL, Patz J (2001) Ecosystem change and public health: a global perspective: JHU Press

Arshad MI, Iqbal MA, Shahbaz M (2018) Pakistan tourism industry and challenges: a review. Asia Pacific Journal of Tourism Research 23(2):121–132

Ashbolt NJ (2015) Microbial contamination of drinking water and human health from community water systems. Current Environmental Health Reports 2(1):95–106

Article   CAS   Google Scholar  

Asseng S, Cao W, Zhang W, Ludwig F (2009) Crop physiology, modelling and climate change: impact and adaptation strategies. Crop Physiol 511–543

Asseng S, Ewert F, Rosenzweig C, Jones JW, Hatfield JL, Ruane AC, Cammarano D (2013) Uncertainty in simulating wheat yields under climate change. Nat Clim Chang 3(9):827–832

Association A (2020) Climate change is threatening mental health, American Psychological Association, “Kirsten Weir, . from < https://www.apa.org/monitor/2016/07-08/climate-change >, Accessed on 26 Jan 2020.

Ayers J, Huq S, Wright H, Faisal A, Hussain S (2014) Mainstreaming climate change adaptation into development in Bangladesh. Clim Dev 6:293–305

Balsalobre-Lorente D, Driha OM, Bekun FV, Sinha A, Adedoyin FF (2020) Consequences of COVID-19 on the social isolation of the Chinese economy: accounting for the role of reduction in carbon emissions. Air Qual Atmos Health 13(12):1439–1451

Balsalobre-Lorente D, Ibáñez-Luzón L, Usman M, Shahbaz M (2022) The environmental Kuznets curve, based on the economic complexity, and the pollution haven hypothesis in PIIGS countries. Renew Energy 185:1441–1455

Bank W (2008) Forests sourcebook: practical guidance for sustaining forests in development cooperation: World Bank

Barua S, Valenzuela E (2018) Climate change impacts on global agricultural trade patterns: evidence from the past 50 years. In Proceedings of the Sixth International Conference on Sustainable Development (pp. 26–28)

Bates AE, Pecl GT, Frusher S, Hobday AJ, Wernberg T, Smale DA, Colwell RK (2014) Defining and observing stages of climate-mediated range shifts in marine systems. Glob Environ Chang 26:27–38

Battisti DS, Naylor RL (2009) Historical warnings of future food insecurity with unprecedented seasonal heat. Science 323(5911):240–244

Beesley L, Close PG, Gwinn DC, Long M, Moroz M, Koster WM, Storer T (2019) Flow-mediated movement of freshwater catfish, Tandanus bostocki, in a regulated semi-urban river, to inform environmental water releases. Ecol Freshw Fish 28(3):434–445

Benita F (2021) Human mobility behavior in COVID-19: A systematic literature review and bibliometric analysis. Sustain Cities Soc 70:102916

Berendonk TU, Manaia CM, Merlin C, Fatta-Kassinos D, Cytryn E, Walsh F, Pons M-N (2015) Tackling antibiotic resistance: the environmental framework. Nat Rev Microbiol 13(5):310–317

Berg MP, Kiers ET, Driessen G, Van DerHEIJDEN M, Kooi BW, Kuenen F, Ellers J (2010) Adapt or disperse: understanding species persistence in a changing world. Glob Change Biol 16(2):587–598

Blum A, Klueva N, Nguyen H (2001) Wheat cellular thermotolerance is related to yield under heat stress. Euphytica 117(2):117–123

Bonacci O (2019) Air temperature and precipitation analyses on a small Mediterranean island: the case of the remote island of Lastovo (Adriatic Sea, Croatia). Acta Hydrotechnica 32(57):135–150

Botzen W, Duijndam S, van Beukering P (2021) Lessons for climate policy from behavioral biases towards COVID-19 and climate change risks. World Dev 137:105214

Brázdil R, Stucki P, Szabó P, Řezníčková L, Dolák L, Dobrovolný P, Suchánková S (2018) Windstorms and forest disturbances in the Czech Lands: 1801–2015. Agric for Meteorol 250:47–63

Brown HCP, Smit B, Somorin OA, Sonwa DJ, Nkem JN (2014) Climate change and forest communities: prospects for building institutional adaptive capacity in the Congo Basin forests. Ambio 43(6):759–769

Bujosa A, Riera A, Torres CM (2015) Valuing tourism demand attributes to guide climate change adaptation measures efficiently: the case of the Spanish domestic travel market. Tour Manage 47:233–239

Calderini D, Abeledo L, Savin R, Slafer GA (1999) Effect of temperature and carpel size during pre-anthesis on potential grain weight in wheat. J Agric Sci 132(4):453–459

Cammell M, Knight J (1992) Effects of climatic change on the population dynamics of crop pests. Adv Ecol Res 22:117–162

Cavanaugh KC, Kellner JR, Forde AJ, Gruner DS, Parker JD, Rodriguez W, Feller IC (2014) Poleward expansion of mangroves is a threshold response to decreased frequency of extreme cold events. Proc Natl Acad Sci 111(2):723–727

Cell CC (2009) Climate change and health impacts in Bangladesh. Clima Chang Cell DoE MoEF

Chandio AA, Jiang Y, Rehman A, Rauf A (2020) Short and long-run impacts of climate change on agriculture: an empirical evidence from China. Int J Clim Chang Strat Manag

Chaudhary P, Rai S, Wangdi S, Mao A, Rehman N, Chettri S, Bawa KS (2011) Consistency of local perceptions of climate change in the Kangchenjunga Himalaya landscape. Curr Sci 504–513

Chien F, Anwar A, Hsu CC, Sharif A, Razzaq A, Sinha A (2021) The role of information and communication technology in encountering environmental degradation: proposing an SDG framework for the BRICS countries. Technol Soc 65:101587

Cooper C, Booth A, Varley-Campbell J, Britten N, Garside R (2018) Defining the process to literature searching in systematic reviews: a literature review of guidance and supporting studies. BMC Med Res Methodol 18(1):1–14

Costello A, Abbas M, Allen A, Ball S, Bell S, Bellamy R, Kett M (2009) Managing the health effects of climate change: lancet and University College London Institute for Global Health Commission. The Lancet 373(9676):1693–1733

Cruz DLA (2015) Mother Figured. University of Chicago Press. Retrieved from, https://doi.org/10.7208/9780226315072

Cui W, Ouyang T, Qiu Y, Cui D (2021) Literature Review of the Implications of Exercise Rehabilitation Strategies for SARS Patients on the Recovery of COVID-19 Patients. Paper presented at the Healthcare

Davidson D (2016) Gaps in agricultural climate adaptation research. Nat Clim Chang 6(5):433–435

Diffenbaugh NS, Singh D, Mankin JS, Horton DE, Swain DL, Touma D, Tsiang M (2017) Quantifying the influence of global warming on unprecedented extreme climate events. Proc Natl Acad Sci 114(19):4881–4886

Dimri A, Kumar D, Choudhary A, Maharana P (2018) Future changes over the Himalayas: mean temperature. Global Planet Change 162:235–251

Dullinger S, Gattringer A, Thuiller W, Moser D, Zimmermann N, Guisan A (2012) Extinction debt of high-mountain plants under twenty-first-century climate change. Nature Publishing Group, Nat Clim Chang

Book   Google Scholar  

Dupuis I, Dumas C (1990) Influence of temperature stress on in vitro fertilization and heat shock protein synthesis in maize (Zea mays L.) reproductive tissues. Plant Physiol 94(2):665–670

Edreira JR, Otegui ME (2013) Heat stress in temperate and tropical maize hybrids: a novel approach for assessing sources of kernel loss in field conditions. Field Crop Res 142:58–67

Edreira JR, Carpici EB, Sammarro D, Otegui M (2011) Heat stress effects around flowering on kernel set of temperate and tropical maize hybrids. Field Crop Res 123(2):62–73

Ellison D, Morris CE, Locatelli B, Sheil D, Cohen J, Murdiyarso D, Pokorny J (2017) Trees, forests and water: Cool insights for a hot world. Glob Environ Chang 43:51–61

Elsayed ZM, Eldehna WM, Abdel-Aziz MM, El Hassab MA, Elkaeed EB, Al-Warhi T, Mohammed ER (2021) Development of novel isatin–nicotinohydrazide hybrids with potent activity against susceptible/resistant Mycobacterium tuberculosis and bronchitis causing–bacteria. J Enzyme Inhib Med Chem 36(1):384–393

EM-DAT (2020) EMDAT: OFDA/CRED International Disaster Database, Université catholique de Louvain – Brussels – Belgium. from http://www.emdat.be

EPA U (2018) United States Environmental Protection Agency, EPA Year in Review

Erman A, De Vries Robbe SA, Thies SF, Kabir K, Maruo M (2021) Gender Dimensions of Disaster Risk and Resilience

Fand BB, Kamble AL, Kumar M (2012) Will climate change pose serious threat to crop pest management: a critical review. Int J Sci Res Publ 2(11):1–14

FAO (2018).The State of the World’s Forests 2018 - Forest Pathways to Sustainable Development.

Fardous S Perception of climate change in Kaptai National Park. Rural Livelihoods and Protected Landscape: Co-Management in the Wetlands and Forests of Bangladesh, 186–204

Farooq M, Bramley H, Palta JA, Siddique KH (2011) Heat stress in wheat during reproductive and grain-filling phases. Crit Rev Plant Sci 30(6):491–507

Feliciano D, Recha J, Ambaw G, MacSween K, Solomon D, Wollenberg E (2022) Assessment of agricultural emissions, climate change mitigation and adaptation practices in Ethiopia. Clim Policy 1–18

Ferreira JJ, Fernandes CI, Ferreira FA (2020) Technology transfer, climate change mitigation, and environmental patent impact on sustainability and economic growth: a comparison of European countries. Technol Forecast Soc Change 150:119770

Fettig CJ, Reid ML, Bentz BJ, Sevanto S, Spittlehouse DL, Wang T (2013) Changing climates, changing forests: a western North American perspective. J Forest 111(3):214–228

Fischer AP (2019) Characterizing behavioral adaptation to climate change in temperate forests. Landsc Urban Plan 188:72–79

Flannigan M, Cantin AS, De Groot WJ, Wotton M, Newbery A, Gowman LM (2013) Global wildland fire season severity in the 21st century. For Ecol Manage 294:54–61

Fossheim M, Primicerio R, Johannesen E, Ingvaldsen RB, Aschan MM, Dolgov AV (2015) Recent warming leads to a rapid borealization of fish communities in the Arctic. Nat Clim Chang 5(7):673–677

Füssel HM, Hildén M (2014) How is uncertainty addressed in the knowledge base for national adaptation planning? Adapting to an Uncertain Climate (pp. 41–66): Springer

Gambín BL, Borrás L, Otegui ME (2006) Source–sink relations and kernel weight differences in maize temperate hybrids. Field Crop Res 95(2–3):316–326

Gambín B, Borrás L (2010) Resource distribution and the trade-off between seed number and seed weight: a comparison across crop species. Annals of Applied Biology 156(1):91–102

Gampe D, Nikulin G, Ludwig R (2016) Using an ensemble of regional climate models to assess climate change impacts on water scarcity in European river basins. Sci Total Environ 573:1503–1518

García GA, Dreccer MF, Miralles DJ, Serrago RA (2015) High night temperatures during grain number determination reduce wheat and barley grain yield: a field study. Glob Change Biol 21(11):4153–4164

Garner E, Inyang M, Garvey E, Parks J, Glover C, Grimaldi A, Edwards MA (2019) Impact of blending for direct potable reuse on premise plumbing microbial ecology and regrowth of opportunistic pathogens and antibiotic resistant bacteria. Water Res 151:75–86

Gleditsch NP (2021) This time is different! Or is it? NeoMalthusians and environmental optimists in the age of climate change. J Peace Res 0022343320969785

Godfray HCJ, Beddington JR, Crute IR, Haddad L, Lawrence D, Muir JF, Toulmin C (2010) Food security: the challenge of feeding 9 billion people. Science 327(5967):812–818

Goes S, Hasterok D, Schutt DL, Klöcking M (2020) Continental lithospheric temperatures: A review. Phys Earth Planet Inter 106509

Gorst A, Dehlavi A, Groom B (2018) Crop productivity and adaptation to climate change in Pakistan. Environ Dev Econ 23(6):679–701

Gosling SN, Arnell NW (2016) A global assessment of the impact of climate change on water scarcity. Clim Change 134(3):371–385

Gössling S, Scott D, Hall CM, Ceron J-P, Dubois G (2012) Consumer behaviour and demand response of tourists to climate change. Ann Tour Res 39(1):36–58

Gourdji SM, Sibley AM, Lobell DB (2013) Global crop exposure to critical high temperatures in the reproductive period: historical trends and future projections. Environ Res Lett 8(2):024041

Grieg E Responsible Consumption and Production

Gunter BG, Rahman A, Rahman A (2008) How Vulnerable are Bangladesh’s Indigenous People to Climate Change? Bangladesh Development Research Center (BDRC)

Hall CM, Amelung B, Cohen S, Eijgelaar E, Gössling S, Higham J, Scott D (2015) On climate change skepticism and denial in tourism. J Sustain Tour 23(1):4–25

Hartmann H, Moura CF, Anderegg WR, Ruehr NK, Salmon Y, Allen CD, Galbraith D (2018) Research frontiers for improving our understanding of drought-induced tree and forest mortality. New Phytol 218(1):15–28

Hatfield JL, Prueger JH (2015) Temperature extremes: Effect on plant growth and development. Weather and Climate Extremes 10:4–10

Hatfield JL, Boote KJ, Kimball B, Ziska L, Izaurralde RC, Ort D, Wolfe D (2011) Climate impacts on agriculture: implications for crop production. Agron J 103(2):351–370

Hendriksen RS, Munk P, Njage P, Van Bunnik B, McNally L, Lukjancenko O, Kjeldgaard J (2019) Global monitoring of antimicrobial resistance based on metagenomics analyses of urban sewage. Nat Commun 10(1):1124

Huang S (2004) Global trade patterns in fruits and vegetables. USDA-ERS Agriculture and Trade Report No. WRS-04–06

Huang W, Gao Q-X, Cao G-L, Ma Z-Y, Zhang W-D, Chao Q-C (2016) Effect of urban symbiosis development in China on GHG emissions reduction. Adv Clim Chang Res 7(4):247–252

Huang Y, Haseeb M, Usman M, Ozturk I (2022) Dynamic association between ICT, renewable energy, economic complexity and ecological footprint: Is there any difference between E-7 (developing) and G-7 (developed) countries? Tech Soc 68:101853

Hubbart JA, Guyette R, Muzika R-M (2016) More than drought: precipitation variance, excessive wetness, pathogens and the future of the western edge of the eastern deciduous forest. Sci Total Environ 566:463–467

Hussain M, Butt AR, Uzma F, Ahmed R, Irshad S, Rehman A, Yousaf B (2020) A comprehensive review of climate change impacts, adaptation, and mitigation on environmental and natural calamities in Pakistan. Environ Monit Assess 192(1):48

Hussain M, Liu G, Yousaf B, Ahmed R, Uzma F, Ali MU, Butt AR (2018) Regional and sectoral assessment on climate-change in Pakistan: social norms and indigenous perceptions on climate-change adaptation and mitigation in relation to global context. J Clean Prod 200:791–808

Intergov. Panel Clim Chang 33 from  https://doi.org/10.1017/CBO9781107415324

Ionescu C, Klein RJ, Hinkel J, Kumar KK, Klein R (2009) Towards a formal framework of vulnerability to climate change. Environ Model Assess 14(1):1–16

IPCC (2013) Summary for policymakers. Clim Chang Phys Sci Basis Contrib Work Gr I Fifth Assess Rep

Ishikawa-Ishiwata Y, Furuya J (2022) Economic evaluation and climate change adaptation measures for rice production in vietnam using a supply and demand model: special emphasis on the Mekong River Delta region in Vietnam. In Interlocal Adaptations to Climate Change in East and Southeast Asia (pp. 45–53). Springer, Cham

Izaguirre C, Losada I, Camus P, Vigh J, Stenek V (2021) Climate change risk to global port operations. Nat Clim Chang 11(1):14–20

Jactel H, Koricheva J, Castagneyrol B (2019) Responses of forest insect pests to climate change: not so simple. Current opinion in insect science

Jahanzad E, Holtz BA, Zuber CA, Doll D, Brewer KM, Hogan S, Gaudin AC (2020) Orchard recycling improves climate change adaptation and mitigation potential of almond production systems. PLoS ONE 15(3):e0229588

Jurgilevich A, Räsänen A, Groundstroem F, Juhola S (2017) A systematic review of dynamics in climate risk and vulnerability assessments. Environ Res Lett 12(1):013002

Karami E (2012) Climate change, resilience and poverty in the developing world. Paper presented at the Culture, Politics and Climate change conference

Kärkkäinen L, Lehtonen H, Helin J, Lintunen J, Peltonen-Sainio P, Regina K, . . . Packalen T (2020) Evaluation of policy instruments for supporting greenhouse gas mitigation efforts in agricultural and urban land use. Land Use Policy 99:104991

Karkman A, Do TT, Walsh F, Virta MP (2018) Antibiotic-resistance genes in waste water. Trends Microbiol 26(3):220–228

Kohfeld KE, Le Quéré C, Harrison SP, Anderson RF (2005) Role of marine biology in glacial-interglacial CO2 cycles. Science 308(5718):74–78

Kongsager R (2018) Linking climate change adaptation and mitigation: a review with evidence from the land-use sectors. Land 7(4):158

Kurz WA, Dymond C, Stinson G, Rampley G, Neilson E, Carroll A, Safranyik L (2008) Mountain pine beetle and forest carbon feedback to climate change. Nature 452(7190):987

Lamperti F, Bosetti V, Roventini A, Tavoni M, Treibich T (2021) Three green financial policies to address climate risks. J Financial Stab 54:100875

Leal Filho W, Azeiteiro UM, Balogun AL, Setti AFF, Mucova SA, Ayal D, . . . Oguge NO (2021) The influence of ecosystems services depletion to climate change adaptation efforts in Africa. Sci Total Environ 146414

Lehner F, Coats S, Stocker TF, Pendergrass AG, Sanderson BM, Raible CC, Smerdon JE (2017) Projected drought risk in 1.5 C and 2 C warmer climates. Geophys Res Lett 44(14):7419–7428

Lemery J, Knowlton K, Sorensen C (2021) Global climate change and human health: from science to practice: John Wiley & Sons

Leppänen S, Saikkonen L, Ollikainen M (2014) Impact of Climate Change on cereal grain production in Russia: Mimeo

Lipczynska-Kochany E (2018) Effect of climate change on humic substances and associated impacts on the quality of surface water and groundwater: a review. Sci Total Environ 640:1548–1565

livescience.com. New coronavirus may have ‘jumped’ to humans from snakes, study finds, live science,. from < https://www.livescience.com/new-coronavirus-origin-snakes.html > accessed on Jan 2020

Lobell DB, Field CB (2007) Global scale climate–crop yield relationships and the impacts of recent warming. Environ Res Lett 2(1):014002

Lobell DB, Gourdji SM (2012) The influence of climate change on global crop productivity. Plant Physiol 160(4):1686–1697

Ma L, Li B, Zhang T (2019) New insights into antibiotic resistome in drinking water and management perspectives: a metagenomic based study of small-sized microbes. Water Res 152:191–201

Macchi M, Oviedo G, Gotheil S, Cross K, Boedhihartono A, Wolfangel C, Howell M (2008) Indigenous and traditional peoples and climate change. International Union for the Conservation of Nature, Gland, Suiza

Mall RK, Gupta A, Sonkar G (2017) Effect of climate change on agricultural crops. In Current developments in biotechnology and bioengineering (pp. 23–46). Elsevier

Manes S, Costello MJ, Beckett H, Debnath A, Devenish-Nelson E, Grey KA, . . . Krause C (2021) Endemism increases species’ climate change risk in areas of global biodiversity importance. Biol Conserv 257:109070

Mannig B, Pollinger F, Gafurov A, Vorogushyn S, Unger-Shayesteh K (2018) Impacts of climate change in Central Asia Encyclopedia of the Anthropocene (pp. 195–203): Elsevier

Martínez-Alvarado O, Gray SL, Hart NC, Clark PA, Hodges K, Roberts MJ (2018) Increased wind risk from sting-jet windstorms with climate change. Environ Res Lett 13(4):044002

Matsui T, Omasa K, Horie T (2001) The difference in sterility due to high temperatures during the flowering period among japonica-rice varieties. Plant Production Science 4(2):90–93

Meierrieks D (2021) Weather shocks, climate change and human health. World Dev 138:105228

Michel D, Eriksson M, Klimes M (2021) Climate change and (in) security in transboundary river basins Handbook of Security and the Environment: Edward Elgar Publishing

Mihiretu A, Okoyo EN, Lemma T (2021) Awareness of climate change and its associated risks jointly explain context-specific adaptation in the Arid-tropics. Northeast Ethiopia SN Social Sciences 1(2):1–18

Millar CI, Stephenson NL (2015) Temperate forest health in an era of emerging megadisturbance. Science 349(6250):823–826

Mishra A, Bruno E, Zilberman D (2021) Compound natural and human disasters: Managing drought and COVID-19 to sustain global agriculture and food sectors. Sci Total Environ 754:142210

Mosavi SH, Soltani S, Khalilian S (2020) Coping with climate change in agriculture: Evidence from Hamadan-Bahar plain in Iran. Agric Water Manag 241:106332

Murshed M (2020) An empirical analysis of the non-linear impacts of ICT-trade openness on renewable energy transition, energy efficiency, clean cooking fuel access and environmental sustainability in South Asia. Environ Sci Pollut Res 27(29):36254–36281. https://doi.org/10.1007/s11356-020-09497-3

Murshed M (2022) Pathways to clean cooking fuel transition in low and middle income Sub-Saharan African countries: the relevance of improving energy use efficiency. Sustainable Production and Consumption 30:396–412. https://doi.org/10.1016/j.spc.2021.12.016

Murshed M, Dao NTT (2020) Revisiting the CO2 emission-induced EKC hypothesis in South Asia: the role of Export Quality Improvement. GeoJournal. https://doi.org/10.1007/s10708-020-10270-9

Murshed M, Abbass K, Rashid S (2021) Modelling renewable energy adoption across south Asian economies: Empirical evidence from Bangladesh, India, Pakistan and Sri Lanka. Int J Finan Eco 26(4):5425–5450

Murshed M, Nurmakhanova M, Elheddad M, Ahmed R (2020) Value addition in the services sector and its heterogeneous impacts on CO2 emissions: revisiting the EKC hypothesis for the OPEC using panel spatial estimation techniques. Environ Sci Pollut Res 27(31):38951–38973. https://doi.org/10.1007/s11356-020-09593-4

Murshed M, Nurmakhanova M, Al-Tal R, Mahmood H, Elheddad M, Ahmed R (2022) Can intra-regional trade, renewable energy use, foreign direct investments, and economic growth reduce ecological footprints in South Asia? Energy Sources, Part B: Economics, Planning, and Policy. https://doi.org/10.1080/15567249.2022.2038730

Neuvonen M, Sievänen T, Fronzek S, Lahtinen I, Veijalainen N, Carter TR (2015) Vulnerability of cross-country skiing to climate change in Finland–an interactive mapping tool. J Outdoor Recreat Tour 11:64–79

npr.org. Please Help Me.’ What people in China are saying about the outbreak on social media, npr.org, . from < https://www.npr.org/sections/goatsandsoda/2020/01/24/799000379/please-help-me-what-people-in-china-are-saying-about-the-outbreak-on-social-medi >, Accessed on 26 Jan 2020.

Ogden LE (2018) Climate change, pathogens, and people: the challenges of monitoring a moving target. Bioscience 68(10):733–739

Ortiz AMD, Outhwaite CL, Dalin C, Newbold T (2021) A review of the interactions between biodiversity, agriculture, climate change, and international trade: research and policy priorities. One Earth 4(1):88–101

Ortiz R (2008) Crop genetic engineering under global climate change. Ann Arid Zone 47(3):343

Otegui MAE, Bonhomme R (1998) Grain yield components in maize: I. Ear growth and kernel set. Field Crop Res 56(3):247–256

Pachauri RK, Allen MR, Barros VR, Broome J, Cramer W, Christ R, . . . Dasgupta P (2014) Climate change 2014: synthesis report. Contribution of Working Groups I, II and III to the fifth assessment report of the Intergovernmental Panel on Climate Change: Ipcc

Pal JK (2021) Visualizing the knowledge outburst in global research on COVID-19. Scientometrics 126(5):4173–4193

Panda R, Behera S, Kashyap P (2003) Effective management of irrigation water for wheat under stressed conditions. Agric Water Manag 63(1):37–56

Pärnänen KM, Narciso-da-Rocha C, Kneis D, Berendonk TU, Cacace D, Do TT, Jaeger T (2019) Antibiotic resistance in European wastewater treatment plants mirrors the pattern of clinical antibiotic resistance prevalence. Sci Adv 5(3):eaau9124

Parry M, Parry ML, Canziani O, Palutikof J, Van der Linden P, Hanson C (2007) Climate change 2007-impacts, adaptation and vulnerability: Working group II contribution to the fourth assessment report of the IPCC (Vol. 4): Cambridge University Press

Patz JA, Campbell-Lendrum D, Holloway T, Foley JA (2005) Impact of regional climate change on human health. Nature 438(7066):310–317

Patz JA, Graczyk TK, Geller N, Vittor AY (2000) Effects of environmental change on emerging parasitic diseases. Int J Parasitol 30(12–13):1395–1405

Pautasso M, Döring TF, Garbelotto M, Pellis L, Jeger MJ (2012) Impacts of climate change on plant diseases—opinions and trends. Eur J Plant Pathol 133(1):295–313

Peng S, Huang J, Sheehy JE, Laza RC, Visperas RM, Zhong X, Cassman KG (2004) Rice yields decline with higher night temperature from global warming. Proc Natl Acad Sci 101(27):9971–9975

Pereira HM, Ferrier S, Walters M, Geller GN, Jongman R, Scholes RJ, Cardoso A (2013) Essential biodiversity variables. Science 339(6117):277–278

Perera K, De Silva K, Amarasinghe M (2018) Potential impact of predicted sea level rise on carbon sink function of mangrove ecosystems with special reference to Negombo estuary, Sri Lanka. Global Planet Change 161:162–171

Pfadenhauer JS, Klötzli FA (2020) Zonal Vegetation of the Subtropical (Warm–Temperate) Zone with Winter Rain. In Global Vegetation (pp. 455–514). Springer, Cham

Phillips JD (2018) Environmental gradients and complexity in coastal landscape response to sea level rise. CATENA 169:107–118

Pirasteh-Anosheh H, Parnian A, Spasiano D, Race M, Ashraf M (2021) Haloculture: A system to mitigate the negative impacts of pandemics on the environment, society and economy, emphasizing COVID-19. Environ Res 111228

Pruden A, Larsson DJ, Amézquita A, Collignon P, Brandt KK, Graham DW, Snape JR (2013) Management options for reducing the release of antibiotics and antibiotic resistance genes to the environment. Environ Health Perspect 121(8):878–885

Qasim MZ, Hammad HM, Abbas F, Saeed S, Bakhat HF, Nasim W, Fahad S (2020) The potential applications of picotechnology in biomedical and environmental sciences. Environ Sci Pollut Res 27(1):133–142

Qasim MZ, Hammad HM, Maqsood F, Tariq T, Chawla MS Climate Change Implication on Cereal Crop Productivity

Rahman M, Alam K (2016) Forest dependent indigenous communities’ perception and adaptation to climate change through local knowledge in the protected area—a Bangladesh case study. Climate 4(1):12

Ramankutty N, Mehrabi Z, Waha K, Jarvis L, Kremen C, Herrero M, Rieseberg LH (2018) Trends in global agricultural land use: implications for environmental health and food security. Annu Rev Plant Biol 69:789–815

Rehman A, Ma H, Ahmad M, Irfan M, Traore O, Chandio AA (2021) Towards environmental Sustainability: devolving the influence of carbon dioxide emission to population growth, climate change, Forestry, livestock and crops production in Pakistan. Ecol Indic 125:107460

Reichstein M, Carvalhais N (2019) Aspects of forest biomass in the Earth system: its role and major unknowns. Surv Geophys 40(4):693–707

Reidsma P, Ewert F, Boogaard H, van Diepen K (2009) Regional crop modelling in Europe: the impact of climatic conditions and farm characteristics on maize yields. Agric Syst 100(1–3):51–60

Ritchie H, Roser M (2014) Natural disasters. Our World in Data

Rizvi AR, Baig S, Verdone M (2015) Ecosystems based adaptation: knowledge gaps in making an economic case for investing in nature based solutions for climate change. IUCN, Gland, Switzerland, p 48

Roscher C, Fergus AJ, Petermann JS, Buchmann N, Schmid B, Schulze E-D (2013) What happens to the sown species if a biodiversity experiment is not weeded? Basic Appl Ecol 14(3):187–198

Rosenzweig C, Elliott J, Deryng D, Ruane AC, Müller C, Arneth A, Khabarov N (2014) Assessing agricultural risks of climate change in the 21st century in a global gridded crop model intercomparison. Proc Natl Acad Sci 111(9):3268–3273

Rosenzweig C, Iglesius A, Yang XB, Epstein PR, Chivian E (2001) Climate change and extreme weather events-implications for food production, plant diseases, and pests

Sadras VO, Slafer GA (2012) Environmental modulation of yield components in cereals: heritabilities reveal a hierarchy of phenotypic plasticities. Field Crop Res 127:215–224

Salvucci ME, Crafts-Brandner SJ (2004) Inhibition of photosynthesis by heat stress: the activation state of Rubisco as a limiting factor in photosynthesis. Physiol Plant 120(2):179–186

Santos WS, Gurgel-Gonçalves R, Garcez LM, Abad-Franch F (2021) Deforestation effects on Attalea palms and their resident Rhodnius, vectors of Chagas disease, in eastern Amazonia. PLoS ONE 16(5):e0252071

Sarkar P, Debnath N, Reang D (2021) Coupled human-environment system amid COVID-19 crisis: a conceptual model to understand the nexus. Sci Total Environ 753:141757

Schlenker W, Roberts MJ (2009) Nonlinear temperature effects indicate severe damages to US crop yields under climate change. Proc Natl Acad Sci 106(37):15594–15598

Schoene DH, Bernier PY (2012) Adapting forestry and forests to climate change: a challenge to change the paradigm. Forest Policy Econ 24:12–19

Schuurmans C (2021) The world heat budget: expected changes Climate Change (pp. 1–15): CRC Press

Scott D (2021) Sustainable Tourism and the Grand Challenge of Climate Change. Sustainability 13(4):1966

Scott D, McBoyle G, Schwartzentruber M (2004) Climate change and the distribution of climatic resources for tourism in North America. Climate Res 27(2):105–117

Semenov MA (2009) Impacts of climate change on wheat in England and Wales. J R Soc Interface 6(33):343–350

Shaffril HAM, Krauss SE, Samsuddin SF (2018) A systematic review on Asian’s farmers’ adaptation practices towards climate change. Sci Total Environ 644:683–695

Shahbaz M, Balsalobre-Lorente D, Sinha A (2019) Foreign direct Investment–CO2 emissions nexus in Middle East and North African countries: Importance of biomass energy consumption. J Clean Product 217:603–614

Sharif A, Mishra S, Sinha A, Jiao Z, Shahbaz M, Afshan S (2020) The renewable energy consumption-environmental degradation nexus in Top-10 polluted countries: Fresh insights from quantile-on-quantile regression approach. Renew Energy 150:670–690

Sharma R (2012) Impacts on human health of climate and land use change in the Hindu Kush-Himalayan region. Mt Res Dev 32(4):480–486

Sharma R, Sinha A, Kautish P (2020) Examining the impacts of economic and demographic aspects on the ecological footprint in South and Southeast Asian countries. Environ Sci Pollut Res 27(29):36970–36982

Smit B, Burton I, Klein RJ, Wandel J (2000) An anatomy of adaptation to climate change and variability Societal adaptation to climate variability and change (pp. 223–251): Springer

Song Y, Fan H, Tang X, Luo Y, Liu P, Chen Y (2021) The effects of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) on ischemic stroke and the possible underlying mechanisms. Int J Neurosci 1–20

Sovacool BK, Griffiths S, Kim J, Bazilian M (2021) Climate change and industrial F-gases: a critical and systematic review of developments, sociotechnical systems and policy options for reducing synthetic greenhouse gas emissions. Renew Sustain Energy Rev 141:110759

Stewart JA, Perrine JD, Nichols LB, Thorne JH, Millar CI, Goehring KE, Wright DH (2015) Revisiting the past to foretell the future: summer temperature and habitat area predict pika extirpations in California. J Biogeogr 42(5):880–890

Stocker T, Qin D, Plattner G, Tignor M, Allen S, Boschung J, . . . Midgley P (2013) Climate change 2013: The physical science basis. Working group I contribution to the IPCC Fifth assessment report: Cambridge: Cambridge University Press. 1535p

Stone P, Nicolas M (1994) Wheat cultivars vary widely in their responses of grain yield and quality to short periods of post-anthesis heat stress. Funct Plant Biol 21(6):887–900

Su H-C, Liu Y-S, Pan C-G, Chen J, He L-Y, Ying G-G (2018) Persistence of antibiotic resistance genes and bacterial community changes in drinking water treatment system: from drinking water source to tap water. Sci Total Environ 616:453–461

Sunderlin WD, Angelsen A, Belcher B, Burgers P, Nasi R, Santoso L, Wunder S (2005) Livelihoods, forests, and conservation in developing countries: an overview. World Dev 33(9):1383–1402

Symanski E, Han HA, Han I, McDaniel M, Whitworth KW, McCurdy S, . . . Delclos GL (2021) Responding to natural and industrial disasters: partnerships and lessons learned. Disaster medicine and public health preparedness 1–4

Tao F, Yokozawa M, Xu Y, Hayashi Y, Zhang Z (2006) Climate changes and trends in phenology and yields of field crops in China, 1981–2000. Agric for Meteorol 138(1–4):82–92

Tebaldi C, Hayhoe K, Arblaster JM, Meehl GA (2006) Going to the extremes. Clim Change 79(3–4):185–211

Testa G, Koon E, Johannesson L, McKenna G, Anthony T, Klintmalm G, Gunby R (2018) This article has been accepted for publication and undergone full peer review but has not been through the copyediting, typesetting, pagination and proofreading process, which may lead to differences between this version and the Version of Record. Please cite this article as

Thornton PK, Lipper L (2014) How does climate change alter agricultural strategies to support food security? (Vol. 1340): Intl Food Policy Res Inst

Tranfield D, Denyer D, Smart P (2003) Towards a methodology for developing evidence-informed management knowledge by means of systematic review. Br J Manag 14(3):207–222

UNEP (2017) United nations environment programme: frontiers 2017. from https://www.unenvironment.org/news-and-stories/press-release/antimicrobial-resistance - environmental-pollution-among-biggest

Usman M, Balsalobre-Lorente D (2022) Environmental concern in the era of industrialization: Can financial development, renewable energy and natural resources alleviate some load? Ene Policy 162:112780

Usman M, Makhdum MSA (2021) What abates ecological footprint in BRICS-T region? Exploring the influence of renewable energy, non-renewable energy, agriculture, forest area and financial development. Renew Energy 179:12–28

Usman M, Balsalobre-Lorente D, Jahanger A, Ahmad P (2022b) Pollution concern during globalization mode in financially resource-rich countries: Do financial development, natural resources, and renewable energy consumption matter? Rene. Energy 183:90–102

Usman M, Jahanger A, Makhdum MSA, Balsalobre-Lorente D, Bashir A (2022a) How do financial development, energy consumption, natural resources, and globalization affect Arctic countries’ economic growth and environmental quality? An advanced panel data simulation. Energy 241:122515

Usman M, Khalid K, Mehdi MA (2021) What determines environmental deficit in Asia? Embossing the role of renewable and non-renewable energy utilization. Renew Energy 168:1165–1176

Urban MC (2015) Accelerating extinction risk from climate change. Science 348(6234):571–573

Vale MM, Arias PA, Ortega G, Cardoso M, Oliveira BF, Loyola R, Scarano FR (2021) Climate change and biodiversity in the Atlantic Forest: best climatic models, predicted changes and impacts, and adaptation options The Atlantic Forest (pp. 253–267): Springer

Vedwan N, Rhoades RE (2001) Climate change in the Western Himalayas of India: a study of local perception and response. Climate Res 19(2):109–117

Vega CR, Andrade FH, Sadras VO, Uhart SA, Valentinuz OR (2001) Seed number as a function of growth. A comparative study in soybean, sunflower, and maize. Crop Sci 41(3):748–754

Vergés A, Doropoulos C, Malcolm HA, Skye M, Garcia-Pizá M, Marzinelli EM, Vila-Concejo A (2016) Long-term empirical evidence of ocean warming leading to tropicalization of fish communities, increased herbivory, and loss of kelp. Proc Natl Acad Sci 113(48):13791–13796

Verheyen R (2005) Climate change damage and international law: prevention duties and state responsibility (Vol. 54): Martinus Nijhoff Publishers

Waheed A, Fischer TB, Khan MI (2021) Climate Change Policy Coherence across Policies, Plans, and Strategies in Pakistan—implications for the China-Pakistan Economic Corridor Plan. Environ Manage 67(5):793–810

Wasiq M, Ahmad M (2004) Sustaining forests: a development strategy: The World Bank

Watts N, Adger WN, Agnolucci P, Blackstock J, Byass P, Cai W, Cooper A (2015) Health and climate change: policy responses to protect public health. The Lancet 386(10006):1861–1914

Weed AS, Ayres MP, Hicke JA (2013) Consequences of climate change for biotic disturbances in North American forests. Ecol Monogr 83(4):441–470

Weisheimer A, Palmer T (2005) Changing frequency of occurrence of extreme seasonal temperatures under global warming. Geophys Res Lett 32(20)

Wernberg T, Bennett S, Babcock RC, De Bettignies T, Cure K, Depczynski M, Hovey RK (2016) Climate-driven regime shift of a temperate marine ecosystem. Science 353(6295):169–172

WHO (2018) WHO, 2018. Antimicrobial resistance

Wilkinson DM, Sherratt TN (2016) Why is the world green? The interactions of top–down and bottom–up processes in terrestrial vegetation ecology. Plant Ecolog Divers 9(2):127–140

Wiranata IJ, Simbolon K (2021) Increasing awareness capacity of disaster potential as a support to achieve sustainable development goal (sdg) 13 in lampung province. Jurnal Pir: Power in International Relations 5(2):129–146

Wiréhn L (2018) Nordic agriculture under climate change: a systematic review of challenges, opportunities and adaptation strategies for crop production. Land Use Policy 77:63–74

Wu D, Su Y, Xi H, Chen X, Xie B (2019) Urban and agriculturally influenced water contribute differently to the spread of antibiotic resistance genes in a mega-city river network. Water Res 158:11–21

Wu HX (2020) Losing Steam?—An industry origin analysis of China’s productivity slowdown Measuring Economic Growth and Productivity (pp. 137–167): Elsevier

Wu H, Qian H, Chen J, Huo C (2017) Assessment of agricultural drought vulnerability in the Guanzhong Plain. China Water Resources Management 31(5):1557–1574

Xie W, Huang J, Wang J, Cui Q, Robertson R, Chen K (2018) Climate change impacts on China’s agriculture: the responses from market and trade. China Econ Rev

Xu J, Sharma R, Fang J, Xu Y (2008) Critical linkages between land-use transition and human health in the Himalayan region. Environ Int 34(2):239–247

Yadav MK, Singh R, Singh K, Mall R, Patel C, Yadav S, Singh M (2015) Assessment of climate change impact on productivity of different cereal crops in Varanasi. India J Agrometeorol 17(2):179–184

Yang B, Usman M (2021) Do industrialization, economic growth and globalization processes influence the ecological footprint and healthcare expenditures? Fresh insights based on the STIRPAT model for countries with the highest healthcare expenditures. Sust Prod Cons 28:893–910

Yu Z, Razzaq A, Rehman A, Shah A, Jameel K, Mor RS (2021) Disruption in global supply chain and socio-economic shocks: a lesson from COVID-19 for sustainable production and consumption. Oper Manag Res 1–16

Zarnetske PL, Skelly DK, Urban MC (2012) Biotic multipliers of climate change. Science 336(6088):1516–1518

Zhang M, Liu N, Harper R, Li Q, Liu K, Wei X, Liu S (2017) A global review on hydrological responses to forest change across multiple spatial scales: importance of scale, climate, forest type and hydrological regime. J Hydrol 546:44–59

Zhao J, Sinha A, Inuwa N, Wang Y, Murshed M, Abbasi KR (2022) Does Structural Transformation in Economy Impact Inequality in Renewable Energy Productivity? Implications for Sustainable Development. Renew Energy 189:853–864. https://doi.org/10.1016/j.renene.2022.03.050

Download references

Author information

Authors and affiliations.

School of Economics and Management, Nanjing University of Science and Technology, Nanjing, 210094, People’s Republic of China

Kashif Abbass, Huaming Song & Ijaz Younis

Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiaolingwei 200, Nanjing, 210094, People’s Republic of China

Muhammad Zeeshan Qasim

School of Business and Economics, North South University, Dhaka, 1229, Bangladesh

Muntasir Murshed

Department of Journalism, Media and Communications, Daffodil International University, Dhaka, Bangladesh

Department of Finance, College of Business Administration, Prince Sattam Bin Abdulaziz University, 173, Alkharj, 11942, Saudi Arabia

Haider Mahmood

You can also search for this author in PubMed   Google Scholar

Contributions

KA: Writing the original manuscript, data collection, data analysis, Study design, Formal analysis, Visualization, Revised draft, Writing-review, and editing. MZQ: Writing the original manuscript, data collection, data analysis, Writing-review, and editing. HS: Contribution to the contextualization of the theme, Conceptualization, Validation, Supervision, literature review, Revised drapt, and writing review and editing. MM: Writing review and editing, compiling the literature review, language editing. HM: Writing review and editing, compiling the literature review, language editing. IY: Contribution to the contextualization of the theme, literature review, and writing review and editing.

Corresponding author

Correspondence to Huaming Song .

Ethics declarations

Ethics approval and consent to participate.

Not applicable.

Consent for publication

Competing interests.

The authors declare no competing interests.

Additional information

Responsible Editor: Philippe Garrigues.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Abbass, K., Qasim, M.Z., Song, H. et al. A review of the global climate change impacts, adaptation, and sustainable mitigation measures. Environ Sci Pollut Res 29 , 42539–42559 (2022). https://doi.org/10.1007/s11356-022-19718-6

Download citation

Received : 26 August 2021

Accepted : 10 March 2022

Published : 04 April 2022

Issue Date : June 2022

DOI : https://doi.org/10.1007/s11356-022-19718-6

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Climate change
  • Antimicrobial resistance
  • Biodiversity
  • Mitigation measures
  • Find a journal
  • Publish with us
  • Track your research

U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings

Preview improvements coming to the PMC website in October 2024. Learn More or Try it out now .

  • Advanced Search
  • Journal List
  • Environ Health Perspect
  • v.125(3); 2017 Mar

Logo of envhper

Rethinking Environmental Protection: Meeting the Challenges of a Changing World

From climate change to hydraulic fracturing, and from drinking water safety to wildfires, environmental challenges are changing. The United States has made substantial environmental protection progress based on media-specific and single pollutant risk-based frameworks. However, today’s environmental problems are increasingly complex and new scientific approaches and tools are needed to achieve sustainable solutions to protect the environment and public health. In this article, we present examples of today’s environmental challenges and offer an integrated systems approach to address them. We provide a strategic framework and recommendations for advancing the application of science for protecting the environment and public health. We posit that addressing 21st century challenges requires transdisciplinary and systems approaches, new data sources, and stakeholder partnerships. To address these challenges, we outline a process driven by problem formulation with the following steps: a ) formulate the problem holistically, b ) gather and synthesize diverse information, c ) develop and assess options, and d ) implement sustainable solutions. This process will require new skills and education in systems science, with an emphasis on science translation. A systems-based approach can transcend media- and receptor-specific bounds, integrate diverse information, and recognize the inextricable link between ecology and human health.

Environmental and public health scientists and decision-makers are addressing new and complex environmental challenges that impact human well-being and ecological health. Energy demands have increased, and sources and approaches to developing energy are changing, raising questions about environmental and human health impacts. Land use patterns are evolving, and land use decisions can impact air, land, and water quality, and consequently, human health. Agriculture and manufacturing are also changing as technology advances. With these changes the focus of environmental protection has expanded beyond local effects and to increasingly recognize the global impacts of human activity on ecological and human health, aptly described as “wicked” problems ( Churchman 1967 ; Rittel and Webber 1973 ; Stahl 2014 ).

Wicked problems exist on various spatial scales that unfold over long temporal scales and have possible global implications. They are difficult to define, unstable, and socially complex; have no clear or single solution or end point; and extend beyond the understanding of one discipline or responsibility of one organization ( NRC 2012 ). Because of the complex interdependencies, efforts to solve one aspect of a problem may reveal or create other problems ( NRC 2012 ). Based on these definitions, the environmental pollution problems of today are termed “wicked” problems ( NRC 2012 ).

In this article, we characterize today’s most pressing wicked environmental health problems and, drawing from research conducted by the U.S. Environmental Protection Agency (EPA), Office of Research and Development and other environmental organizations, highlight tools and approaches that can be used to evaluate the many complex dimensions of these problems. Finally, we present a new framework for a systems approach for finding sustainable solutions to these complex problems.

Today’s Wicked Problems

A number of complex issues have been identified by the scientific community as wicked problems:

Climate change. In 2015, 195 countries adopted the first universal climate agreement, noting the need for an effective and progressive response to the urgent threat of climate change ( United Nations 2015 ). An increasing range of global adverse effects from climate change are affecting air quality, water resources, agriculture, and wildlife habitats, as well as basic infrastructure systems such as control of contaminated sites, waste management practices, and the functioning of the built environment ( U.S. EPA 2015a ). Climate change is altering the distribution and intensity of public health–related stressors (e.g., temperature, vector-borne diseases) and is eroding gains made in controlling air pollution in many urban areas ( U.S. EPA 2015a ). While some geographic areas may see advantages of a warmer climate (e.g., reductions in death due to extreme cold temperatures), estimates show the net impacts of climate change are likely to be widespread and significant ( McCabe and Burke 2016 ). Without continued emission reductions, the public health and welfare of current and future generations are in jeopardy, and vulnerable citizens, like children, older adults, and people living in poverty, are most at risk ( U.S. EPA 2015b ).

Energy. Choices about future energy sources have far-reaching economic, social, environmental, and public health effects. Energy provides essential support for society. From the household to the industrial setting, it is used to produce and transport goods, move people, and support a productive and growing economy. At the same time, energy production and use affect environmental quality. Oil and gas development, whether conventional or shale oil and gas, pose inherent environmental and public health risks ( GAO 2012 ). Historically, fossil fuel-based energy production and use have affected air quality and the climate, creating emissions of conventional air pollutants and greenhouse gases. As the use of natural gas has expanded, practices such as hydraulic fracturing have raised important questions about potential environmental and public health impacts ( GAO 2012 ). Water quality and quantity are affected because water is needed to produce energy, and the process of producing energy can potentially lead to water contamination. Because energy is central to a strong economy, the quest for cleaner energy sources has driven new technologies to convert sunlight, wind, or geothermal energy into electricity. Likewise, federal regulations related to energy—along with social dimensions such as consumer preference for clean energy—are driving the changing energy landscape. Scientists must be prepared to understand the full scope of these drivers and provide the research and technical knowledge to illuminate the risks and benefits and guide energy policies.

Land use. The health and well-being of a community is closely coupled with land use and development. From inner cities to rural farming communities, quality of life and environment can depend upon land use policies. Land use decisions about roads and transportation systems, industrial siting and development, agricultural land use and the provision of community access to healthy and sustainable food, housing, and open space for parks and recreation can all impact human health. The distribution of green space in populated areas is a factor in physical activity, stress, and related physical and mental health issues ( Lee and Maheswaran 2010 ; Lachowycz and Jones 2013 ). By influencing social interaction and the variety, density, and accessibility of necessities and amenities, decisions regarding land use planning affect well-being through community vibrancy and the autonomy of marginalized populations ( Jackson 2003 ). Land use decisions can drive cascading events that may adversely impact ecological and human health. For example, land use decisions can influence fire risk ( Butsic et al. 2015 ), and wildland fires can alter the landscape, increase erosion, and foster runoff ( Morrison and Kolden 2015 ). Resulting wildland fire smoke, a mixture of gases and fine particles, can cause respiratory illness and aggravate chronic heart and lung diseases ( U.S. EPA 2003 ; Rappold et al. 2011 ).

Water quantity and quality. About 400 billion gallons of water are used each day in the United States, and we face many challenges in maintaining the safety and sustainability of these water resources ( U.S. EPA 2015d ). For example, emerging chemical contaminants, such as perfluorinated compounds, found nationwide in water supplies, may not be removed by conventional water treatment or addressed by policy or regulatory actions ( Sedlak 2016 ). An aging water system infrastructure has led to an estimated 240,000 water main breaks in the United States annually ( ASCE 2013 ), which can only exacerbate water shortages. The recent water crisis in Flint, Michigan, where lead leached from pipes in older drinking water systems and reached levels that exceeded regulatory limits, also highlighted the importance of proper treatment of source water to prevent such occurrences ( Bellinger 2016 ). Harmful algal blooms (HAB), a natural phenomenon, can be influenced by anthropogenic forces and climate change: and expanding human populations could impact HAB occurrence and public health impacts ( Berdalet et al. 2015 ). Drought is a concern for many communities, and the effects of climate change are expected to increase the frequency, intensity, and duration of droughts in many regions ( White House 2016 ). These examples are just a few of the many challenges threatening the safety and sustainability of the water supply in the United States.

Connecting the Dots—A Systems Approach to Environmental Protection

Environmental challenges have historically been managed with compartmentalized and pollutant specific, risk-based approaches. Although such approaches were successful in addressing part of the problem in the past, they are ill-suited to solve today’s wicked environmental challenges. Rather, today’s problems call for a systems approach that looks at a problem holistically, includes all the drivers and stressors that affect it and the dimensions that frame it, and integrates information from human health and ecological sciences and the social sciences to formulate sustainable solutions to environmental issues.

To understand the links between public health, the environment, and society, the interactions of factors within a complex system must be evaluated in a realistic way, regardless of its size, which can range from the scale of the molecule to that of the biosphere (global ecosystem) ( Figure 1 ). Systems thinking considers the cumulative effects of multiple stressors, evaluates a range of alternatives, analyzes upstream and downstream life-cycle implications, involves a broad range of stakeholders, and uses interdisciplinary scientific approaches ( NRC 2012 ). Systems approaches are not new, and the scientific literature provides many examples ( Powers et al. 2012 ; Briggs 2008 ; Fiksel 2006 ). In public health, Guyer (1997) describes a systems process for problem solving that first defines the problem and measures its magnitude, then develops a framework for evaluating the key determinants (biologic, epidemiologic, social, cultural, economic, and political). Contemporary assessments stress the need for systems thinking. For example, a health impact assessment (HIA) uses a systems approach to array data sources and analytic methods and considers input from stakeholders to determine potential effects of a proposed action or decision on the health of a population and the distribution of those effects within the population ( NRC 2011 ). Likewise, a life-cycle assessment uses systems approaches to evaluate a cradle-to-grave process, including all stages of a product’s life from the perspective that they are interdependent ( U.S. EPA 2006 ).

An external file that holds a picture, illustration, etc.
Object name is EHP1465.g001.jpg

Nested systems from the molecular level to the biosphere.

The Tools of 21st-Century Science and Technology

Concurrent with the changing nature of environmental issues, science and technology are evolving rapidly and offering new tools and methods of analysis needed in taking a systems approach to a problem. For example, modeling real-world scenarios can inform our understanding of interactions within a system, which helps forecast possible intervention outcomes. Computational models, which use and integrate data from many sources to understand and predict system dynamics and impacts of environmental pollutants, have become central to environmental decision-making ( NRC 2007 ). Computational science provides more information than ever before along with the means for analyzing what the information means. The Toxicology Testing in the 21st Century (Tox21), a federal collaborative program that develops high-throughput assays to efficiently test a chemical’s potential to cause adverse health effects ( U.S. EPA 2015c ), is anticipated to deliver a wealth of information about the potential effects of tens of thousands of chemicals ( Attene-Ramos et al. 2013 ). Computational exposure science, which integrates advances in chemistry, computer science, mathematics, statistics, and social and behavioral sciences with new models and data collection methods, will provide tools to better understand population exposures and link exposures to health outcomes ( Egeghy et al. 2016 ).

Changes in technology have spurred the development of low-cost compact sensors for measuring environmental parameters and indicators of health ( Kumar et al. 2015 ; Murphy et al. 2014 ; Chan et al. 2012 ). These sensors can be deployed in multiple locations to monitor pollutant concentrations around a facility or community more accurately than is possible with single stationary monitors ( Snyder et al. 2013 ). Satellite technology can enhance air quality forecasting, emissions estimation, and exposure assessment for human health studies ( Hoff and Christopher 2009 ). The availability of personal computers, mobile phones, and Internet access has revolutionized the communication of information and ideas. Citizen science, which encourages public participation in the scientific process ( Kalil and Wilkinson 2015 ), provides a new way to engage the public in solving problems. Crowdsourcing—an open call for voluntary assistance from a large group of individuals ( Kalil and Wilkinson 2015 )—can help collect information at large geographic scales and over long periods of time.

These technological advances will yield enormous volumes of complex data, both structured and unstructured, originating from different sources. Big data may revolutionize how we monitor environmental quality and understand how humans interact and respond to the environment ( Kays et al. 2015 ) and how the environment responds to human activity ( Dagliati et al. 2015 ). However, the analysis of and need for access and discoverability of big data presents challenges that include protecting individual interests and privacy, managing enormous volumes of data, identifying the most important types of data, understanding data quality, integrating data into a form to analyze and guide decisions, and making the information publically accessible in forms that can be shared and combined for analysis.

Moving to the Future

Moving forward, we need a new comprehensive approach to solve environmental challenges that a ) begins with strong problem formulation, b ) relies on systems approaches and tools to integrate different types of data from multiple disciplines, c ) draws on information generated from new technologies, and d ) considers novel sources of data, such as citizen science. Evolving from case experiences, tools, and approaches developed over the years, we propose adopting a new framework ( Figure 2 ) for environmental science that uses a systems approach to integrate ecological and human health information to solve environmental challenges. This framework includes the following elements and considers vested partners, communities, scientists, decision makers, and the public, and the need for science translation, education, and communication. Table 1 describes each element, summarizes the approaches, and provides examples of tools designed to facilitate its use.

An external file that holds a picture, illustration, etc.
Object name is EHP1465.g002.jpg

Framework for applying integrated science to protect the environment and public health and well-being.

Considerations, information sources, tools, and approaches for framework elements.

Considerations and types of informationExample tools and approaches
Step 1 – Formulate the problem holistically
Step 2 – Gather and synthesize diverse information
Step 3 – Develop and assess options
Step 4 – Implement sustainable solution(s)
Step 5 – Monitor and evaluate results

Formulate the problem holistically. Environmental health problems should be framed within a systems context and should consider ecological, health, social, and economic factors across space and time. Interactions, interdependencies, and cumulative effects are considered, as are the values and goals of vested partners, including the community and the public. By engaging end users early in the process, information and solutions will be more responsive and relevant to their needs. Formulating the problem holistically will improve understanding of potential unanticipated outcomes. Tools and guidance for problem formulation exist. For example, Suter (1993) described the process of creating a conceptual model for ecological risk assessments. This approach can help inform our understanding of system linkages, points of potential intervention, and the information needed to inform policy decisions. Gregory et al. (2012) and Yee et al. (2015) proposed a structured decision-making process, and Bruins et al. (2010) demonstrated the use of problem formulation for addressing complex socio-environmental problems. The U.S. EPA’s “Framework for Human Health Risk Assessment to Inform Decision-Making” ( U.S. EPA 2014b ) describes the importance of problem formulation and provides information to consider during this process.

Gather and synthesize diverse information. Guided by problem formulation, the next step is to identify diverse data and information needed to support the assessment. Economic, social, and environmental information should be considered, including socioeconomic status, health, cultural resources, local knowledge, traditions and practices, and existing conditions of the built and natural environment. For example, a more holistic model based on a systems approach was recently proposed for improving children’s environments and health across developmental life stages ( Tulve et al. 2016 ). Various tools can inform this step. Ideally, they should be discoverable and widely accessible to users in web-based formats. For example, the “Community-Focused Exposure and Risk Screening Tool” (C-FERST; https://www.epa.gov/c-ferst ), a community mapping, information access tool, can inform community assessments and decision-making ( Zartarian et al. 2011 ). “EnviroAtlas,” an interactive mapping tool, can be used to explore the benefits people receive from nature ( Pickard et al. 2015 ). The EnviroAtlas Eco-Health Relationship browser ( https://www.epa.gov/enviroatlas/enviroatlas-eco-health-relationship-browser ) provides information about how health issues are linked to the metrics of ecosystem services—the societal benefits from nature that underpin almost every aspect of human well-being ( Jackson et al. 2013 ; U.S. EPA 2015d ). The “Environmental Quality Index” (EQI) provides a metric for overall environmental quality that incorporates air, water, land, the built environment, and sociodemographics ( U.S. EPA 2014a ).

Develop and assess options. This step helps inform understanding of the consequences of potential decisions under consideration. The benefits and risks of options should be assessed and tradeoffs and costs (monetary and nonmonetary) should be examined under different scenarios. The priorities and concerns of the community and stakeholders should be considered. This step also includes estimating the distribution of impacts or consequences (positive and negative) across the population, including at-risk populations such as children, older adults, pregnant and nursing women, and indigenous people, while considering population vulnerability versus individual risk. At this point, feasible near- and long-term actions that mitigate negative impacts and promote sustainability and resiliency are identified. A variety of traditional and newer tools can be applied. For example, human health and ecological risk assessment will add valuable information about the impacts of various stressors. HIA can provide a structure for assembling information and assessing options, as can structured decision-making ( Gregory et al. 2012 ; Yee et al. 2015 ). A web-based decision analysis framework called “Decision Analysis for a Sustainable Environment, Economy, and Society” (DASEES) can help inform this process ( Yeardley et al. 2011 ). Environmental justice analysis, using mapping tools like C-FERST, EnviroAtlas, and “EJ-SCREEN: Environmental Justice Screening and Mapping Tool” ( http://www.epa.gov/ejscreen ), can provide valuable information about sensitive populations and population risk.

Implement sustainable solutions. Here, the suite of actions to implement solution(s) is selected. Solutions may range from improved infrastructure to interventions to behavioral changes. Implementers may include government agencies, state or local governments, or other stakeholders. These actions might include short- or long-term elements such as installation of a green street to reduce localized flooding combined with development of an area-wide plan for green infrastructure to improve overall water flow in a community. Communicating the scientific basis of solutions to decision makers, communities, and other stakeholders is essential. Ensuring transparency is crucial, as is engaging and empowering communities with knowledge, tools, data, and information.

Monitor and evaluate results. This step evaluates whether the approach provided sufficient information to identify, compare, and implement solutions and whether the chosen solution has the desired short- and long-term positive effects. Certain indicators or data sets could be used to reflect changes in environmental conditions or human health and well-being over time. For example, the “EPA Report on the Environment” provides indicators of national trends in air, water, land, human exposure and health, and ecological condition ( U.S. EPA 2015c ), and the EQI provides a single index of environmental quality that accounts for the multiple domains of the environment that encompass an area where humans interact ( Lobdell et al. 2011 ). The “EnviroAtlas” may be useful for monitoring and evaluating solutions at various spatial scales. Consideration should also be given to whether unconventional data sources—such as citizen science—can inform evaluation.

Environmental protection in today’s world requires recognition of the interconnection of our environmental systems. This framework provides a structure to address today’s complex problems by considering multiple dimensions and a variety of data sources—a systems approach. Similar frameworks exist and have provided the basis for this approach ( Reis et al. 2013 ; Powers et al. 2012 ; Briggs 2008 ). However, this framework represents an evolution of what has been proposed and used to date, and it provides a construct through which environmental and public health scientists can conduct future research, both fundamental and translational, to inform tomorrow’s solutions. We acknowledge the tension between using this framework and traditional approaches, including those driven by regulatory statutes and policies. We are not recommending replacement of those policies that have led to measurable progress. Rather, we recommend systems thinking as a path to enrichment of the scientific basis for decision-making to address wicked problems by creating opportunities for new partnerships and enhancing collaboration across traditional media-specific silos.

Recommendations for Framework Implementation

  • Problem formulation as a key step toward integrating science to support systems-based problem solving. The framework presented here is grounded in strong problem formulation. This step is essential for successfully assessing issues and formulating and evaluating options. The environmental science community should be trained in approaches to problem formulation, and environmental and public health organizations should seek opportunities to incorporate problem formulation in their scientific approaches.
  • Integrate additional skill sets into environmental problem solving. Informing solutions to complex environmental problems requires insight, expertise, and viewpoints from many scientific disciplines, along with policy makers, public officials, and community stakeholders. Traditionally, the fields of ecology, toxicology, and engineering have been predominant in environmental science. To conduct systems-based science, scientific teams will also need to include public health practitioners, earth scientists, economists, behavioral and other social scientists, database managers, programmers, software engineers, planners, physicians, systems analysts/experts, and science communicators.
  • Make systems approaches core in the education of future scientists and decision-makers. Traditional training in environmental science has taken a reductionist approach to focus on specific mechanisms of a stressor and its effect on an ecosystem or human health. However, science students today are increasingly trained to look at the system and embrace cross-disciplinary problem solving. Current and future environmental scientists will need to be trained on systems approaches for conducting science and solving problems. A compilation of systems-based tools and examples of how systems approaches can be applied to inform sustainable solutions will help ensure that environmental scientists are adequately trained.
  • Use effective science communication to ensure that decision makers and communities understand and accept the science. This framework requires scientists to work closely with vested partners and decision makers and ensure the science is translated and communicated throughout the process. As with the division of risk assessment and risk management articulated by NRC (1983) , scientists typically do not choose a solution or make a policy or risk management decision. Therefore, it is critical that the science is communicated clearly and that decision-makers and vested partners are educated about the science. Science communication experts will be needed, and scientists will need to be better trained in effective communication.

Conclusions

U.S. EPA authorities have successfully managed gross pollution problems using command and control media-specific approaches. The health of our rivers has improved, the vast majority of Americans have access to safe and clean drinking water, exposure to many toxic pollutants and pesticides has been reduced, and nationwide air quality has improved significantly for many air pollutants ( U.S. EPA 2012 ). However, today’s environmental problems are daunting. Their dimensions go well beyond the traditional risk assessment and risk management paradigm that has been the basis of environmental protection over the past several decades. It is time to embrace a new way of thinking. From safe drinking water to energy choices and pest management, to urban design, systems approaches can help inform sustainable solutions that ensure environmental and public health protection. In times of emergency response, systems approaches will help us understand the multiple dimensions of the situation, how the environment and human health are impacted, and how various solutions may address the issue or potentially cause unanticipated consequences. Wicked problems require thoughtful synthesis of science and decision-making. The framework proposed here provides a much-needed structure, grounded in strong problem formulation, to build upon our progress and strengthen environmental and public health protection for the future.

Acknowledgments

The authors would like to thank the following individuals: K. Brooks, former Acting Assistant Administrator, Office of Administration and Resources Management, U.S. Environmental Protection Agency (EPA) for his insights into and references about the history of the U.S. EPA; S. Edwards and R. Hines of the U.S. EPA for Figure 1, which was used to describe the underpinning of the systems framework research at the National Health and Environmental Effects Research Laboratory, U.S. EPA; and J. Havel at SRA International, Inc. for the design of Figure 1.

The views expressed in this paper are those of the authors and do not necessarily reflect the views or policies of the U.S. EPA.

The authors declare they have no actual or potential competing financial interests.

  • ASCE (American Society of Civil Engineers) 2013 Report Card for America’s Infrastructure. 2013 http://www.infrastructurereportcard.org/a/#p/drinking-water/overview [accessed 13 July 2016]
  • Attene-Ramos MS, Miller N, Huang R, Michael S, Itkin M, Kavlock RJ, et al. 2013. The Tox21 robotic platform for the assessment of environmental chemicals—from vision to reality. Drug Discov Today 18 15–16 716 723, doi: 10.1016/j.drudis.2013.05.015 [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Bellinger DC. 2016. Lead contamination in Flint — an abject failure to protect public health. N Engl J Med 374 12 1101 1103, doi: 10.1056/NEJMp1601013 [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Berdalet E, Fleming LE, Gowen R, Davidson K, Hess P, Backer LC, et al. 2015. Marine harmful algal blooms, human health and wellbeing: challenges and opportunities in the 21st century. J Mar Biol Assoc U.K. 96 1 61 91, doi: 10.1017/S0025315415001733 [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Briggs DJ. 2008. A framework for integrated environmental health impact assessment of systemic risks. Environ Health 7 61, doi: 10.1186/1476-069X-7-61 [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Bruins RJF, Munns WR, Jr, Botti SJ, Brink S, Cleland D, Kapustka L, et al. 2010. A new process for organizing assessments of social, economic, and environmental outcomes: case study of wildland fire management in the USA. Integr Environ Assessment Manag 6 3 469 483, doi: 10.1897/IEAM_2009-075.1 [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Butsic V, Kelly M, Moritz MA. 2015. Land use and wildfire: a review of local interactions and teleconnections. Land 4 1 140 156, doi: 10.3390/land4010140 [ CrossRef ] [ Google Scholar ]
  • Chan M, Estève D, Fourniols JY, Escriba C, Campo E. 2012. Smart wearable systems: current status and future challenges. Artif Intell Med 56 3 137 156, doi: 10.1016/j.artmed.2012.09.003 [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Churchman CW. Wicked problems [Editorial]. Manage Sci. 1967; 14 (4):B141–B142. [ Google Scholar ]
  • Dagliati A, Marinoni A, Cerra C, Decata P, Chiovato L, Gamba P, Bellazzi R. 2015. Integration of administrative, clinical, and environmental data to support the management of type 2 diabetes mellitus: from satellites to clinical care. J Diabetes Sci Technol 10 1 19 26, doi: 10.1177/1932296815619180 [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Egeghy PP, Sheldon LS, Isaacs KK, Özkaynak H, Goldsmith MR, Wambaugh JF, et al. 2016. Computational exposure science: an emerging discipline to support 21st-century risk assessment. Environ Health Perspect 124 6 697 702, doi: 10.1289/ehp.1509748 [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Fiksel J. 2006. Sustainability and resilience: toward a systems approach. Sustainability: Sci, Pract , Policy 2 2 14 21 [ Google Scholar ]
  • Fiksel J, Bruins R, Gatchett A, Gilliland A, ten Brink M. 2014. The triple value model: A systems approach to sustainable solutions. Clean Technol Environ Policy 16 4 691 702, doi: 10.1007/s10098-013-0696-1 [ CrossRef ] [ Google Scholar ]
  • GAO (U.S. Government Accountability Office) Oil and Gas: Information on Shale Resources, Development, and Environmental and Public Health Risks. GAO-12-732. September 2012. 2012 http://www.gao.gov/products/GAO-12-732 [accessed 20 December 2016]
  • Gottlieb L, Egerter S, Braveman P. New York, NY: Robert Wood Johnson Foundation; 2011. Health Impact Assessment: A Tool for Promoting Health in All Policies. [ Google Scholar ]
  • Gregory R, Failing L, Harstone M, Long G, McDaniels T, Ohlson D. Oxford, UK: Wiley-Blackwell; 2012. Structured Decision Making: A Practical Guide to Environmental Management Choices . [ Google Scholar ]
  • Guyer B. New York: Oxford University Press; 1997. Problem-solving in public health. In: Epidemiology and Health Services . 1st edition. Armenian HK, Shapiro S, eds. [ Google Scholar ]
  • Hoff RM, Christopher SA. 2009. Remote sensing of particulate pollution from space: have we reached the promised land? J Air Waste Manag Assoc 59 6 645 675, doi: 10.3155/1047-3289.59.6.645 [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Jackson LE. The relationship of urban design to human health and condition. Landscape Urban Plann. 2003; 64 (4):191–200. [ Google Scholar ]
  • Jackson LE, Daniel J, McCorkle B, Sears A, Bush KF. 2013. Linking ecosystem services and human health: the Eco-Health Relationship Browser. Int J Public Health 58 747 755, doi: 10.1007/s00038-013-0482-1 [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Kalil T, Wilkinson D. 2015. Accelerating Citizen Science and Crowdsourcing to Address Societal and Scientific Challenges. Executive Office of the President, Washington, DC. https://www.whitehouse.gov/blog/2015/09/30/accelerating-use-citizen-science-and-crowdsourcing-address-societal-and-scientific [accessed 13 May 2016] [ Google Scholar ]
  • Kays R, Crofoot MC, Jetz W, Wikelski M 2015. Terrestrial animal tracking as an eye on life and planet. Science 348 6240 aaa2478-1 aaa2478-9, doi: 10.1126/science.aaa2478 [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Kumar P, Morawska L, Martani C, Biskos G, Neophytou M, Di Sabatino S, et al. 2015. The rise of low-cost sensing for managing air pollution in cities. Environ Int 75 199 205, doi: 10.1016/j.envint.2014.11.019 [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Lachowycz K, Jones AP. 2013. Towards a better understanding of the relationship between greenspace and health: development of a theoretical framework. Landscape Urban Plann 118 62 69, doi: 10.1016/j.landurbplan.2012.10.012 [ CrossRef ] [ Google Scholar ]
  • Lee ACK, Maheswaran R. 2010. The health benefits of urban green spaces: a review of the evidence. J Public Health (Oxf) 33 2 212 222, doi: 10.1093/pubmed/fdq068 [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Lobdell DT, Jagai JS, Rappazzo K, Messer LC. 2011. Data sources for an environmental quality index: availability, quality, and utility. Am J Public Health 101(suppl 1) S277 S285, doi: 10.2105/AJPH.2011.300184 [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • McCabe JG, Burke TA. 2016. Reducing risk by acting on climate. Health Secur 14 2 43 46, doi: 10.1089/hs.2016.0006 [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Morrison KD, Kolden CA. 2015. Modeling the impacts of wildfire on runoff and pollutant transport from coastal watersheds to the nearshore environment. J Environ Manage 151 113 123, doi: 10.1016/j.jenvman.2014.12.025 [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Murphy K, Heery B, Sullivan T, Zhang D, Paludetti L, Lau KT, et al. 2014. A low-cost autonomous optical sensor for water quality monitoring. Talanta 132 520 527, doi: 10.1016/j.talanta.2014.09.045 [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • NRC (National Research Council) Washington, DC: National Academies Press; 1983. Risk Assessment in the Federal Government: Managing the Process . https://www.nap.edu/catalog/366/risk-assessment-in-the-federal-government-managing-the-process [accessed 20 December 2016] [ PubMed ] [ Google Scholar ]
  • NRC. Washington, DC: National Academies Press; 2007. Models in Environmental Regulatory Decision Making . https://www.nap.edu/catalog/11972/models-in-environmental-regulatory-decision-making [accessed 20 December 2016] [ Google Scholar ]
  • NRC. Washington, DC: National Academies Press; 2011. Improving Health in the United States : The Role of Health Impact Assessment . https://www.nap.edu/catalog/13229/improving-health-in-the-united-states-the-role-of-health [accessed 20 December 2016] [ PubMed ] [ Google Scholar ]
  • NRC (National Research Council) Washington, DC: National Academies Press; 2012. Science for Environmental Protection : The Road Ahead . https://www.nap.edu/catalog/13510/science-for-environmental-protection-the-road-ahead [accessed 20 December 2016] [ Google Scholar ]
  • Phillips D, Boumans R, Victery W, Fontaine T. Washington DC: A Community on Ecosystem Services, December 8-12, 2014; 2014. Climate change effects on ecosystem services and human health. https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=299092&fed_org_id=858&SIType=PR&TIMSType=&showCriteria=0&address=nheerl/pubs.html&view=citation&sortBy=pubDateYear&count=100&dateBeginPublishedPresented=01/01/2010 [accessed 19 May 2016] [ Google Scholar ]
  • Pickard BR, Daniel J, Mehaffey M, Jackson LE, Neale A. 2015. EnviroAtlas: a new geospatial tool to foster ecosystem services science and resource management. Ecosyst Serv 14 45 55, doi: 10.1016/j.ecoser.2015.04.005 [ CrossRef ] [ Google Scholar ]
  • Powers CM, Dana G, Gillespie P, Gwinn MR, Hendren CO, Long TC, et al. 2012. Comprehensive environmental assessment: a meta-assessment approach. Environ Sci Technol 46 17 9202 9208, doi: 10.1021/es3023072 [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Ramsey K, Bell A. Cityscape: J Policy Dev Res 16(2):145–162; 2014. The Smart Location Database: a nationwide data resource characterizing the built environment and destination accessibility at the neighborhood scale. https://www.huduser.gov/portal/periodicals/cityscpe/vol16num2/ch11.pdf [accessed 20 December 2016] [ Google Scholar ]
  • Rappold AG, Stone SL, Cascio WE, Neas LM, Kilaru VJ, Carraway MS, et al. 2011. Peat bog wildfire smoke exposure in rural North Carolina is associated with cardiopulmonary emergency department visits assessed through syndromic surveillance. Environ Health Perspect 119 10 1415 1420, doi: 10.1289/ehp.1003206 [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Rehr AP, Small MJ, Fischbeck PS, Bradley P, Fisher WS. 2014. The role of scientific studies in building consensus in environmental decision making: a coral reef example. Environ Syst Decis 34 1 60 87, doi: 10.1007/s10669-014-9491-8 [ CrossRef ] [ Google Scholar ]
  • Reis S, Morris G, Fleming LE, Beck S, Taylor T, White M, et al. 2013. Integrating health and environmental impact analysis. Public Health 129 10 1383 1389, doi: 10.1016/j.puhe.2013.07.006 [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Rittel HWJ, Webber MM. 1973. Dilemmas in a general theory of planning. Policy Sci 4 2 155 169, doi: 10.1007/BF01405730 [ CrossRef ] [ Google Scholar ]
  • Sedlak D. 2016. Fool me once. Environ Sci Technol 50 15 7937 7938, doi: 10.1021/acs.est.6b03367 [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Snyder EG, Watkins TH, Solomon PA, Thoma ED, Williams RW, Hagler GS, et al. 2013. The changing paradigm of air pollution monitoring. Environ Sci Technol 47 20 11369 11377, doi: 10.1021/es4022602 [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Stahl CH. 2014. Out of the Land of Oz: the importance of tackling wicked environmental problems without taming them. Environ Syst Decis 34 473 477, doi: 10.1007/s10669-014-9522-5 [ CrossRef ] [ Google Scholar ]
  • Suter GW., II Developing conceptual models for complex ecological risk assessments. Human Ecoll Risk Assess. 1999; 5 (2):375–396. [ Google Scholar ]
  • Suter GW II. Boca Raton, FL: CRC Press; 1993. Ecological Risk Assessment . [ Google Scholar ]
  • Tulve NS, Ruiz JDC, Lichtveld K, Darney SP, Quackenboss JJ. 2016. Development of a conceptual framework depicting a child’s total (built, natural, social) environment in order to optimize health and well-being. J Environ Health Sci 2 2 1 8, doi: 10.15436/2378-6841.16.1121 [ CrossRef ] [ Google Scholar ]
  • United Nations. Paris Agreement. 2015 http://unfccc.int/files/essential_background/convention/application/pdf/english_paris_agreement.pdf [accessed 13 July 2016]
  • U.S. EPA (U.S. Environmental Protection Agency) AirNow. How Smoke from Fires Can Affect Your Health. EPA-452/F-02-002. Research Triangle Park, NC. 2003 https://www3.epa.gov/airnow/smoke/Smoke2003final.pdf [accessed 6 June 2016]
  • U.S. EPA. Washington, DC: U.S. EPA; 2006. EPA Science Inventory. Life Cycle Assessment: Principals and Practice. EPA/600/R-06/060. https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=155087 [accessed 20 December 2016] [ Google Scholar ]
  • U.S. EPA. Our Nation’s Air: Status and Trends Through 2010. Office of Air and Radiation. EPA-454/R-12-001. 2012 https://www3.epa.gov/airtrends/2011/report/fullreport.pdf [accessed 6 June 2016]
  • U.S. EPA. Environmental Quality Index: Overview Report. EPA 600/R-14/305. 2014a https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=316570 [accessed 20 December 2016]
  • U.S. EPA. Framework for Human Health Risk Assessment to Inform Decision Making. EPA/100/R-14/001. 2014b https://www.epa.gov/sites/production/files/2014-12/documents/hhra-framework-final-2014.pdf [accessed 6 June 2016]
  • U.S. EPA. Air, Climate, and Energy: Strategic Research Action Plan, 2016–2019. EPA 601/K-15/005. 2015a https://www.epa.gov/sites/production/files/2015-10/documents/strap_2016_ace_508.pdf [accessed 14 July 2016]
  • U.S. EPA. Climate Change in the United States: Benefits of Global Action. EPA 430-R-15-001. 2015b https://www.epa.gov/sites/production/files/2015-06/documents/cirareport.pdf [accessed 6 June 2016]
  • U.S. EPA. EPA’s Report on the Environment. 2015c http://cfpub.epa.gov/roe/ [accessed 13 May 2016]
  • U.S. EPA. Health Impact Assessment (HIA) & EnviroAtlas: Integrating Ecosystem Services into the Decision-Making Process. EPA/600/RR-15/128. 2015d https://www.epa.gov/sites/production/files/2015-08/documents/hia_guide_final_pdf.pdf [accessed 6 June 2016]
  • White House. Long-term Drought Resilience: Federal Action Plan of the National Drought Resilience Partnership. 2016 https://www.whitehouse.gov/sites/default/files/docs/drought_resilience_action_plan_2016_final.pdf [accessed 13 July 2016]
  • Yeardley RB Jr, Dyson B, Tenbrink M. Washington, DC: U.S. EPA. EPA/600/F-11/023, 2011; 2011. EPA Growing DASEES (Decision Analysis for a Sustainable Environment, Economy & Society) – To Aid in Making Decisions on Complex Environmental Issues. https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=238232 [accessed 20 December 2016] [ Google Scholar ]
  • Yee SH, Carriger JF, Bradley P, Fisher WS, Dyson B. 2015. Developing scientific information to support decisions for sustainable coral reef ecosystem services. Ecol Econ 115 39 50, doi: 10.1016/j.ecolecon.2014.02.016 [ CrossRef ] [ Google Scholar ]
  • Zartarian VG, Schultz BD, Barzyk TM, Smuts MB, Hammond DM, Medina-Vera M, et al. 2011. The Environmental Protection Agency’s Community-Focused Exposure and Risk Screening Tool (C-FERST) and its potential use for environmental justice efforts. Am J Public Health 101(suppl 1) S286 S294, doi: 10.2105/AJPH.2010.300087 [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]

ORIGINAL RESEARCH article

Perceptions of local environmental issues and the relevance of climate change in nepal's terai: perspectives from two communities.

\nNick Nash

  • 1 Tyndall Centre for Climate Change Research, School of Psychology, Cardiff University, Cardiff, United Kingdom
  • 2 Research Department, Institute for Social and Environmental Research Nepal (ISER-N), Bharatpur, Nepal

The direct and indirect impacts of global climate change entail serious consequences for global biophysical and social systems, including the health, well-being and sustainability of communities. These impacts are especially serious for vulnerable groups in economically developing societies. While climate change is a global phenomenon, it is at the local level that impacts are most felt, and from where responses to climate change are enacted. It is increasingly urgent that communities possess the capacity to respond to climate change, now and in the future. Community representations of climate-relevant issues are critical to underpinning responses. Environmental representations do not directly reflect actual physical conditions but are interpreted through social and cultural layers of understanding that shape environmental issues. This paper investigates environmental and climate-relevant perceptions within two communities in the Terai region of Nepal; the city of Bharatpur and the village of Kumroj in Chitwan Province. Following mixed findings on levels of climate change awareness in Nepal, we set out to explore perspectives on the environment and climate change awareness by conducting 30 qualitative interviews with local people. The study found that issues linked to sanitation and cleanliness were most important in both communities, while reports of temperature and weather changes were less common and typically linked to local causes rather than climate change. Imagined futures were also closely related to current environmental issues affecting communities and did not discuss climate change, though temperature and weather changes were anticipated. However, when talk of climate change was deliberately elicited, participants displayed their awareness, though this was rarely linked to local conditions. We conclude that, in light of other pressing local issues, climate change is yet to penetrate the environmental representations of some communities and there is a need to address the disconnect between local issues and global climate change. Making climate change relevant at the local level by connecting to salient local issues and co-benefits comprises an important step in bridging the gap between more global awareness and its relevance more locally, particularly for communities at risk.

Introduction

Climate change impacts are set to profoundly change global ecological and social systems, bringing about fundamental changes to human behavior ( Evans, 2019 ). The complexity of global climate systems makes it difficult to accurately predict the nature of climate change impacts, though a degree of certainty rests in knowing that fundamental lifestyle shifts commensurate with the scale of climate change will be required if we are to limit the global temperature increase to 1.5°C by 2100 ( Rogelj et al., 2018 ). In addition to average temperature increase, societies also face increases in the frequency of extreme weather events, air pollution and sea level rise, posing an array of physical threats to human health and well-being, both directly and indirectly ( Watts et al., 2018 ).

Consequently, the impacts of sudden natural disasters (such as shock, emotional distress and post-traumatic stress), and cumulative stresses over time (for example, changes to livelihoods, economic opportunities and social support) from climate change carry serious psychological impacts for those affected ( Clayton et al., 2015 ). These impacts are especially pronounced for citizens living in economically developing countries, particularly for those within developing countries who rely on natural resources to sustain their livelihoods ( Aryal et al., 2014 ).

In addition to continued mitigation, societies will be required to adapt to current and future environmental change. Adaptation in this context refers to a community's capacity to deal with changes, reduce vulnerability to risks, and improve the well-being of communities ( Bhatta et al., 2015 ). While action on climate change maintains a crucial global imperative ( Gupta, 2010 ), variability in environmental impacts and sociocultural differences at the local level also highlight the need to better understand the contexts within which responses to climate-relevant issues occur ( Adger, 2003 ). While global environmental issues such climate change are constructed in top–down ways through scientific, political and other cultural narratives ( Adger et al., 2013 ), they are also blended with and filtered through more vernacular, localized forms of understanding ( Byg and Salick, 2009 ).

In this paper we investigate environmental and climate-relevant perceptions in the context of two rural communities in the Terai (lowland) region of Nepal. Nepal is an economically developing country in South Asia that faces serious impacts from climate change including a predicted temperature increase of 2.8°C by 2060 and up to 4°C by 2090, snowpack melt, glacier retreat, shifting climatic zones, increased extreme weather events, increased periods of drought and erratic precipitation ( Becken et al., 2013 ). In a country where agriculture is the principle industry for 80% of citizens ( Paudel et al., 2019 ) and widespread poverty exists, many of Nepal's citizens are precariously positioned by climate change threats ( Leichenko and Silva, 2014 ).

Following Smit and Wandel (2006) , we take a bottom-up approach to environmental and climate-relevant perceptions at the community level. We discuss the findings from 30 qualitative interviews with community members, focusing on the role of subjective environmental perceptions relating to current and future environmental issues, including community perspectives on climate change, with a focus on the impacts for human well-being. While scientific measurement of ecological impacts provides the foundation for mitigation and adaptation, community perceptions are also critical to ensuring that policy interventions fit community understandings and avoid being misinterpreted or rejected by the community ( Leiserowitz, 2007 ). The Inter-Governmental Panel on Climate Change (IPCC) has also stipulated that local knowledge should be used to inform climate adaptation planning ( Carter, 2019 ).

In addition to comprising physical phenomena, environmental issues, including climate change, comprise important social, cultural, and political dimensions that mediate perceptions of the physical ( Hulme, 2009 ; Whitmarsh, 2011 ). These are both facilitated and constrained by cultural knowledge, expressed through social norms, practices, institutional structures and prescribed roles and ways of living. The extent to which climate-relevant communications, interventions and policy are received, understood and enacted by local communities therefore depends on the degree to which top-down standardized scientific narratives converge with, or diverge from the micro-contexts of localized forms of knowledge ( Zinn, 2004 ). Culturally-filtered observations and experiences of environmental conditions are a crucial way in which citizens understand environmental conditions and processes of change ( Bickerstaff, 2004 ; Hulme, 2012 ). Human cognitive biases also influence and distort environmental perceptions. For example, more unusual or memorable weather events tend to exert a stronger influence on perceptions ( Trenberth et al., 2015 ).

Furthermore, perspectives of global climate change may be constrained due to being beyond human perceptual capacity. This means that other locally-salient issues may be perceived as more immediate ( Weber, 2010 ). While people may attribute extreme weather events to global climate change, such interpretations depend on culturally-available narratives that construct such issues, whereas physical climate change is, arguably, only discernible over long time periods. Essentially, a single event cannot unequivocally be attributed directly to climate change, though an individual may or may interpret it as such, depending on their perspective ( Hulme, 2014 ). Similarly, interpretations of local environmental conditions have been found to influence more global climate-relevant understandings. For example, in one study, local perceptions of deforestation, urbanization and air pollution framed explanations of climate change ( Maharjan and Joshi, 2012 ). This suggests that people look for proximate and visible causes in the absence of wider understanding.

Nonetheless, studies have demonstrated evidence that communities who are more in touch with their surroundings are able to accurately detect environmental changes, such as seasonal temperature and weather fluctuations ( Gurung, 1989 ; Tiwari et al., 2010 ; Poudel and Duex, 2017 ; Uprety et al., 2017 ). Other research has found that while community members are accurate in their perceptions of some seasonal and weather-related changes, they are less accurate at perceiving others ( Myers et al., 2013 ). Environmental impacts also affect different groups within a country or region differently, and not always uniformly ( Gentle et al., 2014 ) and may even be experienced differently by different members of the same community ( Maharjan and Joshi, 2012 ).

Climate change awareness has been reported to be higher in economically developed countries than in economically developing nations, a pattern also found for countries within Asia ( Maharjan and Joshi, 2012 ). Other research has found educational attainment to be the strongest predictor of awareness ( Lee et al., 2015 ). Cultural differences are also evident in terms of climate change risk perceptions; in Latin America and Europe, comprehension of the anthropogenic origin of climate change has been found to be the strongest predictor, while in several Asian and African countries, perception of temperature increase locally was most influential ( Lee et al., 2015 ). Perceptions of temperature and weather change are widespread. Savo et al. (2016) conducted a meta-analysis of 10,660 change observations reported across 2,230 localities in 137 countries, which showed increases in temperature, and changes in seasons and rainfall patterns in 70% of localities in 122 countries.

Nepal is particularly susceptible to climate change, with change in the Himalaya accelerating beyond the global average ( Zomer et al., 2014 ). In the Terai agriculture is the principle economic activity, with around 80% of the population dependent on farming for their livelihoods. Therefore, climate change carries significant risks for the economy, which indirectly affect food production and security. The situation is exacerbated by widespread poverty; in 2010 over 25% of the population subsisted below the national poverty line ( Adhikari, 2018 ). Poorer groups within society are more likely to be exposed to climate stresses and possess fewer resources to adapt ( Gentle et al., 2014 ; Leichenko and Silva, 2014 ). Nepal is divided into three ecological regions comprising the Terai (lowland), hill and mountain regions, each of which is characterized by different ecological and climatic conditions. The Terai forms a fertile plain located in the south of the country where the majority of food production takes place, and is also the most densely populated region ( Paudel, 2012 ). Of relevance within Nepal, food shortages due to seasonal changes, infestations of new crop pests and a decline in soil productivity have been recorded ( Paudel, 2012 ).

Public awareness is seen as a major limitation to climate change adaptation within Nepal ( Withana and Auch, 2014 ). While some studies have found high levels of climate change awareness amongst Nepalese citizens ( Becken et al., 2013 ), other research has found awareness to be low ( Gallup, 2009 ). In a cross-national study of 5,060 households, Tanner et al. (2018) report that climate change awareness was low (<50% were aware of the phenomenon even if they had been aware of changes in the weather). Awareness in urban areas was lower than in rural areas (56% v 46%), and very low in mountain areas (63% had not heard of climate change). There were also significant proportions of citizens who did not perceive that the climate was changing. Maharjan and Joshi (2012) report that among the Chepang community only 11.8% of respondents had heard of climate change; of those, only 4.8% were able to relate the phenomenon to changes in weather patterns, temperature, rainfall, wind, floods, landslides, and environmental change.

Research on community perceptions of environmental and climate-relevant change in Nepal has recorded perceptions of warmer summers ( Tiwari et al., 2010 ; Uprety et al., 2017 ); milder winters ( Dahal, 2005 ; Maharjan and Joshi, 2012 ; Becken et al., 2013 ); more erratic rainfall ( Chapagain et al., 2009 ; Paudel, 2012 ; Becken et al., 2013 ; Devkota and Bhattarai, 2018 ); increased periods of drought ( Tanner et al., 2018 ); and more frequent foggy days ( Shrestha et al., 2018 ). However, community perceptions are not consensual. Maharjan and Joshi (2012) report that while 47.5% believed that summers were getting warmer, nearly 10% reported that summers were becoming cooler and 38% perceived no change. In addition, 21% believed that winters were getting colder while 22% believed that winters were becoming milder. Furthermore, 37% believed that there was less rain overall, while 13–17% perceived no change in rainfall. They attribute this to differences in “visual salience”; whereby rainfall is more conspicuous and facilitates perception, whereas temperature change is less directly observable.

With specific reference to the Terai region, Maharjan et al. (2011) interviewed farmers in the Western Terai, with 90% of respondents reporting increases in climate-related risks (erratic rainfall, flooding, droughts, riverbank erosion, windstorms, hailstorms, insect infestations). Tiwari et al. (2010) surveyed Terai communities in which over 75% of participants reported delayed onset of the monsoon and changes in flowering and fruiting time for some plant species. Meanwhile, Manandhar et al. (2011) found that more than two-thirds of farmers in the Terai claimed to have personally experienced evidence of climatic change.

As a result of perceived environmental change in the Terai, and in other regions livelihoods and lifestyles are adapting to changing conditions. Khanal et al. (2018) surveyed farming households in Nepal to gauge adaptation practices across the three ecological regions of Nepal, reporting that 91% of households had adopted at least one practice to minimize impacts of climate change. Adaptation may be more anticipatory or reactive and distinguished by duration, scale of implementation (i.e., more local or more widespread) and focus (e.g., behavioral, institutional, economic, technological, informational) ( Smit et al., 2000 ). In a study of climate change adaptation in the rural hill region of Nepal, Gentle et al. (2018) examined household responses in four villages. Adaptive responses to climate change in rural communities were found to be less coordinated and more reactive and unplanned rather than anticipated and coordinated.

Changes to agricultural practices constitute a primary focal point for adaptation and change. These have included changes in the times crops are sown and harvested ( Maharjan et al., 2011 ), switching to more climate resilient crop varieties and tree and plant species ( Maharjan et al., 2011 ; Paudel, 2016 ; Gahatraj et al., 2018 ), as well as increased use of pesticides, and income diversification ( Gentle et al., 2018 ). Climate change is also perceived as benefiting some crop species ( Rawal and Bharti, 2015 ). For example, mangos are being grown at higher altitudes than was possible in the past ( Chapagain et al., 2009 ).

Within villages, water practices were changing to conserve water resources ( Tiwari et al., 2010 ), and changes to diets have also been identified ( Tanner et al., 2018 ), with less rice being consumed due to the effects of climate on rice productivity ( Maharjan and Joshi, 2013 ). Two-story houses are increasingly being constructed for food storage and as refuge from flooding ( Maharjan and Joshi, 2013 ), while buildings are being oriented to withstand windstorms, incorporating single rather than double doors ( Maharjan and Joshi, 2013 ). Seasonal migration and resettlement becoming more common ( Prasain, 2018 ). People are also reported to be planting more trees and grasses on their own land as well as on communal land to protect communities from flooding, wind and dust ( Tiwari et al., 2010 ; Maharjan et al., 2017 ). Withana and Auch (2014) report that afforestation is viewed as the most effective climate change adaptation strategy by communities.

In summary, perceptions of environmental conditions are key to informing behavior, including the need to adapt to a changing climate. In the context of Nepal, adaptation is particularly salient and it is critical that communities respond to environmental risks in ways that ensure the well-being and futurity of those communities. Given that studies of climate-relevant perceptions have reported mixed findings in terms of awareness, we seek to clarify how Nepalese communities view environmental issues now and in the future. Such perceptions act as important indicators of how local communities make sense of what is happening in their surroundings.

Following our review of the literature, the following questions guide the study approach:

• How do communities in Nepal's Terai perceive their environment?

• How do they see that environment changing in the future?

• To what degree are local communities aware of climate change?

• What is the relative importance of climate change compared to other issues environmental affecting the community?

Materials and Methods

The following subsections describe the study design and procedure. Broadly, this comprised a qualitative approach using semi-structured interviews with residents in two communities in the Terai region of Nepal. Thirty interviews were conducted in total. 15 interviews were conducted with residents of the village of Kumroj, a small rural community bordering Chitwan National Park. Another 15 interviews were conducted with residents of Bharatpur, an urban community approximately 12 miles (20 km) away. For each group, we were interested in gauging perceptions of salient environmental issues, including climate change. We selected two different communities to explore the degree to which locally salient issues varied and informed discussions. Before commencing fieldwork, the study design was scrutinized and approved by the Research Ethics Committee in the School of Psychology at Cardiff University.

Participants

Fieldwork was conducted in January and February 2016. A purposive sampling strategy ( Silverman, 2015 ) was used to try to generate a range of different sociodemographic profiles within each community in terms of age, gender and ethnicity. All participants were aged 18+ and resided in either Bharatpur or Kumroj, both in the Chitwan district. Bharatpur has a population of 280,000 and is one of the largest and fastest growing cities in Nepal. While it is home to a number of small-scale processing industries, agriculture remains the biggest industry. Kumroj is a small town with a population of 8,000. Kumroj borders Chitwan National Park, the first National Park created in Nepal (in 1973). In recent years in-migration has increased pressure on land for settlement and agriculture. Increasing tourism has put additional pressure on the landscape. A number of community development initiatives have attempted to confer Kumroj as an ecological exemplar, with the creation of a community forest initiative and grant funding to encourage domestic biogas installation to reduce deforestation, launched on World Environment Day, 2013. Around 80% of households within Kumroj have installed bio-gas converters to reduce reliance on the forest for fuel.

To arrange fieldwork with local people in Kumroj, we contacted the offices of the World Wildlife Fund for Nature (WWF) in Kathmandu, who had been involved in community development projects in Kumroj. Through WWF, we were able to negotiate access through local community leaders who helped us to recruit participants. Prior to our arrival, the study was advertised by word-of-mouth by community leaders, who identified potential members of the community willing to be interviewed. Extra care had to be taken in gaining access to participants, establishing contact and opening communicative spaces with the community, which could be damaged if pushed too quickly ( Wicks and Reason, 2009 ). The study was promoted as a “ lifestyle and behavior ” project and avoided making reference to the environment, as we wished to avoid recruiting only those members of the community whose motivations and values were strongly pro-environmental. At recruitment, a brief screening procedure was applied; individuals were screened to ensure that they were 18+ and aware of the broad purpose of the study and what would be required in terms of participation. We also purposefully recruited individuals to ensure that we had a roughly equal split in terms of gender, as well as diversity in terms of age, ethnicity, occupation, and income. See Table 1 for subsample demographics.

www.frontiersin.org

Table 1 . Subsample demographics.

To recruit our Bharatpur subsample, we collaborated with the Institute for Social and Environmental Research Nepal (ISER-N). ISER-N is a research and development institute that conducts applied research to inform policy-making and effective sustainable development initiatives across local communities. Using a similar method to the above, ISER-N acted as our guide and point of access to the local community and advertised and recruited a subsample of local people who had expressed an interest in discussing their lifestyles and behaviors.

Once participants had been identified, screened, and given further information about the study, they were invited to take part in an interview to discuss aspects of their day-to-day lifestyles and behaviors with the research team. Interviews were scheduled to take approximately one-and-a-half hours, but varied from 45 min to 2 h. A semi-structured interview method ( Galletta, 2013 ) was chosen in which a standard set of questions was covered while also allowing flexibility for follow-up questions and exploration of other issues of relevance to participants. Such flexibility is an advantage in cross-cultural settings as this allows for greater exploration of cultural factors underpinning issues of interest ( McIntosh and Morse, 2015 ; Hagaman and Wutich, 2017 ). All participants were required to give written informed consent prior to participation.

Questions in the interview protocol sought to contextualize environmental perspectives within people's wider everyday lives as far as possible. Questions broadly covered perceptions of the environment and the importance of environmental issues environmental problems (including climate change), engagement in environmentally-friendly behavior, the character, motivations for and consequences of behaviors, and comparisons with others in terms of acting in environmentally-friendly ways (see Supplementary Information ).

The majority of interviews took place at participants' homes. Discussions took place on seats or woven mats in the front yards of houses rather than inside the building itself. A small number of interviews were conducted in other locations, such as a local café, or community building in the case where the home could not be used. We relied heavily on our collaborators and local community leaders to manage interview arrangements in line with our concerns about accessing members of an unfamiliar culture and wishing not to transgress social boundaries. Because people's yards are the area of the home where a lot of day-to-day interaction takes place, providing socially appropriate spaces for interaction.

One of the disadvantages of holding interviews outside was that on some occasions the research team's presence would attract the curiosity of other family members, neighbors and other locals. The sudden presence of others could occasionally alter the dynamic of the interview interaction, particularly if the others who were present began talking or offering their own perspectives. On one or two occasions the research team had to ask bystanders to limit their contribution so as to allow the participant to speak. To a cultural outsider this would appear potentially problematic and non-conducive to an appropriate interview context, which led us to consider this and other ethical considerations in conducting interview research in different cultures.

Ethical Considerations in Conducting Interviews in Different Cultures

Researchers typically assume that the communities in which they work will be aware of the concept of research and its value, though for many communities research is something abstract, distanced and difficult to make sense of in relation to their ordinary lived experience. This came across clearly in working with each subsample. In Bharatpur, participants were familiar with ISER-N and, owing to participating in other cross-cultural research, were more comfortable with the researcher's presence than participants in Kumroj, who had not been so exposed to researchers and the research process. Further to this, bridging communicative spaces is not confined merely to issues of translation and word equivalence, but of more conceptual differences in terms of the ways that different cultures define reality and categorize their experience ( Fong, 2012 ). Language and culture are woven together in ways that require not only the translation of speech, but the translation of cultural meanings that are often concealed from those outside of that culture. In designing the interview protocol, we worked closely with our collaborators not only to ensure that questions were understandable, but that any cultural assumptions (for example, about the lifestyles, values, and practices of the community) were identified and addressed appropriately. All interview materials were double-translated.

Qualitative methods including interviews, also carry particular ethical implications in terms of power imbalance, where the discussion is primarily directed by the researcher ( King et al., 2018 ). Assumptions about the identity of the western researcher (typically white, middle-class, and educated) on the part of the research participant construct interactional dynamics before a word has been spoken. Similarly, the reflexive researcher will not only consider how their own identity might influence communication, but how their assumptions about the community they are researching enter into framing interactions. While researchers may seek to embark on research practices that are non-exploitative and non-oppressive, researchers are nonetheless complicit in systems of oppression and should be aware of their own privileges.

The interview team comprised a male researcher (lead author) and a female translator to minimize any gender imbalance that might affect trust and participant disclosure, especially for female participants ( Campbell and Wasco, 2000 ; Sikes, 2018 ). The translator also played an active role in facilitating each interview, asking additional questions and clarifying understanding, as opposed to simply translating questions and responses. It was felt that a combination of cultural insider and cultural outsider benefited the discussion; while the former helped to increase trust and disclosure, the latter encouraged more detailed exploration of issues that might otherwise be taken for granted by those familiar with those issues ( Dwyer and Buckle, 2009 ).

Conducting qualitative fieldwork in collaboration with translators can also compromise the quality and accuracy of the material generated. In an interview context, the translator adds an additional layer to the interaction. For example, the translator is likely to be more acquainted with the cultural nuances of the interaction than the researcher. Therefore, both the researcher and translator can affect the fieldwork process, as well as disrupting the flow of talk to allow for translation ( Van Teijlingen et al., 2011 ). When fully transcribed, interviews can also show disparity between participant responses and translated responses. van Teijlingen et al. suggest that a way round this is to allow the translator to conduct the interview and only relay main points to the researcher, though this can be impractical, as well as excluding the researcher.

Prior to the interviews, considerable time was spent in developing and pre-testing interview questions. After constructing an initial set of interview questions in English, these were double-translated and then reviewed by our collaborators in Nepal. This was invaluable in not only identifying significant weaknesses in conceptual equivalence between Nepali and English versions of the questions ( Larkin et al., 2007 ), but also in highlighting researchers' cultural assumptions inherent in questions relating to everyday life in “other” places. That is, while a translated question may be conceptually equivalent to the original, it still may not be understandable in another culture (e.g., where researchers from one culture assume that all participants in another culture will have the same access to resources, such as running water). Even when all care is taken with translation, translators may be unfamiliar with a particular geographical region or cultural group. Therefore, it is recommended that questions are pre-tested in the specific cultural contexts in which they will be used.

With reference to interview locations, our decision to hold interviews outside and not in a more private location was primarily guided by social conventions as well as pragmatism, though we acknowledge the active influence of the nature of the space within which such interactions take place ( Gagnon et al., 2015 ). As mentioned at the end of the previous section, on occasion others were present at interviews in ways that influenced participant responses and could have constrained disclosure or breached informal assumptions about confidentiality (though interview questions were not considered to cover personally sensitive topics). Conversely, in discussing lifestyle and behavior issues, the home sometimes served as an exemplar in which participants described their activities in the context of the physical surroundings, which enhanced disclosure. In addition, conducting interviews in familiar environments can reduce the power imbalance between researcher and research participant ( Gagnon et al., 2015 ).

Ethical considerations do not end at the point at which the interview concludes but influence ongoing reflections following the interview (such as translation, analysis, writing-up and dissemination) ( Hoover et al., 2018 ). Acknowledging that translation imposes an additional level of interpretation on the spoken word ( Caretta, 2015 ), we have tried insofar as possible to contextualize accounts based on participants' direct speech rather than translators' interpretations of what was said. At the end of each interview, participants were provided with a verbal and written debrief in Nepali, in which they were given the opportunity to get in touch with the research team through appointed members of the local community and in-country collaborators should they have any further questions or concerns once participation had ended.

Analytic Approach

All interviews were digitally audio-recorded and translated and transcribed at ISER-N. Written field notes were also taken throughout each interview relating to points of interest and things that might not be captured by the recorder. An “ in-interview ” system of translation was used whereby questions and responses were translated between English and Nepali by the translator. This method of translation was primarily used to aid communication within the interview itself. When the interview recordings were translated, the translators re-translated participants' responses, which appear alongside the in-interview translations in the transcripts. This was done as the task of translating what at times were lengthy utterances in the moment, could have led to omissions and gaps, whereas in translating participant responses from the recordings utterances could be replayed and listened to repeatedly for clarity, thus better capturing what was said.

An episodic narrative approach was used as an analytic framework by which to explore participants' accounts of environmentally-friendly perceptions and behaviors. This approach treats perceptions and experiences as lived narratives situated within the wider society and culture ( Flick, 2000 ; Jovchelovitch and Bauer, 2000 ). Narrative interviewing is interested in eliciting particular episodes or features of participants' lives and how they make sense of the world as embodied, culturally and spatially situated individuals ( Raulet-Croset and Borzeix, 2014 ). Interview audio files and transcripts were analyzed using NVivo 11, supplemented by written field notes.

Our analysis combined several methods, which we outline here. In line with the early stages of a grounded theory approach ( Timmermans and Tavory, 2012 ) we began by reading through transcripts to identify examples of talk that involved themes relating to health and well-being in the context of environmental issues. As much as possible, given inevitable researcher preconceptions and positions ( Caelli et al., 2003 ) we sought to identify general themes and provisional topics of interest, without imposing a predetermined framework. This manner of bottom-up or inductive analytic reading of the data allows for the broadest possible range of salient themes to be identified. Once we familiarized ourselves with the material through repeated readings, we then developed a system of codes to more precisely categorize these themes. In order to do so, we used a version of template analysis, which is suitable for identifying themes in research data that is commensurate with both essentialist and constructionist perspectives, and which enables a hybrid approach that utilizes both inductive and deductive techniques ( Brooks et al., 2015 ). Template analysis is a form of thematic analysis applied to qualitative data, that is sensitive both to emergent themes that are grounded in the data (i.e., not anticipated or predetermined by the researcher) as well as permitting predetermined codes or categories to be applied (i.e., in line with the researcher's interests and the existing literature). The coding framework was developed through an iterative process: through multiple readings of the research data and refinement of initial codes until further changes to the framework did not enhance it further. A further feature of template analysis is the development and application of a hierarchical coding approach, designed to shed light on the structure across the set of codes. In the case of the present study, this for example has led to higher-level codes such as “behavioral responses” beneath which we identify sub-codes such as “cleanliness” and “waste disposal.”

In the analysis that follows, we present extracts from interviews in both communities comprising perceptions of environmental issues. Where considering the themes identified within the data, we have illustrated this using a single typical extract and alluded to its occurrence in other participants' accounts within the text.

Community Perceptions of Current Environmental Conditions

We began by asking participants about the importance of environmental issues in their day-to-day lives and what the surrounding environment was like. Responses comprised both positive and negative evaluations of environmental conditions, though there was a greater range of issues forming the latter. To get some sense of the kinds of terms used to describe the local environment in each community, we created two word clouds using NVivo, which display the most frequently used words in discussing issues. The results of these are displayed in Figures 1 , 2 .

www.frontiersin.org

Figure 1 . Word cloud of the 75 most common words associated with present environmental conditions (Bharatpur participants).

www.frontiersin.org

Figure 2 . Word cloud of the 75 most common words associated with present environmental conditions (Kumroj participants).

Both communities used the same terms in discussing the environment, such as “ people ” and “ good .” In Bharatpur, “ better ” was also commonly used in talking about the environment, which may reflect the dominance of the issue of sanitation (see section Sanitation and Hygiene below). Negative words such as “ pollution,” “ smoke,” “ problem,” and “ dust” also came up relatively regularly, as did the word “ plastic .” Terms relating to hygiene and sanitation were also notable. These included “ cleanliness,” “ toilet ,” “ healthy,” and “ clean .” Meanwhile, in Kumroj, commonly used terms appeared congruent with the community's rural position. These included “ animals ,” “ jungle ,” “ wild ,” and “ forest .” Words such as “ polluted ,” “ concerned,” and “ worried” were also used. We now move on to discuss responses in more detail.

Sanitation and Hygiene

The primary way issue through which the environment was assessed in both communities, though particularly in Bharatpur, related to sanitation and the need to maintain a clean environment to reduce the risks of disease:

“ Previously, like ten to fifteen years ago people used to smoke, and there was open defecation everywhere, there weren't any toilets, so people used to get sick and the death rate also used to be very high, people used to be suffering by many kinds of disease, skin problems, allergies. Now currently almost every household has a toilet, and many organizations have been working on cleanliness. They have been providing various training and awareness programs regarding the clean environment. So now I would say, the environment is not so bad around here .” (Bharatpur, Interview A3).

In the above account, a positive assessment of environmental conditions is formulated by drawing a comparison between past and present sanitation and sanitary practices. Whereas, in the past, communities were affected by diseases resulting from unsanitary conditions, this had now changed, providing a positive indicator of the local environment as a whole.

In addition to health risks from open defecation, providing proper toilets in rural communities such as Kumroj also minimized other risks from wildlife, and the discomfort of adverse weather conditions:

“ If we don't have a toilet, then we may have to face many difficulties such as while going outside for toilet then we might get attacked from snake or when raining it would be hard to go the toilet. And if we openly defecate then it will pollute the environment and as result we may have to suffer from different diseases, so environment is the most important thing to survive for everyone and we can't imagine life without environment .” Kumroj, Interview B11).

For rural communities, development of sanitation was considered not only key to well-being, but also, implicitly, key to a good environment. Talk of sanitation in the context of evaluating the local environment also rested heavily on community awareness. What contributed to a lack of environmental quality in the past was not only that proper sanitation was unavailable, but that in the past, communities were less aware of the risks to health and well-being from poor sanitation. Risky sanitary practices were thus maintained as people did not know any better. In contrast, nowadays, communities were more aware of risks from inadequate sanitation and knew how to overcome issues such as contaminated drinking water. In this way, community awareness also contributed to positive judgements of environmental quality:

“ The e nvironment here is better in comparison to the past…These facilities didn't exist. There had been problems of drinking water taps. The same tap was used. It wasn't enough. In society, people had to drink water from wells. They had germs, smoke and dust .” (Bharatpur, Interview A10).

Similar to the accounts of the shift to a better environment through the development of toilet facilities and reduction in the practice of open defecation, an overall positive evaluation of the environment is constructed through comparisons of past and present. For many participants, issues of health, sanitation and hygiene formed the yardstick by which the overall environment was evaluated positively.

Waste and Pollution

While improvements in sanitation and hygiene across both communities provided a positive indicator of environmental quality, there was more ambivalence where participants discussed other issues indicative of environmental quality in their respective communities. For participants in both Bharatpur and Kumroj, distance from industrial development and proximity to green spaces were important factors associated with positive environmental assessments:

“ The environment around here is ok, there is no industry and factory so it is not that much polluted here and we are nearby jungle so we have greenery, yeah, it's good, it's fine .” (Kumroj, Interview B5).

As illustrated in the above account, environmental quality was implicitly understood as relating to human well-being, in terms of risks from pollution. Such a location for the community, close to the jungle and away from factories, led to evaluations that the environment was good. Conversely, accounts of pollution from other sources within the community itself, suggested a rather different environmental evaluation. At the same time as some participants positively evaluated the environment being relatively pollution-free, others constructed it as a polluted space due to the way that plastic waste was managed. The problem of plastic waste disposal came up most frequently in Bharatpur:

“… looking at increasing population, there can be very dangerous pollution. I feel that it will increase, yes, increasing. The use of plastics is increasing and there is no awareness regarding how to maintain cleanliness, how to save us from the problem. They have no such idea. Due to increasing population density, such symptoms are evident .” (Bharatpur, Interview A14).

Concerns about plastic waste were tied to other concerns about local population increase and the perception that there was a lack of awareness amongst the community in addressing the issue. Such accounts implied that there were no alternatives to using plastic, therefore the problem was in disposing of plastic waste that littered the environment and did not decompose. The main problem causing the pollution was not the presence of plastic waste, but the method used to manage and deal with waste plastic. This chiefly involved collecting the plastic and burning it in open fires. While this resolved the problem of plastic waste littering the community, participants were concerned that the smoke polluted the air and posed risks to health:

“ There is plastic around here and there. To dispose plastic, we need to burn it, and if we burn plastic it makes huge air pollution and affects people's health. The other day I argued with one person not to throw plastic. We must use firewood for cooking and because of that there is again smoke in the air, because of a lack of cooking gas. That's why it has been a very bad environment .” (Bharatpur; Interview A2).

In contrast to the previous extract constructing the local environment in positive ways as being relatively pollution-free, alternative perspectives such as the above led to very different evaluations of the local environment, with concomitant consequences for the health of the community. While the local community was aware of the contribution of existing informal plastic waste management practices to air pollution, it was nonetheless positioned as being powerless to change in ways that address air pollution as people are locked in to environmentally-damaging practices in order to manage waste and address basic needs. Similar to the need to use firewood for cooking due to shortages of cleaner alternatives, there were no alternatives and burning plastic waste was viewed as unavoidable. Essentially, such accounts lead to a very different evaluation of local environmental conditions.

Conversely, in Kumroj, a municipal system for collecting plastic waste had been in place for some time, therefore the community's method of dealing with plastic waste was not considered to threaten local environmental quality as much as problems such as poor sanitation:

“ People defecate wherever they want around the city area, there are toilets in here no toilets, so people openly defecated. So, I'm concerned about it…Otherwise, there is a facility to collect the waste from municipalities, the van comes and takes away waste. People collect the wastage plastic in sacks, then when the municipality van comes, then they take it away .” (Kumroj, Interview B6).

The account begins by constructing open defecation as the main issue threatening the environment in nearby Bharatpur, implying a negative assessment of the surroundings. This is contrasted with a more positive assessment where the speaker switches to talk about plastic waste management in Kumroj. Therefore, while plastic waste was a problem in both communities, in evaluating the local environment, the different ways in which plastic waste was managed were used to formulate contrasting assessments of environmental quality overall. These contrasting assessments may also connect to the wider importance of health and well-being, in which potential risks are offset by waste management practices in one community, but raised by plastic waste management practices in another.

Deforestation

While plastic waste did not negatively influence environmental assessments in Kumroj as it did in Bharatpur, there were, nonetheless, other issues affecting the community leading to negative environmental evaluations that were not reported in Bharatpur. For people in rural Kumroj, there was a closer felt connection to the neighboring forest as a source of environmental concerns. That is, forest conditions were more commonly invoked in environmental assessments by participants in Kumroj than in Bharatpur. The forest was seen as a valuable community resource, primarily as a source of firewood. Such talk occurred against a context of strikes and fuel shortages, further highlighting the importance of the forest as a source of firewood for local communities, which was being rapidly diminished due to increased demand:

“ We restored the forest with a lot of hard work. The strikes have already led to twenty-five percent of the forest to deforest and if this goes on, the forest will be completely deforested in a year or two. There is a new facility called biogas, we have that facility but, we have seventy-five percent biogas but people are poor and some bring the firewood from the forest, steal it and sell it… People have to survive. Having to die today and struggling for it tomorrow isn't going to work. If you have to survive today, you'll have to work for it today. And if they don't have any other way they'll go to the forest and steal the firewood .” (Kumroj, Interview B10).

Despite attempts to increase forest cover and reduce reliance on firewood by providing biogas converters within local communities, this did not address the wider problem of sustaining local people's livelihoods, which caused further deforestation and the potential loss of the forest altogether. From this perspective, the amount of forest cover formed an indicator of environmental quality. Furthermore, for participants in Kumroj, the environment was also judged based upon perceived changes in the amount of wildlife that could be observed locally:

“ I think the current environment is worse than the previous environment. I have noticed that the current environment is going down every day instead of going up. Because, previously when I used to go to the jungle I could see the wild animals very near, even sometimes outside of the jungle, but these days we have to go very deep into the jungle to search for the animals .” (Kumroj, Interview B14).

While the need for wood to sustain people's lives were commonly acknowledged within accounts of the pressures on forest resources in Kumroj, deforestation remained a significant concern.

Climate and Weather

While it was not foremost in terms of locally significant issues, participants in Bharatpur and Kumroj also referred to changes in climate and weather conditions in formulating their assessments of the local environment. These changes did not form the basis for positive evaluations of the local environment but appeared in negative or neutral assessments. Talk referred to a narrow range of changes. These mainly involved observations of temperature extremes in which summers were perceived to be increasingly hot, and winters increasingly cold. However, while these observations of climatic change were described causal factors were hardly mentioned. Furthermore, the phenomenon of global climate change was not spontaneously invoked in accounts:

“ I would say it's okay, so far Chitwan's environment is fine, although here is not much forest and plants. In winter it's very cold and summer is getting hotter .” (Bharatpur, Interview A6).

What appears initially as a positive assessment of the local environment is tempered by a perceived lack of forest cover and greenery in Bharatpur. In addition, the speaker adds the casual observation that winter and summer are increasingly subject to extreme temperatures, though no reason is offered as to why.

In addition to temperature changes, the other way in which the environment was judged was based on fluctuations in precipitation. In such accounts, there was consensus that rainfall was becoming more erratic and less predictable, and that rainfall overall was decreasing, including at the wettest times of the year. Again, no specific reasons were ventured as to why this was happening:

“ Yeah, I think sometimes, I think there's not enough or little rainfall during the rainy season .” (Bharatpur, Interview A1)

While changes in climate in terms of global averages cannot readily be detected by individuals ( Hulme, 2009 ), participants' observations appeared to reflect general climate trends. However, there was little concern expressed about temperature and precipitation changes, in comparison to other issues linked to health, cleanliness and well-being. Very occasionally, this type of issue was also linked to other perceived environmental problems. For example, one participant associated reductions in the amount of rain that fell to changes in forest cover:

“… we shouldn't be cutting down trees like we have been doing. We wouldn't get any rain if there weren't any trees .” (Kumroj, Interview B6).

The above account provides an isolated example of causation in relation to weather related changes. Even so, the role of climate change is not mentioned and rainfall change is attributed solely to the local problem of deforestation. While discussions of weather and climate were almost exclusively focused on the local area, an isolated reference was made to climate change in discussing the environment on a larger scale. One speaker spontaneously referred to broader patterns of global warming observed in changes beyond the local environment:

“… as you know because of the international global warming, now these days we have maximum cold, maximum hot, and impacts on ice and the change of snow fall trends…now there is very little snow fall in the mountains. If there is snow it melts so fast. These days we can see there are big storms, rainfall, everything has changed now. I think all the weather patterns have changed because of global warming. So, all those things make me concerned about the environment .” (Kumroj, Interview B13).

While an isolated example, the extract illustrates that climate change did arise in discussions of more local environmental conditions. Broader weather and temperature changes in Nepal corroborated observations at the local level, including temperature extremes and changes in rainfall.

In summary, assessments of the local environment were framed in different ways, leading to differences in the way that environment environmental conditions were evaluated. Assessments were framed based upon locally significant issues, which were both shared by, and individual to each community. Moreover, the most significant concerns were related to health and wellbeing. Next, we consider responses to the question of future environmental change.

Community Perceptions of Future Environmental Change

Following discussions over present environmental conditions, we then asked participants how the local environment might change in the future. Responses again comprised both positive and negative impressions, with a higher proportion of responses focused on the latter.

As previously, we created word clouds to get a sense of the sorts of terms that were used in imagining the future, and how these terms varied across communities. The results are shown in Figures 3 , 4 .

www.frontiersin.org

Figure 3 . Word cloud of the 75 most common words associated with future environmental conditions (Bharatpur participants).

www.frontiersin.org

Figure 4 . Word cloud of the 75 most common words associated with future environmental conditions (Kumroj participants).

Among participants in Bharatpur, the words “ waste ,” “ population,” and “ increasing ” came up most frequently in responses about future change. References to negative terms, such as “ pollution ” appeared less than in talk about existing conditions, though it appeared to be used relatively more frequently by participants in Kumroj. With reference to the latter community, the two most prominent words used in talking about the future were “ forest ” and “ people .” Other terms referred to environmental concerns looking to the future, including “ live ,”, “ less ,” “ important,” “ survive,” and “ disappear.” We now move on to discuss responses in more detail.

Future Deforestation

Across both communities, the most commonly reported issue in the future was that of population increase and its consequences, especially for those in Kumroj. As can be read from the analysis so far, population increase influenced environmental perceptions; and was something that was set to continue into the future. Population increase was not viewed in positive ways in either community. Instead, environmental impacts were predicted to increase as more people came to live in the Terai. Of these impacts, the pressure on local forests was most often mentioned. This tapped into the idea that the forest existed as a resource for local communities and that, as a resource, the forest was already being overused:

“ Well, um…I think, the population will increase, they may need more homes, more food, etcetera. For that, the increased population might destroy the green forest for their homes and for cultivating land. There might not be good management of the increased population. There may come disorder in the environment. There might be less wild animals, less trees and plants .” (Bharatpur, Interview A7).

In addition to providing raw materials in terms of firewood, as mentioned above, the need for land clearance to build settlements and provide food for newcomers compounded deforestation. If not well-managed, there were fears that this would eventually lead to the complete loss of the forest, both as a resource, and as a habitat for local flora and fauna. Such accounts appeared to be grounded in existing concerns about the exploitation of forest resources and served as a warning against continuing unchecked exploitation. In addition to its construction as a community resource and as a habitat for wildlife, in one or two discussions of future population increase, the forest was constructed as a safeguard against preventing other environmental impacts. For example, the forest protected the landscape from flooding and erosion:

“ Since the population and settlements are increasing, the forest is being cut down and people are settling in areas that were forest. More trees are being cut down to meet demand and brick factories are setting up and their chimneys pollute the air with lots of smoke. Because of less forest there could be floods and landslides, so this is the way the environment will be affected in future .” (Kumroj, Interview B11).

Further to the above, while participants were asked about environmental change in the future, discussions were typically grounded in perceptions of the present. Within the above extract, indications of future conditions linked to increased population and natural disasters are connected with conditions in the here and now, which are projected into an imagined future. It is assumed that present conditions will remain stable and consistent, with little expectation of change. As such, these accounts of the future highlight anxieties linked to present conditions, along with a sense of futility and helplessness that little will change. Conversely, issues such as sanitation did not really come up as future concerns, which likely reflects perceptions of sanitation improvements in the present, compared to the past.

Future Temperature Increases and Reduced Precipitation

Of relevance to climate change, rising temperatures, reduced rainfall and the loss of water resources also came up as potential future conditions locally. As found previously in accounts of present conditions, such talk tended to report conditions without elaborating on reasons as to what might contribute to causing them, or by offering opaque references to some unspoken (or non-understood) conditions or circumstances as “ having changed ”:

“ Yes, I think the environment might change. We even hear in the news that the heat or temperature has risen…we also have heard that because of some things the amount of rainfall has also decreased.” (Bharatpur, Interview A1).

The above narrative hints at climate change, though without any formal acknowledgment of the phenomenon. First of all, the speaker does not refer to direct experience of rising temperatures but formulates this information as something gathered from the media. Likewise, due to a set of unnamed causal factors labeled as “ some things ,” rainfall has also decreased, hinting at complexity. Furthermore, while the speaker begins by stating the belief that the environment could possibly change, the following discussion of climate-relevant change is grounded in changes that have already occurred, rather than changes that could happen in the future. As above, perceptions of future change are intimately connected to changes in the present. This is also confirmed in the next extract, in which a response to the question over future change is also constructed as an account of a present in which the environment locally had shifted from a state of stability to one of flux:

“ When it used to rain in Chure…that is in the mid hills, if we put some grains in the sun to dry then we wouldn't have time to collect them and bring them inside so quickly. The rain would have come, it used to rain quickly. But five to seven years after that there were floods and then other floods, and after that the climate started getting worse and worse. Nowadays what happens is we can see it raining in Chure but here is doesn't rain. So that is a very definite thing that I have noticed .” (Kumroj, Interview B13).

In this extract, rather than merely hearing about weather and temperature-related changes from secondary sources, evidence of environmental change could be found in the course of changes to practices that were arranged in line with previously stable and consistent weather patterns. As weather patterns had become less predictable, community practices had undergone changes, highlighting the impact of weather-related changes on the local community.

Local Community Perceptions of Climate Change

The previous sections have shown that while participants in both communities spoke about issues related to changes to temperature and weather, both now in the future, these issues were typically unelaborated beyond the reporting of changes when unelicited, and only rarely connected to wider global climate change. Yet these perceptions often paralleled broader climate change trends. In order to gauge the extent to which participants were aware of climate change, we then asked directly whether participants had heard of climate change or global warming.

Using NVivo, we began by mapping climate change themes from participants' accounts in both communities., which then formed basic nodes through which to understand the various ways in which participants in both communities talked about climate change. The conceptual map is shown in Figure 5 . We then looked at responses in more detail.

www.frontiersin.org

Figure 5 . Conceptual map of themes arising in participants' talk about climate change across both communities.

Changes in Temperature

Of the participants who were directly asked whether they had heard of climate change, only one or two had not, though nobody claimed to know more than a little. Responses were very similar across both communities. Nearly all participants in both communities referred to changes in temperature and/or weather locally. Extreme temperatures were the most commonly cited indicator, most often connected to hotter summers, but also less frequently linked to colder winters, as detailed above in the section on Climate and Weather. Generally, little was said beyond simply noticing change, though one important impact of temperature change in the Terai concerned the direct consequences for plant life:

“ Well…hmm…actually I don't know the reason of global warming. I have heard that the snow of the mountains is melting these days. If it melts it will be hotter. The vegetation will be dry and can't survive, I heard this. It means the temperature increase may affect every living thing on the earth .” (Bharatpur; Interview A7).

Such talk reflects the importance of agriculture for many communities in what is Nepal's primary agricultural region; while the direct impact on plants was highlighted, other impacts of temperature change were not. The speaker also claims to be unaware of the causes of global warming. However, they construct a link between snowmelt on the distant mountains and temperature rise more locally, with potential impacts for the planet.

Links between climate change and health were rare, however, one speaker explained that hotter temperatures brought new disease risks to humans:

“ What is there is that the rays of the sun, the layer between sun and the earth is what people call depleting nowadays, isn't it? This leads to an increase in heat. This heat has brought about different diseases. Like, mosquito bites cause various diseases. I have heard from the radio that climate change has adversely affected human beings .” (Bharatpur; Interview A14).

In explaining the causes of temperature rise that bring about health risks from flying insects, the speaker combines elements of ozone layer depletion and global warming. This reflects the way that lay understandings of climate change do not map neatly onto expert definitions, but often overlap with other environmental problems ( Rudiak-Gould, 2012 ).

Changes in Precipitation

Following changes in temperature, particularly in the summer months, changes in precipitation were the other main symptom linked to climate change in both communities. An example of this type of perception is provided in Section 3.1.3, though talk of erratic or reduced rainfall was framed locally and very nearly always unconnected with global climate change. However, when the issue of climate change was deliberately elicited by the interviewer, a greater degree of acknowledgment was given to the influence of the phenomenon on local changes particularly in relation to agriculture:

“ Because of global warming, there is not timely rainfall, nothing happens according to the growing seasons. For example, no rain in the rainy reason but it is (rainy) in winter time. Nothing occurring at the right time, I guess this is all the impact of climate change .” (Kumroj, Interview B13).

Because of global warming, regular patterns of precipitation and the seasons had been thrown into disarray. This was of particular importance in the Terai in terms of agriculture, and was the primary way in which such changes to established patterns were recognized. For others, while erratic weather had recently been observed, it was of little concern as the weather tended not to be consistent but changeable day-to-day:

“ Few years back there was heavy rain, but now there is very little rain, and the summer heat has increased since last year…I think it's not really concerning me because every day is different and going on in its own way, so I don't feel really concerned about it .” (Kumroj, Interview B12).

In general, accounts of changing temperature and weather were constructed in ways that assumed a transition from the stable and consistent natural patterns of the past, to a present in which established patterns had been disrupted. However, for those less concerned, changes were viewed as part of natural variability. Ultimately, when thinking about local conditions, climate change typically did not form a part of community perspectives unless introduced by the interviewer. The final section summarizes individual climate-relevant behavioral responses to the issues raised in talking about the environment.

Health and Well-Being Motivates Engagement in Climate-Relevant Behaviors

Because participants in Bharatpur and Kumroj often did not associate local issues with climate change, there was little talk of the need to adopt specific mitigation or adaptation behaviors. However, within each community one or two climate-relevant behaviors were raised in the course of discussing engagement in more general environmentally-relevant actions. For example, planting trees was widely practiced in both communities. Primarily, this was done to provide wood, create shade around homes and provide fruit. Trees were also considered important in preventing drought (see section on Climate and Weather) and other natural disasters such as flooding and erosion (see section Future Deforestation). In addition, a few participants framed climate-relevant behaviors as motivated by the need to safeguard health and well-being:

“ Trees I plant in the rainy season, so I plant yearly. Once I cut the old, then I plant new…Trees keep the environment clean and healthier. Trees inhale carbon dioxide and exhale oxygen” (Bharatpur, Interview A6).

While there was no clear link made to climate change, participants acknowledged the value of reducing atmospheric carbon, which was understood as maintaining a “ clean and healthier ” environment. Essentially, such climate-relevant practices were understood not in accordance with received scientific conceptualisations of climate change, but through more pragmatic perspectives linked to health and well-being.

In Kumroj, the Nepalese government had tried to maintain forest stocks by encouraging villagers to purchase biogas converters through grant schemes. Several participants, mainly from Kumroj, had biogas converters. These were seen as advantageous as organic waste could be utilized for producing fuel and then used as a fertilizer. Food could also be cooked quicker without the need to light a fire, and it reduced the need to collect wood. While participants did not mention the link between biogas practices and climate change, one of the most important benefits of biogas was that it did not pollute the air and so reduced health risks linked to inhaling wood smoke:

“ It (biogas) is clean and the air is also clean. The utensils are also not black. Biogas is more hygienic. People can be safe from colds and coughs and smoke-related diseases .” (Kumroj; Interview B13).

Cleanliness is paramount to the importance of biogas in the above extract. The pollution emitted by burnt wood is illustrated with reference to the condition of cooking utensils, with the implication that the wider environment is being affected in a similar way. In contrast, biogas does not discolor cooking utensils, which illustrates the fuel's superiority in terms of minimizing health risks caused by woodsmoke.

This study set out to investigate community perceptions of environmental and climate-relevant issues within two communities in the Terai region of Nepal. Specifically, we sought to address 4 related research questions; (1) How do community members perceive their environment? (2) How do they see that environment changing in future? (3) To what degree are communities aware of climate change? (4) How important is climate change in comparison to other issues? A range of environmental and climate-relevant issues emerged within current and future perspectives. Perspectives were focused primarily on local issues rather than wider environmental conditions. Issues linked to health and well-being were of paramount importance, while climate change was hardly mentioned in either community, either as a current or future problem. However, there was common awareness of temperature and weather changes in the local climate, though the vast majority did not link these changes to climate change. We now move on to discuss the results of our analyses in more detail.

For participants in both communities, assessments of the local environment were commonly based on evaluations of a single locally-salient issue. Positive issues, such as improvements in sanitation over time, invariably resulted in positive overall evaluations of the environment overall. Conversely, pollution resulted in more negative overall assessments. This highlights the highly subjective nature of environmental perceptions and the way in which specific issues can achieve heightened significance in judgements of environmental quality.

Many of the environmental issues raised in both communities were related to health and well-being, including cleanliness, pollution, and deforestation. It may be the relative proximity of each community contributed to this overlapping of issues. It may also be because they represent basic environmental concerns common to many communities—keeping the environment clean, healthy, and pollution free. Similarities between communities may also be partly attributable to our sampling method (see section Study Limitations and Future Research) There were also some differences in issues between communities. While plastic waste was more of an issue in Bharatpur, deforestation came up more often in Kumroj—though neither issue was exclusive to each community.

Climate change as an issue came up only once spontaneously, implying that other local issues were more salient. However, temperature and weather changes analogous to climate change did come up in several interviews across both communities, though without attribution to climate change. There was also little consideration of causal factors beyond immediate local causes such as deforestation affecting precipitation, flooding, and land erosion. In line with Leichenko and Silva (2014) , it appeared that temperature and weather changes allied to global climate change were already being experienced, though such issues were more atomized and vernacular and sometimes merged with other environmental problems ( Rudiak-Gould, 2012 ). In line with previous work, community perspectives often drew on different issues without attempting to clearly categorize or explain them ( Lorenzoni et al., 2007 ). Xiao and Dunlap (2007) note how particular environmental cognitions can constrain others; it is therefore possible that, when issues are framed locally, wider frameworks of understanding are overlooked.

Perceptions of Future Environmental Change

Perceptions of future environmental change were closely linked to mental representations of current conditions and issues of anxiety and concern. This could be seen in the way that participants rarely spoke about sanitation with reference to environmental change in the future, as sanitation had improved within communities. However, concerns about issues linked to current population increase were projected into the future and anticipated to continue unabated. Previous work has found that existing perceptions of self and other can be elicited through projections of “possible selves” in the future ( Harrison, 2018 ). In the same way, communities' imagined environmental futures highlight salient issues within existing relationships between communities and their physical surroundings.

The Terai region has witnessed large increases in population over recent decades ( Population Reference Bureau, 2002 ), and this was linked to pollution, deforestation and pressure on natural resources. While predictions of temperature and weather emerged from the interviews, such impacts were less frequently mentioned than concerns over population growth, as found in other research (e.g., Butler et al., 2014 ). Before communities can interpret and respond to climate-relevant issues, it may therefore be necessary to address existing concerns characterized by visions of the present and the future. In addition, the analysis highlights the relevance of sociocultural arrangements and cultural practices that contribute to community perspectives. For example, tree-felling was understood sympathetically within wider contexts of survival and economic struggle, as well as fuel shortages that left no alternative but to take wood from the forest. Such perspectives serve to highlight the complex nature and wider structural relations sustaining environmentally damaging practices.

Awareness of Climate Change

Climate awareness was relatively unmentioned in discussing the local environment, echoing previous studies ( Gallup, 2009 ; Withana and Auch, 2014 ). We found little difference between awareness in Bharatpur and Kumroj. A potential reason for this is that the changes observed suggest broader shifts in temperature and weather affecting the wider region, rather than localized effects or micro-climates that might affect one community and not another. Other studies have also reported lower awareness in rural communities ( Tanner et al., 2018 ), though a lack of difference may be due to the higher levels of environmental awareness from NGO engagement in Kumroj. However, while most participants did not spontaneously discuss the issue of climate change, when directly questioned, all had at least heard of climate change and many were able to eloquently demonstrate a good degree of knowledge. Therefore, it may not have been that participants were unaware of climate change, but simply did not consider it a locally salient issue. Tanner et al. (2018) also found that climate change awareness was low, despite respondents observing changes to local weather and climate. It may be that communities look to more local explanations for climate-relevant issues, as was found in some discussions. Therefore, if received knowledge teaches that the lack of rain is due to local forests being depleted, why would communities look to wider, more nebulous phenomena as explanations? The kinds of issues that came up in talk of climate change broadly reflects other research on community perceptions of climate change in the Terai (e.g., Tiwari et al., 2010 ; Maharjan et al., 2011 ). The apparent disjuncture between local experience and climate change suggests that the latter may lack relevance for local communities as long as environmental changes can be attributed to more local causal factors. It also suggests two kinds of climate change; a distanced, abstract climate change, and a more experiential, locally-grounded one. Within communities facing such impacts there is a need for a nuanced understanding that blends both. Howe et al. (2013) remark that local perceptions, such as temperature change, can positively bias perceptions of more abstract global climate change, which in turn can generate greater awareness and the capacity to respond to reduce risks to communities. As communities appear to be aware that the local climate is changing in a variety of ways, it is necessary to translate this awareness beyond the local. Reciprocally, more global perspectives need to connect with the concerns and interests of communities at the local level to make climate change more relevant to people's everyday lives. Bain et al. (2016) discuss evidence for initiatives promoting public engagement designed to generate support on the basis of considerations that are independent of climate change, including health and the creation of benevolent communities.

Study Limitations and Future Research

The use of a single qualitative methodological approach utilizing a small sample can only provide a partial insight into climate-relevant and environmental issues confronting the communities studied. Qualitative interview methods rely heavily on participants being able to recall and clearly convey their thoughts in the limited context of the interview interaction. Managing interview interactions in a cross-cultural setting remains a significant challenge and it is possible that the framing of questions could have influenced responses, such as precluding the discussion of global climate change by not deliberately eliciting the topic early in the interviews. Triangulation using other methods and larger samples might help to clarify these qualitative findings. Convergence in perspectives between communities may be attributable to our sampling method. While we categorized Bharatpur as the urban counterpart to rural Kumroj, most participants lived on the edges of the city close to the countryside, which may have generated perceptions that were more aligned with a rural, rather than an urban perspective. Future research might further investigate the apparent disparity between awareness of climate change more generally, and a lack of acknowledgment of climate change in discussions of environmental conditions at the local level. Drawing attention to this gap might also serve to elicit more comprehensive community perspectives and rule out potential shortcomings of a single methodological approach.

Data Availability

The raw data supporting the conclusions of this manuscript will be made available by the authors, without undue reservation, to any qualified researcher.

Ethics Statement

This study was carried out in accordance with the recommendations of the Ethics Policy, Cardiff University School of Psychology. The protocol was approved by the Cardiff University School of Psychology Ethics Committee. All subjects gave written informed consent in accordance with the Declaration of Helsinki.

Author Contributions

NN, IC, and RM conducted fieldwork with the assistance and guidance of LW and SC. NN was primarily responsible for analysis and authorship of the paper, with significant contributions in both areas from the other authors. All authors agree to be accountable for the content of the work.

This project was funded by the European Research Council (ERC) as part of the CASPI Project (no. 336665).

Conflict of Interest Statement

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Acknowledgments

Many thanks to Ugan Manandhar of WWF Nepal and the staff of ISER-Nepal for their valued collaboration on this project. Thanks also to Jyotsna Shrestha (independent translator) for help in designing the study and assisting with the translation of interviews in Kumroj, and Bishnu Adhikari, who assisted with fieldwork translation in Bharatpur. This paper is dedicated to the memory of Krishnan Ghimire of ISER-Nepal, who was instrumental in supporting the research.

Supplementary Material

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fsoc.2019.00060/full#supplementary-material

Adger, W. N. (2003). Social capital, collective action, and adaptation to climate change. Econ. Geogr. 79, 387–404. doi: 10.1111/j.1944-8287.2003.tb00220.x

CrossRef Full Text

Adger, W. N., Barnett, J., Brown, K., Marshall, N., and O'Brien, K. (2013). Cultural dimensions of climate change impacts and adaptation. Nat. Clim. Change 3, 112–117. doi: 10.1038/nclimate1666

CrossRef Full Text | Google Scholar

Adhikari, B. (2018). The State of economic development in Nepal. Int. J. Soc. Sci. Manage. 5, 43–45. doi: 10.3126/ijssm.v5i1.19029

Aryal, S., Cockfield, G., and Maraseni, T. N. (2014). Vulnerability of Himalayan transhumant communities to climate change. Clim. Change 125, 193–208. doi: 10.1007/s10584-014-1157-5

Bain, P. G., Milfont, T. L., Kashima, Y., Bilewicz, M., Doron, G., Garð*arsdóttir, R. B., et al. (2016). Co-benefits of addressing climate change can motivate action around the world. Nat. Clim. Change 6, 154–157. doi: 10.1038/nclimate2814

Becken, S., Lama, A. K., and Espiner, S. (2013). The cultural context of climate change impacts: perceptions among community members in the Annapurna Conservation Area, Nepal. Environ. Dev. 8, 22–37. doi: 10.1016/j.envdev.2013.05.007

Bhatta, L. D., van Oort, B. E. H., Stork, N. E., and Baral, H. (2015). Ecosystem services and livelihoods in a changing climate: understanding local adaptations in the Upper Koshi, Nepal. Int. J. Biodivers. Sci. Ecosyst. Serv. Manage. 11, 145–155. doi: 10.1080/21513732.2015.1027793

Bickerstaff, K. (2004). Risk perception research: socio-cultural perspectives on the public experience of air pollution. Environ. Int. 30, 827–840. doi: 10.1016/j.envint.2003.12.001

PubMed Abstract | CrossRef Full Text | Google Scholar

Brooks, J., McCluskey, S., Turley, E., and King, N. (2015). The utility of template analysis in qualitative psychology research. Qual. Res. Psychol. 12, 202–222. doi: 10.1080/14780887.2014.955224

Butler, J. R. A., Skewes, T., Mitchell, D., Pontio, M., and Hills, T. (2014). Stakeholder perceptions of ecosystem service declines in Milne Bay, Papua New Guinea: is human population a more critical driver than climate change? Mar. Policy 46, 1–13. doi: 10.1016/j.marpol.2013.12.011

Byg, A., and Salick, J. (2009). Local perspectives on a global phenomenon - climate change in Eastern Tibetan villages. Glob. Environ. Change 19,156–166. doi: 10.1016/j.gloenvcha.2009.01.010

Caelli, K., Ray, L., and Mill, J. (2003). ‘Clear as mud’: toward greater clarity in generic qualitative research. Int. J. Qual. Methods 2, 1–13. doi: 10.1177/160940690300200201

Campbell, R., and Wasco, S. M. (2000). Feminist approaches to social science: epistemological and methodological tenets. Am. J. Commun. Psychol. 28, 773–791. doi: 10.1023/A:1005159716099

Caretta, M. A. (2015). Situated knowledge in cross-cultural, cross-language research: a collaborative reflexive analysis of researcher, assistant and participant subjectivities. Qual. Res. 15, 489–505. doi: 10.1177/1468794114543404

Carter, L. (2019). Indigenous Pacific Approaches to Climate Change. Palgrave Studies in Disaster Anthropology. Champaign. IL: Palgrave Pivot.

Chapagain, B. K., Subedi, R., and Paudel, N. S. (2009). Exploring local knowledge of climate change: some reflections. J. For. Livelihood 8, 108–112.

Google Scholar

Clayton, S., Devine-Wright, P., Stern, P. C., Whitmarsh, L., Carrico, A., Steg, L., et al. (2015). Psychological research and global climate change. Nat. Clim. Change 5, 640–646. doi: 10.1038/nclimate2622

Dahal, N. (2005). Perceptions in the Himalayas. Tiempo 56, 19–24.

Devkota, R. P., and Bhattarai, U. (2018). Assessment of climate change impact on floods from a techno-social perspective. J. Flood Risk Manage. 11, S186–S196. doi: 10.1111/jfr3.12192

Dwyer, S. C., and Buckle, J. L. (2009). The space between: on being an insider-outsider in qualitative research. Int. J. Qual. Methods 8, 54–63. doi: 10.1177/160940690900800105

Evans, G. W. (2019). Projected behavioral impacts of global climate change. Annu. Rev. Psychol. 70, 449–474. doi: 10.1146/annurev-psych-010418-103023

Flick, U. (2000). “Episodic interviewing,” in Qualitative Researching With Text, Image and Sound , eds M. W. Bauer and G. Gaskell (London: Sage), 75–92.

Fong, M. (2012). “The nexus of language, communication, and culture,” in Intercultural Communication: A Reader , 13th Edn, eds L. A. Samovar, R. E. Porter, and E. R. McDaniel (Belmont CA: Wadsworth), 83–94.

Gagnon, M., Jacob, J. D., and McCabe, J. (2015). Locating the qualitative interview: reflecting on space and place in nursing research. J. Res. Nurs. 20, 203–215. doi: 10.1177/1744987114536571

Gahatraj, S., Jha, R. K., and Singh, O. P. (2018). Impacts of climate change on rice production and strategies for adaptation in Chitwan, Nepal. J. Agric. Nat. Resour. 1, 114–121. doi: 10.3126/janr.v1i1.22226

Galletta, A. (2013). Mastering the Semi-structured Interview and Beyond: From Research Design to Analysis and Publication . New York, NY: New York University Press.

Gallup (2009). High Risk, Low Awareness of Climate Change in Nepal . Available online at: https://news.gallup.com/poll/124658/high-risk-low-awareness-climate-change-nepal.aspx (accessed November20, 2018).

Gentle, P., Thwaites, R., Race, D., and Alexander, K. (2014). Differential impacts of climate change on communities in the middle hills region of Nepal. Nat. Hazards 74, 815–836. doi: 10.1007/s11069-014-1218-0

Gentle, P., Thwaites, R., Race, D., Alexander, K., and Maraseni, T. (2018). Household and community responses to impacts of climate change in the rural hills of Nepal. Clim. Change . 147, 267–282. doi: 10.1007/s10584-017-2124-8

Gupta, J. (2010). A history of international climate change policy. Wiley Interdiscip. Rev. Clim. Change 1, 636–653. doi: 10.1002/wcc.67

Gurung, S. M. (1989). Human perception of mountain hazards in the Kakani-Kathmandu area: experiences from the middle mountains of Nepal. Mt. Res. Dev. 9, 353–364. doi: 10.2307/3673584

Hagaman, A. K., and Wutich, A. (2017). How many interviews are enough to identify metathemes in multisited and cross-cultural research? Another perspective on Guest, Bunce, and Johnson's (2006) landmark study. Field Methods 29, 23–41. doi: 10.1177/1525822X16640447

Harrison, N. (2018). Using the lens of ‘possible selves’ to explore access to higher education: a new conceptual model for practice, policy, and research. Soc. Sci. 7:209. doi: 10.3390/socsci7100209

Hoover, S. M., Strapp, C. M., Ito, A., Foster, K., and Roth, K. (2018). Teaching qualitative research interviewer skills: a developmental framework for social justice psychological research teams. Qual. Psychol. 5:300. doi: 10.1037/qup0000101

Howe, P. D., Markowitz, E. M., Lee, T. M., Ko, C. Y., and Leiserowitz, A. (2013). Global perceptions of local temperature change. Nat. Clim. Change 3:352. doi: 10.1038/nclimate1768

Hulme, M. (2009). Why We Disagree About Climate Change: Understanding Controversy, Inaction and Opportunity . Cambridge: Cambridge University Press.

Hulme, M. (2012). Telling a different tale: literary, historical and meteorological readings of a Norfolk heatwave. Clim. Change 113, 5–21. doi: 10.1007/s10584-012-0400-1

Hulme, M. (2014). Attributing weather extremes to ‘climate change’: a review. Prog. Phys. Geogr. 38, 499–511. doi: 10.1177/0309133314538644

Jovchelovitch, S., and Bauer, M. W. (2000). “Narrative interviewing,” in Qualitative Researching With Text, Image and Sound , eds M. Bauer and G. Gaskell (London: Sage), 57–74.

Khanal, U., Wilson, C., Lee, B. L., and Hoang, V. N. (2018). Climate change adaptation strategies and food productivity in Nepal: a counterfactual analysis. Clim. Change 148, 575–590. doi: 10.1007/s10584-018-2214-2

King, N., Horrocks, C., and Brooks, J. (2018). Interviews in Qualitative Research . London: Sage.

Larkin, P. J., Dierckx de Casterlé, B., and Schotsmans, P. (2007). Multilingual translation issues in qualitative research: reflections on a metaphorical process. Qual. Health Res. 17, 468–476. doi: 10.1177/1049732307299258

Lee, T. M., Markowitz, E. M., Howe, P. D., Ko, C. Y., and Leiserowitz, A. A. (2015). Predictors of public climate change awareness and risk perception around the world. Nat. Clim. Change 5, 1014–1020. doi: 10.1038/nclimate2728

Leichenko, R., and Silva, J. A. (2014). Climate change and poverty: vulnerability, impacts, and alleviation strategies. Wiley Interdiscip. Rev. Climate Change 5, 539–556. doi: 10.1002/wcc.287

Leiserowitz, A. (2007). Public Perception, Opinion and Understanding of Climate Change - Current Patterns, Trends and Limitations . New York, NY: United Nations Development Programme.

Lorenzoni, I., Nicholson-Cole, I., and Whitmarsh, L. (2007). Barriers perceived to engaging with climate change among the UK public and their policy implications. Glob. Environ. Change 17, 445–459. doi: 10.1016/j.gloenvcha.2007.01.004

Maharjan, K. L., and Joshi, N. P. (2012). Climate Change, Agriculture and Rural Livelihoods in Developing Countries With Reference to Nepal . Hiroshima International Center for Environment Cooperation (HICEC), IDEC, Hiroshima University.

Maharjan, K. L., and Joshi, N. P. (2013). Effect of Climate Variables on Yield of Major Food-Crops in Nepal: A Time-Series Analysis . Available online at: https://mpra.ub.uni-muenchen.de/35379/1/MPRA_paper_35379.pdf 12/11/18 (accessed November 30, 2018).

Maharjan, S. K., Maharjan, K. L., Tiwari, U., and Sen, N. P. (2017). Participatory vulnerability assessment of climate vulnerabilities and impacts in Madi Valley of Chitwan district, Nepal. Cogent Food Agric. 3:1310078. doi: 10.1080/23311932.2017.1310078

Maharjan, S. K., Sigdel, E. R., Sthapit, B. R., and Regmi, B. R. (2011). Tharu community's perception on climate changes and their adaptive initiations to withstand its impacts in Western Terai of Nepal. Int. NGO J. 6, 35–42. doi: 10.5897/NGO10.003

Manandhar, S., Vogt, D. S., Perret, S. R., and Kazama, F. (2011). Adapting cropping systems to climate change in Nepal: a cross-regional study of farmers' perception and practices. Reg. Environ. Change 11, 335–348. doi: 10.1007/s10113-010-0137-1

McIntosh, M. J., and Morse, J. M. (2015). Situating and constructing diversity in semi-structured interviews. Glob. Qual. Nurs. Res. 2, 1–12. doi: 10.1177/2333393615597674

Myers, T. A., Maibach, E. W., Roser-Renouf, C., Akerlof, K., and Leiserowitz, A. A. (2013). The relationship between personal experience and belief in the reality of global warming. Nat. Clim. Chang. 3, 343–348. doi: 10.1038/nclimate1754

Paudel, B., Zhang, Y., Yan, J., Rai, R., and Li, L. (2019). Farmers' perceptions of agricultural land use changes in Nepal and their major drivers. J. Environ. Manage. 235, 432–441. doi: 10.1016/j.jenvman.2019.01.091

Paudel, M. N. (2012). Adaptation mechanisms in agriculture for climate change in Nepal. Hydro Nepal J. Water Energy Environ. 11, 81–85. doi: 10.3126/hn.v11i1.7219

Paudel, M. N. (2016). Consequences of climate change in agriculture and ways to cope up its effect in Nepal. Agron. J. Nepal 4, 25–37. doi: 10.3126/ajn.v4i0.15514

Population Reference Bureau (2002). Population Growth Continues to Hinder Nepal's Economic Progress . Available online at: https://www.prb.org/populationgrowthcontinuestohindernepalseconomicprogress/ (accessed February 11, 2019).

Poudel, D. D., and Duex, T. W. (2017). Vanishing springs in Nepalese mountains: assessment of water sources, farmers' perceptions, and climate change adaptation. Mt. Res. Dev. 37, 35–47. doi: 10.1659/MRD-JOURNAL-D-16-00039.1

Prasain, S. (2018). Climate change adaptation measure on agricultural communities of Dhye in Upper Mustang, Nepal. Clim. Change 148, 279–291. doi: 10.1007/s10584-018-2187-1

Raulet-Croset, N., and Borzeix, A. (2014). Researching spatial practices through commentated walks: “On the move” and “walking with”. J. Org. Ethnogr. 3, 27–42. doi: 10.1108/JOE-11-2012-0046

Rawal, D. S., and Bharti, L. (2015). Identification of crop species vulnerable to projected climate change in three agro-ecological zones of the Koshi river basin, Nepal. J. Hill Agric. 6, 233–243. doi: 10.5958/2230-7338.2015.00050.6

Rogelj, J., Popp, A., Calvin, K. V., Luderer, G., Emmerling, J., Gernaat, D., et al. (2018). Scenarios towards limiting global mean temperature increase below 1.5 C. Nat. Clim. Change 8, 325–334. doi: 10.1038/s41558-018-0091-3

Rudiak-Gould, P. (2012). Promiscuous corroboration and climate change translation: a case study from the Marshall Islands. Glob. Environ. Change 22, 46–54. doi: 10.1016/j.gloenvcha.2011.09.011

Savo, V., Lepofsky, D., Benner, J. P., Kohfeld, K. E., Bailey, J., and Lertzman, K. (2016). Observations of climate change among subsistence-oriented communities around the world. Nat. Clim. Change 6, 462–473. doi: 10.1038/nclimate2958

Shrestha, S., Moore, G. A., and Peel, M. C. (2018). Trends in winter fog events in the Terai region of Nepal. Agric. For. Meteorol. 259, 118–130. doi: 10.1016/j.agrformet.2018.04.018

Sikes, P. (2018). “Working together for critical research ethics,” in Researching Ethically Across Cultures: Issues of Knowledge, Power and Voice , eds A. Robinson-Pant and N. Singal (Abingdon: Routledge), 92–112.

Silverman, D. (2015). Interpreting Qualitative Data . London: Sage.

Smit, B., Burton, I., Klein, R. J., and Wandel, J. (2000). “An anatomy of adaptation to climate change and variability,” in Societal Adaptation to Climate Variability and Change , eds S. M. Kane and G. W. Yohe (Dordrecht: Springer Science + Media), 223–251.

Smit, B., and Wandel, J. (2006). Adaptation, adaptive capacity and vulnerability. Glob. Environ. Change 16, 282–292. doi: 10.1016/j.gloenvcha.2006.03.008

Tanner, T., Acharya, S., and Bahadur, A. (2018). Perceptions of climate change: applying assessments to policy and practice . Available online at: https://www.researchgate.net/profile/Thomas_Tanner2/publication/324246811_Perceptions_of_climate_change_Applying_assessments_to_policy_and_practice/links/5ac71156a6fdcc8bfc7f9038/Perceptions-of-climate-change-Applying-assessments-to-policy-and-practice.pdf (accessed November 16, 2018).

Timmermans, S., and Tavory, I. (2012). Theory construction in qualitative research: from grounded theory to abductive analysis. Sociol. Theory 30, 167–186. doi: 10.1177/0735275112457914

Tiwari, K. R., Awasthi, K. D., Balla, M. K., and Sitaula, B. K. (2010). Local people's perception on climate change, its impact and adaptation practices in Himalaya to Terai regions of Nepal . Available online at: https://digitalrepository.unm.edu/nsc_research/48/ (accessed November 20, 2018).

Trenberth, K. E., Fasullo, J. T., and Shepherd, T. G. (2015). Attribution of climate extreme events. Nat. Clim. Change 5, 725–730. doi: 10.1038/nclimate2657

Uprety, Y., Shrestha, U. B., Rokaya, M. B., Shrestha, S., Chaudhary, R. P., Thakali, A., et al. (2017). Perceptions of climate change by highland communities in the Nepal Himalaya. Clim. Dev. 9, 649–661. doi: 10.1080/17565529.2017.1304886

Van Teijlingen, E., Simkhada, B., Porter, M., Simkhada, P., Pitchforth, E., and Bhatta, P. (2011). Qualitative research and its place in health research in Nepal. Kathmandu Univ. Med. J. 9, 301–305. doi: 10.3126/kumj.v9i4.6350

Watts, N., Amann, M., Ayeb-Karlsson, S., Belesova, K., Bouley, T., Boykoff, M., et al. (2018). The Lancet Countdown on health and climate change: from 25 years of inaction to a global transformation for public health. Lancet 391, 581–630. doi: 10.1016/S0140-6736(17)32464-9

Weber, E. U. (2010). What shapes perceptions of climate change?. Wiley Interdisc. Rev. Clim. Change 1, 332–342. doi: 10.1002/wcc.41

Whitmarsh, L. (2011). Scepticism and uncertainty about climate change: dimensions, determinants and change over time. Glob. Environ. Change 21, 690–700. doi: 10.1016/j.gloenvcha.2011.01.016

Wicks, P. G., and Reason, P. (2009). Initiating action research: challenges and paradoxes of opening communicative space. Action Res. 7, 243–263. doi: 10.1177/1476750309336715

Withana, N. R. P., and Auch, E. (2014). Perceptions of climate change risk to forest ecosystems: a case study of Patale community forestry user group, Nepal. Int. J. Environ. Ecol. Geol. Geophys. Eng. 8, 565–572.

Xiao, C., and Dunlap, R. E. (2007). Validating a comprehensive model of environmental concern cross nationally: a U.S.-Canadian comparison. Soc. Sci. Q. 88, 471–493. doi: 10.1111/j.1540-6237.2007.00467.x

Zinn, A. (2004). Social Contexts and Responses to Risk Network (SCARR). Literature Review: Sociology and Risk. Working Paper . Available online at: http://www.kent.ac.uk/scarr/papers/Sociology%20Literature%20Review%20WP1.04%20Zinn.pdf (accessed November 20, 2018).

Zomer, R. J., Trabucco, A., Metzger, M. J., Wang, M., Oli, K. P., and Xu, J. (2014). Projected climate change impacts on spatial distribution of bioclimatic zones and ecoregions within the Kailash sacred landscape of China, India, Nepal. Clim. Change 125, 445–460. doi: 10.1007/s10584-014-1176-2

Keywords: climate change, environment, perception, community, local, Nepal, culture

Citation: Nash N, Capstick S, Whitmarsh L, Chaudhary I and Manandhar R (2019) Perceptions of Local Environmental Issues and the Relevance of Climate Change in Nepal's Terai: Perspectives From Two Communities. Front. Sociol. 4:60. doi: 10.3389/fsoc.2019.00060

Received: 11 March 2019; Accepted: 22 July 2019; Published: 20 August 2019.

Reviewed by:

Copyright © 2019 Nash, Capstick, Whitmarsh, Chaudhary and Manandhar. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY) . The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

*Correspondence: Nick Nash, nashn1@cardiff.ac.uk

Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • View all journals
  • Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • CORRESPONDENCE
  • 20 August 2024

More studies are needed on the long-term environmental consequences of war

  • Patrick B. Newcombe 0

Princeton University, Princeton, New Jersey, USA.

You can also search for this author in PubMed   Google Scholar

Research by historians, political scientists and environmental scientists is increasingly showing that the environmental effects of war have long-term humanitarian consequences. Conflicts worldwide, including in Burkina Faso, Gaza, Haiti, Mali, Sudan and Ukraine, demand multidisciplinary research to understand and address this global challenge.

Access options

Access Nature and 54 other Nature Portfolio journals

Get Nature+, our best-value online-access subscription

24,99 € / 30 days

cancel any time

Subscribe to this journal

Receive 51 print issues and online access

185,98 € per year

only 3,65 € per issue

Rent or buy this article

Prices vary by article type

Prices may be subject to local taxes which are calculated during checkout

Nature 632 , 739 (2024)

doi: https://doi.org/10.1038/d41586-024-02711-z

Competing Interests

The author declares no competing interests.

Related Articles

research paper on environmental problems

See more letters to the editor

  • Human behaviour
  • Environmental sciences

AI analysed 1,500 policies to cut emissions. These ones worked

AI analysed 1,500 policies to cut emissions. These ones worked

News 23 AUG 24

Can South Korea regain its edge in innovation?

Can South Korea regain its edge in innovation?

Nature Index 21 AUG 24

What will it take to open South Korean research to the world?

What will it take to open South Korean research to the world?

Loss of plasticity in deep continual learning

Loss of plasticity in deep continual learning

Article 21 AUG 24

Are brains rewired for caring during pregnancy? Why the jury’s out

Correspondence 20 AUG 24

How pregnancy transforms the brain to prepare it for parenthood

How pregnancy transforms the brain to prepare it for parenthood

News Feature 31 JUL 24

Effective realization of abatement measures can reduce HFC-23 emissions

Effective realization of abatement measures can reduce HFC-23 emissions

Why record wildfires scorched Canada last year

Why record wildfires scorched Canada last year

Research Highlight 20 AUG 24

How ‘green’ electricity from wood harms the planet — and people

How ‘green’ electricity from wood harms the planet — and people

News Feature 20 AUG 24

Senior Researcher-Experimental Leukemia Modeling, Mullighan Lab

Memphis, Tennessee

St. Jude Children's Research Hospital (St. Jude)

research paper on environmental problems

Assistant or Associate Professor (Research-Educator)

The Center for Molecular Medicine and Genetics in the Wayne State University School of Medicine (http://genetics.wayne.edu/) is expanding its high-...

Detroit, Michigan

Wayne State University

Postdoctoral Fellow – Cancer Immunotherapy

Tampa, Florida

H. Lee Moffitt Cancer Center & Research Institute

research paper on environmental problems

Postdoctoral Associate - Specialist

Houston, Texas (US)

Baylor College of Medicine (BCM)

research paper on environmental problems

Postdoctoral Associate- CAR T Cells, Synthetic Biology

research paper on environmental problems

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Quick links

  • Explore articles by subject
  • Guide to authors
  • Editorial policies

Numbers, Facts and Trends Shaping Your World

Read our research on:

Full Topic List

Regions & Countries

  • Publications
  • Our Methods
  • Short Reads
  • Tools & Resources

Read Our Research On:

  • Gen Z, Millennials Stand Out for Climate Change Activism, Social Media Engagement With Issue
  • 3. Local impact of climate change, environmental problems

Table of Contents

  • 1. Climate engagement and activism
  • 2. Climate, energy and environmental policy
  • Acknowledgments
  • Methodology
  • Appendix: Detailed charts and tables

Chart shows a majority of Americans say climate change is affecting their local community

A majority of Americans say climate change is having at least some impact on their local community, and half say their area has experienced extreme weather over the past year, particularly those living in South Central states such as Texas and Alabama. On a related policy question, a large majority of Americans favor the idea of revising building standards so new construction can better withstand extreme weather events.

At the local level, experience with environmental problems – such as air and water pollution – varies across groups. Black and Hispanic adults are particularly likely to say they experience environmental problems in their local community, as are those with lower family incomes.

And when it comes to climate policy considerations, large majorities of Black and Hispanic adults – across income levels – say it’s very important to ensure that lower-income communities benefit from proposals aimed at reducing the effects of climate change.

More than half of U.S. adults say they have seen at least some local effects of climate change

Overall, 57% of U.S. adults say climate change is affecting their own community either a great deal (17%) or some (40%). Smaller shares say climate change is affecting their community not too much (27%) or not at all (15%).

Most Americans, including a majority of Republicans, say human activity plays at least some role in climate change

Most Americans (77%) say human activity contributes either a great deal (44%) or some (33%) to global climate change. Far fewer (22%) say human activities such as the burning of fossil fuels contribute not too much or not at all to climate change. 

Republicans continue to be less likely to believe that human activity plays at least some part in global climate change. Still, 59% of this group says human activity contributes at least some, while 40% say human activity has not too much of a role or no role in climate change. 

Democrats across generations are in broad agreement that human activity has at least some effect on climate change. Among Republicans, Gen Zers and Millennials are more likely than Gen X and Baby Boomer and older adults to see human activity as playing a role in global climate change. See the Appendix for details. 

The overall share of Americans who say their area is affected a great deal by climate change is down 7 percentage points, from 24% a year ago to 17% today.

Americans’ beliefs about local impact of climate change are more closely linked to their partisanship than to where they live. Perceptions of local climate impact vary modestly across census regions. The regions that are relatively likely to say climate change is impacting their communities, such as New England and the Pacific, tend to be places that lean Democratic in their political affiliation. There are also modest differences by generation in beliefs about its local impact.

A separate question in the survey finds that half of Americans say their local area experienced an extreme weather event in the past 12 months.

A large majority (84%) in the West South Central region say they have experienced extreme weather in the last 12 months. The region was impacted by a severe winter storm in February that led to a power crisis in Texas. In contrast to the overall partisan differences seen on this question, comparable majorities of Republicans and Democrats in the West South Central region report their communities have experienced extreme weather in the past year.

Wide public support for revised building standards to protect against extreme weather

Chart shows most Democrats, a majority of GOP support new building standards aimed at withstanding extreme weather

Climate change is thought to be a key factor in the occurrence of more frequent and intense or extreme weather events. When asked about a federal government proposal to change building standards so that new construction will better withstand extreme weather events, 75% of U.S. adults responded in favor of this proposal, while 23% said it is a bad idea because it could increase costs and cause delays in important projects.

There is near consensus among Democrats and Democratic-leaning independents (90%) that revising building standards so construction better withstands extreme weather is a good idea. A 57% majority of Republicans and GOP leaners agree, although support is considerably higher among moderate and liberal Republicans (71%) than conservative Republicans (50%).

People who report direct experience with extreme weather in the past year are particularly likely to consider this a good idea (81% vs. 69% of those who do not report recent experience with extreme weather).

Black, Hispanic and lower-income adults more likely to report living in areas with big problems when it comes to air pollution, other environmental concerns

Overall, about six-in-ten Americans say they see at least moderate problems where they live when it comes to an excess of garbage (62%) and water pollution in lakes, rivers and streams (60%). About half (52%) say the same about local air pollution, and about four-in-ten say safe drinking water (41%) or a lack of greenspace (39%) are at least moderate problems.

Past research has found that Black, Hispanic and Asian American communities are more likely to be exposed to air pollution and other environmental hazards in their local area.

The Center survey finds Black and Hispanic adults particularly likely to say their local communities are having problems across this set of five environmental issues, and they stand out for the large share who consider these to be “big problems” where they live. About four-in-ten Black (41%) and Hispanic (37%) adults say the amount of garbage, waste and landfills in their community is a big problem. Black and Hispanic adults are also more likely than White adults to report that their community has big problems with air and water pollution, drinking water safety and a lack of greenspace and parks. A majority of Black (57%) and about half of Hispanic adults (53%) consider at least one of these five issues a big problem in their local area.

Lower-income Americans are also more likely to report that their area has big problems with these environmental issues. For example, about three-in-ten lower-income adults say their local community has a big problem with air pollution. About half as many upper-income adults (16%) say the same about their community. Half of those with lower family incomes say their local communities are having a big problem with at least one of these five environmental issues.

Chart shows lower-income Americans more likely to report a range of environmental problems in their communities

The Biden administration has brought a new focus to environmental justice concerns underlying climate and energy policy. Biden has called for $1.4 billion in his recent budget proposal for initiatives aimed at helping communities address racial, ethnic and income inequalities in pollution and other environmental hazards.

As Americans think about proposals to address climate change, Black (68%) and Hispanic adults (55%) stand out for the high shares who say it is very important to them that such proposals help lower-income communities.

More than half of lower-income Americans (54%) say this is very important to them, compared with 36% of upper-income adults.

Middle- and upper-income Black adults (70%) are about as likely as lower-income Black adults (66%) to say this is very important to them, however. Similarly, there are no differences on this question between middle/upper income Hispanic adults and those with lower incomes (54% vs. 57%, respectively).

A majority of Democrats and independents who lean toward the Democratic Party (59%) say it is very important to them that climate change proposals help lower-income communities; far fewer Republicans and Republican leaners (27%) say this.

Older Americans are more likely to say they regularly try to live in ways that help the environment

Chart shows majorities in both major parties try to live in ways that help protect the environment at least some of the time

A large majority of Americans (86%) say they try to live in ways that help protect the environment all the time (22%) or some of the time (64%). Just 14% say they never or rarely make such an effort. These findings are largely unchanged since the question was last asked in October 2019 .

In contrast to views and behaviors related to climate change, Baby Boomer and older adults are more likely than those in younger generations to say they try to live in environmentally conscious ways all the time (29%, vs. 21% in Gen X, 16% of Millennials and 15% in Gen Z).

Chart shows majorities of Americans say they try to limit food and water waste, use fewer plastics to help environment

And, unlike views on many policy issues related to the environment, similar shares of Democrats (88%) and Republicans (84%) say they make an effort to do this at least some of the time.

Majorities of U.S. adults say they take some everyday actions in order to help protect the environment, including reducing their food waste (81%), using fewer plastics that cannot be reused such as plastic bags, straws or cups (72%) or reducing the amount of water they use (67%). More than half of Americans (54%) say they drive less or carpool to help the environment, and 40% say they eat less meat.

Chart shows actions to protect the environment more common among those who try to live in environmentally friendly ways

About one-in-five adults (18%) say they do all five of these activities to help the environment, a similar share to when these questions were last asked in October 2019. On average, Americans do 3.3 of these activities.

People who say they try to be environmentally conscious all the time are much more likely to say they are doing specific things to protect the environment. For instance, a large majority (89%) of people who make an effort to live in ways that help protect the environment all the time say they use fewer single-use plastics such as bags and straws in order to protect the environment. This compares with 35% of those who say they do not or don’t often make an effort to protect the environment.

Sign up for our weekly newsletter

Fresh data delivery Saturday mornings

Sign up for The Briefing

Weekly updates on the world of news & information

  • Baby Boomers
  • Climate, Energy & Environment
  • Generation X
  • Generation Z
  • Generations, Age & Politics
  • Millennials
  • Politics Online
  • Silent Generation
  • Social Media & the News

Majority of Americans support more nuclear power in the country

Americans’ extreme weather policy views and personal experiences, u.s. adults under 30 have different foreign policy priorities than older adults, about 3 in 10 americans would seriously consider buying an electric vehicle, how americans view national, local and personal energy choices, most popular, report materials.

  • American Trends Panel Wave 89

901 E St. NW, Suite 300 Washington, DC 20004 USA (+1) 202-419-4300 | Main (+1) 202-857-8562 | Fax (+1) 202-419-4372 |  Media Inquiries

Research Topics

  • Email Newsletters

ABOUT PEW RESEARCH CENTER  Pew Research Center is a nonpartisan fact tank that informs the public about the issues, attitudes and trends shaping the world. It conducts public opinion polling, demographic research, media content analysis and other empirical social science research. Pew Research Center does not take policy positions. It is a subsidiary of  The Pew Charitable Trusts .

© 2024 Pew Research Center

share this!

August 20, 2024

This article has been reviewed according to Science X's editorial process and policies . Editors have highlighted the following attributes while ensuring the content's credibility:

fact-checked

trusted source

written by researcher(s)

Humans can work with nature to solve big environmental problems—but there's no quick fix, researchers say

by Rachel Standish and Tina Parkhurst, The Conversation

Humans can work with nature to solve big environmental problems—but there's no quick fix

"Nature-based solutions" are gaining momentum in environmental policy, including in Australia. They involve working with nature to protect, restore or manage ecosystems in a way that benefits both people and the environment.

This might include restoring coastal mangroves to protect a community from coastal erosion , or replanting forests to store carbon, provide cleaner air, and create habitat for wildlife.

But such solutions must go the distance, if their full potential is to be realized. In particular, they must be able to withstand short-term disturbances such as fire or drought, as well as longer-term changes such as global warming.

How do we ensure their resilience? Our review of nature-based solutions around the world set out to answer this question.

We found biological diversity —at the level of genes, species, communities and whole ecosystems —is key to creating nature-based solutions that last. In contrast, quick-fix solutions, such as planting a single species of tree, are less likely to work in the long run.

These findings are crucial for Australia, as the federal government establishes markets for nature repair and informing biodiversity policies.

Biodiversity is vital

Biological diversity refers to richness at every level—from the genetic diversity of individual plants, animals and fungi, to the range of species, and diversity within communities, ecosystems and landscapes.

Diverse ecosystems are more resilient. That's because different species in an ecosystem vary in their responses to change.

For example , some plant species complete their life cycle before the drought season. Other plants tolerate drought by adjusting their metabolism. A third group avoids drought by shutting down, including shedding old leaves and closing their stomata.

This means even when some species are stressed or missing altogether, an ecosystem can keep ticking along.

The same is true for planted forests . Diverse planted forests are more resilient to fires, pests and diseases compared with low diversity projects. So they're more likely to capture and store carbon, helping tackle climate change.

So if we want nature-based solutions to last, biodiversity must be at the core.

What we did

Our review involved analyzing 78 research papers published internationally and in Australia over the past 20 years. We wanted to assess how ecological resilience was addressed in nature-based solutions.

A subset of papers described nature-based solutions in urban, agricultural and forested landscapes. Many focused on reducing impacts of climate change in cities. Then we considered key papers on ecological resilience and how to apply this knowledge to nature-based solutions.

So what did we find?

Most projects did not consider how resilience came about. This was true for resilience within species and populations, such as ensuring genetic diversity. It also applied at the landscape scale, such as providing connectivity between animal populations to prevent inbreeding.

The exception was afforestation projects—planting forests in degraded landscapes. In this domain, there is increasing recognition that species diversity is needed to create resilient ecosystems.

Researchers have, however, identified ways to make ecosystems more resilient—for example by restoring degraded land adjacent to remnant vegetation or controlling invasive predators that eat native wildlife.

The knowledge exists. The key now is to put these resilience ideas into practice.

Which interventions can help?

Our review confirms the best nature-based solutions mimic nature. So, interventions to conserve existing ecosystems are ideal. Once an ecosystem is destroyed, restoring diversity is difficult.

Controlling invasive species such as cane toads can also help by protecting pockets of native species from these threats.

Measures can also be carried out across entire landscapes. For example, the Gondwana Link project in southwestern Australia set out to revegetate abandoned farmland and reconnect patches of bushland for native wildlife.

Climate change is prompting land managers to rethink their "local is best" approach to sourcing seed and seedlings. Plants that are better adapted to heat and drought may be preferable. However, this approach requires further testing.

And returning plants with different drought strategies could help restore landscapes scorched by wildfire .

Looking ahead

Quick-fix, low-diversity solutions are not likely to recover after disturbances such as fire and drought. So while these projects are nature-based, the solution could be fleeting.

In Australia, the Nature Repair Market will incentivize nature-based solutions. First Nations people, conservation groups and other landholders will be rewarded for actions that deliver improved biodiversity outcomes. This includes returning vegetation along rivers and controlling invasive weeds and pests.

Our findings suggest nature repair and biodiversity markets should support actions that provide long-term benefits rather than quick wins. This could involve providing clear guidelines to landholders and ensuring their activities are accredited. It may also involve monitoring the outcomes of projects and rewarding success.

And these solutions take time to create. Governments should invest in research to develop projects that deliver long-lasting benefits. This includes understanding how to motivate people to drive successful outcomes.

Restoring biologically diverse landscapes may take time and effort. But for the sake of both people and the natural world, we must get it right.

Provided by The Conversation

Explore further

Feedback to editors

research paper on environmental problems

Saturday Citations: Tarantulas and their homies; how mosquitoes find you; black holes not mysterious at all

15 hours ago

research paper on environmental problems

Test of a prototype quantum internet runs under New York City for half a month

research paper on environmental problems

Researchers discover dual epicenters in New Year's Day Noto earthquake

Aug 23, 2024

research paper on environmental problems

Carbon emissions from forest soil will likely grow with rising temperatures

research paper on environmental problems

Unconventional interface superconductor could benefit quantum computing

research paper on environmental problems

Coaxing purple bacteria into becoming bioplastic factories

research paper on environmental problems

NASA's DART impact permanently changed the shape and orbit of asteroid moon, new study shows

research paper on environmental problems

New varactor enhances quantum dot device measurements at millikelvin temperatures

research paper on environmental problems

Aoudad and bighorn sheep share respiratory pathogens, research team discovers

research paper on environmental problems

Ecosystems study finds the higher the environmental stress, the lower the resistance to global change

Relevant physicsforums posts, therapeutic interfering particle.

5 hours ago

The predictive brain (Stimulus-Specific Error Prediction Neurons)

10 hours ago

Homo Naledi: 5 Yr Update & New Findings (2021)

Aug 21, 2024

Hiking Illness Danger -- Rhabdomyolysis

Aug 18, 2024

Toxic Chemicals Found on old books

Strategies and tips for first responders interacting with autism spectrum disorder patients.

Aug 16, 2024

More from Biology and Medical

Related Stories

research paper on environmental problems

Climate change, nature loss are our biggest environmental problems. Why isn't the market tackling them together?

Jan 16, 2024

research paper on environmental problems

Only 10% of Australia's native plants can be bought as seed: How to make plantings more diverse

Jun 10, 2024

research paper on environmental problems

Nature-based solutions play key role in mitigating climate change, suggest researchers

Feb 19, 2024

research paper on environmental problems

New study reveals overlooked driver of biodiversity across landscapes: Conditions during plant establishment

Nov 2, 2023

research paper on environmental problems

Tree species diversity enhances forest drought resistance

Sep 22, 2022

research paper on environmental problems

Long-term study shows tree species diversity increases likelihood of planting success

May 23, 2023

Recommended for you

research paper on environmental problems

Bonobo evidence suggests ancient origin of the 'common enemy effect'

research paper on environmental problems

Colorful traits in primates ease tensions between groups, data suggest

research paper on environmental problems

Creature the size of a dust grain found hiding in California's Mono Lake

Aug 22, 2024

research paper on environmental problems

Life after (feigned) death: Study finds context-dependent behavior in antlions after 'playing possum'

research paper on environmental problems

Fisheries research overestimates global fish stocks, say experts

Let us know if there is a problem with our content.

Use this form if you have come across a typo, inaccuracy or would like to send an edit request for the content on this page. For general inquiries, please use our contact form . For general feedback, use the public comments section below (please adhere to guidelines ).

Please select the most appropriate category to facilitate processing of your request

Thank you for taking time to provide your feedback to the editors.

Your feedback is important to us. However, we do not guarantee individual replies due to the high volume of messages.

E-mail the story

Your email address is used only to let the recipient know who sent the email. Neither your address nor the recipient's address will be used for any other purpose. The information you enter will appear in your e-mail message and is not retained by Phys.org in any form.

Newsletter sign up

Get weekly and/or daily updates delivered to your inbox. You can unsubscribe at any time and we'll never share your details to third parties.

More information Privacy policy

Donate and enjoy an ad-free experience

We keep our content available to everyone. Consider supporting Science X's mission by getting a premium account.

E-mail newsletter

Environmental Issues Research Paper

Academic Writing Service

This sample environmental issues research paper features: 6700 words (approx. 22 pages), an outline, and a bibliography with 39 sources. Browse other research paper examples for more inspiration. If you need a thorough research paper written according to all the academic standards, you can always turn to our experienced writers for help. This is how your paper can get an A! Feel free to contact our writing service for professional assistance. We offer high-quality assignments for reasonable rates.

Introduction

Cultural beliefs and the environment, social construction and the environment, social construction and social movements, political economy and the environment, environmental issues: method and application, risk perception and environmental health, mobilization around toxic waste sites: love canal.

  • Bibliography

More Environment Research Papers:

  • Environmental Bioethics Research Paper
  • Environmental Crime Research Paper
  • Environmental Economics Research Paper
  • Environmental Psychology Research Paper
  • Environmental Regulation Research Paper
  • Environmental Regulations Compliance Research Paper
  • Environmental Rights Research Paper
  • International Environmental Politics Research Paper
  • Population and the Environment Research Paper
  • Technology and the Environment Research Paper

Environmental issues can be discussed within a number of different contexts. For anthropology and sociology, culture and society become important factors in understanding environmental issues. By incorporating a perspective that includes environmental history, aspects of environmental change, dialogue and culture, and future concerns, a more complete understanding of the relationship between sociocultural actions and the natural environment can be developed. In an effort to understand the nature of environmental problems, one must develop an understanding of the cultural paradigms that guide human behavior and interaction with the natural environment. Many perspectives seek to explain this relationship. Social scientists look toward dialogue and cultural perspectives to trace the history of environmental concern.

Academic Writing, Editing, Proofreading, And Problem Solving Services

Get 10% off with 24start discount code.

Historically, humans have understood their role to be one of dominion over nature. This is explained in numerous classic works and referenced in many religious and spiritual texts as well (Bell, 2008; Dunlap & Mertig, 1992). Cultural paradigms exist that serve to guide our interactions with the environment. Most stem from the anthropocentric belief that the world is centered around people and that human society has the right to maintain dominion over nature. Structural beliefs provide the foundation of these understandings.

The belief that a free market system provides the greatest good for the greatest number of people leads us to place economic decision-making processes in private hands. Frequently, private decisions have public consequences, but these public consequences are not accounted for in production costs or covered by market costs. Instead, the costs are passed on to consumers in the form of taxes and higher base prices for goods and services. Esteemed environmentalists Al Gore Jr. and Robert Kennedy Jr. have argued that if the external costs of production were assumed by manufacturers, then the ultimate benefit would be a system that accounted for waste created in the production process. This is evident in their research on global warming. Coal-fired power plants are promoted as one of the cheapest forms of creating energy. This is misleading, because the health effects of pollution caused by coal are not included in the costs of production. Others argue that those costs would have to be passed on to the consumer. However, they are passed on now in the way of pollution and medical expenses for illnesses associated with environmental contaminants. Coal is one of the biggest contributors to greenhouse gases, thus leading to the overall societal costs of global warming.

Another cultural belief is that the natural world is inexhaustible. Extraction of natural resources happens at an incredible rate without a consideration to limits. Society’s constant dependence on nonrenewable energy forces mining and the refining of coal and oil to keep up with these demands. Consumer goods are deliberately planned to become obsolete within a relatively short time, and consumers are pressured to buy replacements. This process has been conceptualized in research focused on the treadmill of production. Production and utility processes, using natural resources, dominate the modes of production. The reliance on the treadmill model provides perpetual extraction and production, increasing the fragility of the natural environment.

Another cultural value resides in a lasting faith in technology. Culturally, we believe that technology can meet any challenge. Humans are seen as ingenious creatures able to devise solutions for any problem. However, technology itself is not sufficiently controlled and can create more problems that contribute to environmental degradation. This can lead to a situation known as culture lag, used here to describe a situation in which technology has outpaced the cultural ability to respond to the consequences of using a given technology.

The philosophy of the growth ethic argues that growth equals progress. Successful cultures are often defined by their levels of progress. Urban sprawl exemplifies the connection between progress and environmental destruction. Urban ecologists argue urban sprawl follows the concentric circle urban planning mode of the early 20th century. Residents were encouraged to develop space for residential purposes further away from city centers. This was culturally promoted as prime real estate, and individuals continued to purchase land as a showing of class standing. Urban sprawl results in the loss of green and open space, increased use of natural resources, and more vehicle miles traveled as commuting distance continues to increase.

Materialism is a cultural value that also contributes to how environmental problems emerge. Americans tend to measure success in terms of the consumption of material things. Globally, the most valued nation is one that can command and use the largest fraction of the world’s resources. Currently, the United States supports 5% of the world’s population and uses 25% of the world’s natural resources. This is evidence that the cultural emphasis on the consumption of material goods is in direct correlation with natural resource use.

Two final cultural values that impact environmental practices are individualism and an anthropocentric worldview. Cultures that emphasize individual rights and personal achievements tend to have a greater environmental impact. We place benefits to the self over what is best for the collective. Subsequently, the anthropocentric worldview is centered around human beings, thus inferring that human begins are superior to other beings and have natural rights to use the environment to ensure the progress of human beings as a species.

Subsequently, these cultural beliefs form the principles that overwhelmingly guide cultural interactions with nature. Theoretically, they serve as paradigms that explain the emergence of environmental issues. The following section provides specific theoretical underpinnings of environmental issues.

Theory and the Environment

Theory addressing environmental issues has been situated in the social constructionist and political economy approaches. Within these approaches, attention has been paid to developments of subfields in social science research, such as social movements and the environment, environmental health, and environmental justice.

Social constructionists focus on the construction of social problems and how this allows individuals to assign meaning and give importance to the social world. Sarbin and Kitsuse argued that “things are not given in the world, but constructed and negotiated by humans to make sense of the world” (1994, p. 3). When interests are at stake, claims are made around an activity in order to define the interests as problems. The process of claims making is more important than the task of assessing whether the claims are true (Hannigan, 1995).

Hannigan provides a three-step process for the construction of environmental problems: assembling, presenting, and contesting. He argues that each step develops the claimsmaking activities of environmental activists and antagonists. Environmental problems are different from other social problems, because claims are often based on physical, chemical, or biological scientific evidence (Hannigan, 1995). In nearly all cases of environmental problems, even though such problems are based on scientific evidence, the burden of proof falls on the claims-makers, the environmental actors.

When a claim about an environmental problem is presented, state and corporate actors emerge most often to challenge the validity of these problems. Although these actors are willing to construct the issue as a “problem,” support to alleviate the problem is often lacking. If it supports the alleviation of the problem, most probably through funding remedial efforts or research, the state or corporation is seen as taking responsibility for the problem. If the state is seen as responsible, its perceived legitimacy decreases, which may lead to decreased trust. On the other hand, if a problem is not acknowledged, then trust in government may also decrease, because the perception arises that the interests of the state are not the best for the people.

The power of individuals in roles and positions to define these claims is ultimately what allows problems to be defined as problems. Claims may be made by others not in a position of power, but they are often not seen as valid because of the lack of power associated with the role. Different claims of environmental problems then lead to different definitions of the problems.

Definitions of problems are framed to illustrate specific viewpoints of what the problem is. Goffman used the term frame in order to explain interpretations of occurrences. Frames can serve as explanations or guideposts to individual or collective action (Snow & Benford, 1988). Snow and Benford describe framing as an activity performed by social movements to express their viewpoints and “to assign meaning to and interpret relevant events and conditions in ways that are intended to mobilize potential adherents and constituents—to garner bystander support and demobilize antagonists” (p. 198).

By framing events in certain ways that assign meaning to them, actors can attempt to mobilize support and delegitimize opposing viewpoints. Because different frames may emerge surrounding the same problem, individuals may choose to adopt one or the other on the basis of the reliability of the frames. One factor in determining reliability is trust in the actors who present the frame. Constituents may mobilize around one frame because trust in that explanation and the organization that presents it is high (Robinson, 2009). This impacts how individuals interpret the seriousness of environmental problems and subsequently whether issues will be acted on and in what manner.

The framing process can serve to mobilize constituents for or against a particular cause. Mobilization against frames that are presented by actors emerges when the audience of the frame has low trust in the source of the frame. Social movement literature has acknowledged the emergence of mobilization over environmental issues where lack of trust is present. Examples include institutional recreancy, lack of trust in government agencies and officials, and the combination of the two (Brown & Mikkelsen, 1990; Cable & Cable, 1997; Freudenburg, 1993; Gaventa, 1980; Gibbs, 1982).

Charles Tilly provides a model for mobilization that bridges some of the ideological views of frame analysis with collective action and resource mobilization theory. Tilly’s (1978) definition of mobilization is “a process by which a group goes from a passive collection of individuals to an active participant in public life” (p. 69). A further extreme of this model is resource mobilization theory, which gives even less importance to ideological factors and, instead, emphasizes the need for available resources. The combination of ideologies, resources, and the power of frame presentation contribute to mobilization. Using this analytical framework, the emergence of environmental problems and mobilization around these problems can be better understood.

Environmental problems in communities provide a setting to further explore this connection. Community organizing around local problems has a long history in the United States. Many forms of community organizing exist. These have included writing and literacy circle newsletters in the late 19th and early 20th centuries, Saul Alinsky’s model of radical politics to create mass organizations to seize power and give it to the people (1971), and neighborhood block clubs. The goals to spread awareness, ensure social justice, and understand that city hall can be fought vary in scope and magnitude but have often proved to be effective models for organizing.

Citizen action in response to toxic waste at Love Canal has emerged as the premier example of community organizing over environmental issues. The story of neighborhood organizing and the quest for a clean, healthy environment is acknowledged in most major studies on environmental issues. The specifics of this case follow in a later section where the application of environmental issues is discussed.

Theories of political economy of environmental issues focus on the development of political and economic practices and policies that contribute to environmental problems. Primarily, the focus has been on the creation of the capitalist mode of production that leads to overwhelming environmental destruction. Furthermore, the development of capitalism promotes a political environment that is friendly to more profitable, but less environmentally friendly, practices.

In addition to physical environmental realities that production processes cause, issues of health and economic injustice exist. Bryant and Mohai (1992) asked whether a safe environment is a civil right. They argue that people of color see environmental degradation interrelated with economic and political justice. This is the fundamental idea behind environmental justice in both action and theory. Another issue in environmental justice arises because people of color and lower income are less likely to have access to health insurance; thus, they become more ill if exposed to environmental hazards without means of treatment. Therefore, these populations share more of the negative environmental burden and have fewer resources to resolve the given problems.

The connection between health and economic justice is not a new relationship. Since World War II, there has been an increase in the development of the petrochemical industry. Coinciding with an increased demand for synthetic chemicals was an increased demand for disposal sites for waste byproducts of these chemicals. Many disposal sites were created in vacant plots of land, without the regulated disposal standards in place today. Expensive land used for the disposal sites of the 1940s and 1950s became the residential suburban developments of the 1960s, 1970s, and 1980s. With the post–World War II increase in population, many families were moving into suburban neighborhoods. Families felt safe from the problems of the cities, but they were not aware that many residential properties were built near the abandoned chemical waste sites of prior decades.

The problems of environmental contamination were first addressed publicly in Rachel Carson’s Silent Spring (1962). Her warning of chemical contaminants silencing biological life was not heeded at the time her book was published. These issues were not addressed until the 1970s with the first Earth Day in 1970, followed by the passing of numerous pieces of environmental protection legislation and the creation of the Environmental Protection Agency (EPA). Through this period of uncertainty, unclear scientific findings overwhelmed policymakers and the public, leading to confusion about how to develop environmental policies and actions.

Environmental problems have manifested most directly in the form of pollution. Evidence of environmental destruction is seen in the form of air, water, and land pollution that has a direct impact on the health of the human population. One of the most direct links between pollution and negative health effects has been identified since the creation of the petrochemical industry in the 1940s. Since this time, we have seen more cases of cancer and respiratory illness in the human population. The rate remains high even when controlling for mitigating factors, such as the effects of advanced medical technology in treating these illnesses, and lifestyle factors, such as diet and smoking. This case was made with the infamous discovery of toxic waste at Love Canal, New York, in 1978.

Literature in this area addresses the possible effects of exposure to toxins on one’s health. However, few studies have provided irrefutable evidence supporting the research hypothesis (association exists) or the null hypothesis (no association exists). Scientists know that chemicals can have adverse effects on the human condition when ingested, but they argue that some indirect exposures through air, soil, water, or residential habitation in proximity to such toxins have not provided similar consequences. The basic disagreement emerges in how one views risk, either through the precautionary principle or through risk assessment and evaluation. Proponents of the precautionary principle argue that if the chance of danger is present, then precaution should be used to avoid exposure. Risk assessment would argue the opposite—that the risk must be known before action is taken to avoid exposure. The difficulty is that science has not provided irrefutable evidence on the dangers of many chemical substances; therefore action for their removal from products and the environment has been slow. Recently, Devra Davis took on this phenomenon in The Secret History of the War on Cancer (2008). She outlined the lack of scientific responsibility in reporting findings connecting cancer and chemical exposure.

Most reports have not described exposures accurately, or they have failed to completely identify a causal factor (National Research Council, 1991). The Committee on Environmental Epidemiology was formed to assess the progress on hazardous waste assessment since the creation of Superfund and the Agency for Toxic Substance and Disease Registry. The committee concluded that no conclusive reports could be used to base policy on, because there are no measures in place to accurately depict exposure assessments. Their conclusions continue: There exists no comprehensive inventory of waste sites, no site discovery program, no minimum data set on human exposures, and no policy for immediate action if exposure exists (National Research Council, 1991). The report indicates that “the nation is not adequately identifying, assessing, or ranking hazardous-waste site exposures and their potential effects on human health” (p. 21).

Environmental toxins have long been thought to be causally related to the incidence of disease. Air pollution, specifically with carbon dioxide and sulfur dioxide, has been studied in association with asthma and pulmonary disorders (Carnow, Lepper, Shekelle, & Stamler, 1969). Water pollution, particularly with trichloroethylene and tetrachloroethylene, sparked a concern about childhood and adult leukemia in Woburn, Massachusetts (Brown & Mikkelsen, 1990). Similarly, numerous studies have been conducted that investigate the exposure-ailment connection (Landrigan, 1990; Neutra, Lipscomb, Satin, & Shusterman, 1991; Paigen, Goldman, Mougnant, Highland, & Steegman, 1987). These studies use descriptive and case-control methods and field investigations consisting of surveys and physical examinations, resulting in quantitative analyses in order to test hypotheses.

Descriptive studies portray disease patterns in populations according to person, place, and time, and they include time-series analyses (National Research Council, 1991). For example, a study performed by the National Cancer Institute used maps of cancer incidences and toxic waste sites, concluding that the high incidence of bladder cancer in northwestern Illinois counties was significant and leading to the implementation of an incidence study using survey methods (National Research Council, 1991).

A cohort study was employed with North Carolina residents who consumed raw polluted river water contaminated by an industrial site from 1947 to 1976. Residents’ rates of all forms of cancer were more than twice those expected in the general population (National Research Council, 1991). Once exposure ceased, rates returned to the expected level, adjusting for latency.

The epidemiologic case-control study carried out in Woburn, Massachusetts, yielded an association between leukemia and drinking from contaminated wells. The EPA could not pinpoint the source of contamination; therefore, it could not infer conclusively that the cases of leukemia were due to the proximity of a hazardous waste site (Lagakos, Wessen, & Lelen, 1986).

Griffith, Duncan, Riggan, and Pellom (1989) analyzed EPA and cancer mortality data from 13 U.S. sites where there were major incidences of cancer between 1970 and 1979. They found evidence that contaminated ground water was used for human consumption at 593 waste sites in 339 U.S. counties in 49 states. Significant associations were found between several cancers and exposure to contaminated water in white males; these included cancers of the lung, bladder, esophagus, stomach, large intestine, and rectum (Griffith et al., 1989). Higher incidences of cancers of the lung, bladder, breast, stomach, large intestine, and rectum were found in white females in these counties (Griffith et al., 1989), when compared with females in counties that did not have hazardous waste sites. However, this study has been criticized based on its use of populationbased incidences of cancer rather than individual-level estimates. Researchers inferred that proximity to hazardous waste sites caused cancer.

Wong, Morgan, Whorton, Gordon, and Kheifets (1989) performed an ecologic and case-control analysis to evaluate whether there was an association between groundwater contamination with dibromochloropropane (DBCP) and mortality from gastric cancer and leukemia. The only positive association that was found was in farm workers. No relationship was found for gastric cancer or leukemia with DBCP contamination of drinking water.

Neutra et al. (1991) found that individuals living near toxic waste sites had one or more bothersome symptoms that those living in control areas did not have. However, rates of cancer and birth defects were not found to be statistically significantly different for these individuals than for those in the control neighborhoods. Symptoms such as worrying, depression, and nervousness were more likely to be the result of knowledge of the site and its contaminants than the result of chemical exposure. Although some practitioners argue that residents near these sites do show higher incidences of asthma and psychological disturbances than individuals in control groups, the findings remain highly controversial (Neutra et al., 1991).

For the most part, these studies consist of survey and field investigation methodologies, relying on self-report methods. One problem with explaining associations that rely on self-report methods is that if residents want to be relocated or have other agendas, then the degree to which symptoms are reported may increase. Many residents felt that this was what some homeowners were hoping for at Love Canal. This remains one of the most critical problems with state and federal agency studies that seek to provide evidence of community risk.

With the increase in studies in this area, the public has been partially reassured by having the knowledge that at least concerns are being recognized. Specifically, cancer rates are still high, but the fear of human-made chemicals has largely been dispelled. Most recently, the organic food movement has been gaining legitimacy. Yet, many still doubt the health benefits behind this movement. Studies concerning environmental racism have been more prevalent, focusing on the incidence of lower-income, nonwhite families living near toxic waste sites. This focus has taken attention away from specific health problems. Instead, the focus has been on issues of political economy and equity. This is not a criticism of environmental justice but rather a call for the convergence of natural science and sociology in order to address both issues. Other variables to be considered in these studies may include racial composition of counties, social class of counties, concentration of low-income occupations in counties, new housing starts in counties, and the percentage of welfare recipients per county.

The uncertainty of science had created cross-discipline dialogue. Social scientists have addressed environmental issues in studies of risk assessment, disaster relief (both natural and technological), toxic exposure, and other datadriven areas. Because of the risk of chemical exposure due to toxic waste, landfills emerged as one of the most imminent public health threats with the discovery of Love Canal. However, even in cases where studies to show an association between illness and exposure to toxic chemicals have been inconclusive, the message has been that these chemicals cause cancer and needed to be eradicated.

An important role of science is to inform the public of findings, usually through the media. Epidemiologic studies deal with human populations and are often questioned based on the legitimacy of the data and the willingness of the agency or corporation funding the research to share findings with the public. These studies are also usually based on relatively small populations and a small number of events; this results in a lack of significant findings, because sample sizes are too small to generate statistically reliable conclusions. Researchers are asked to report conclusions to various interest groups that may have a stake in the research problem. The pressure of the public arena and media, with emerging concerns and consequences for public health and the environment, has led to a decrease in the willingness to share data and be criticized if the data do not fit the public agenda. Politics and public perception surpass what science is able to provide. Science’s inability to prove negatives has led to public policy that tries to control what cannot be established. This uncertainty shapes policy to err on the side of protection; yet in many communities the risks are endured regardless.

Findings often snowball into hard line conclusions and the perception of a problem when one may not exist, or vice versa. Risk perception and the realization of risks are two different things. Risk perception may encompass what one believes might occur or an understanding based on secondary information. Risk realization occurs when one is physically affected by the agent or situation and a decision to act is based on that encounter. The problem arises in this discrepancy. Perception is what people perceive to be happening. With different information from different scientific experts, the public is left to decide on their own who or what is right, based on the health and well-being of themselves and their families.

Freudenburg (1993) discussed the concept of risk and recreancy in public decision making. He argues that an increase in institutional responsibility for risk management has created a system where responsibilities are often overlooked. This concept proposes increased frequency in institutional decision making in risk analysis. Freudenburg (1993) coined the term recreancy to identify the institutional failure to follow through on a duty or responsibility or broadly expected obligations to the collective. Questions are now raised by individuals deciphering scientific studies for themselves, but they now question the role of institutional actors. Without correlational data from an alternative institutional source that they trust, citizens do not know where to turn for clear answers about data regarding environmental toxins.

Community-based studies by community organizers have emerged in an attempt to address the failure of institutions to provide real, understandable answers regarding human health and exposure rates. Specifically, recent literature calls for more involvement of the scientific community in the decision-making process. A resurgence of popular epidemiology, since Lois Gibbs’s attempt in 1978– 1979, has found individuals using lay methods to determine association. Even if they don’t result in strong, scientific evidence, community-based studies at least provide the groundwork and show a need for more in-depth studies. Brown and Mikkelsen’s 1990 study is a strong example of this method. The question of whether there was a connection between childhood leukemia and known contaminated well water divided the community, but it forced epidemiologic studies.

Coinciding with these revelations, other studies were being conducted that attempted to link other contaminated sites with adverse health effects. As Gots (1993) stated, most were laboratory studies in simulated environments. Examples of human studies existed only in the sociological and epidemiological literature (Brown & Mikkelsen, 1990; Gibbs, 1982; Landrigan, 1990; Neutra et al., 1991). Incidences of chemical scares were also prevalent. Headlines concerning the dioxin scare at Times Beach, Missouri; contamination of apple crops with the synthetic growth regulator Alar; and use of Agent Orange created the fear that human-made chemicals cause disease. Evidence existed that these specific chemicals may cause health problems in humans, but data on the incidence of illness relative to exposure and on synergistic effects of these chemicals were missing. Furthermore, there was even less information available about other potential threats to health, such as airborne and waterborne contaminants, environmental sensitivity disorders, and living in proximity to hazardous waste sites. To establish a causal relationship between exposure and chemicals, obtaining valid measures and estimates for exposure is essential.

Environmental Movements

Contaminated Communities; The Challenge of Social Control; Environmental Problems as Conflicts of Interests; Disasters, Collective Behavior, and Social Organization; Love Canal: Science, Politics, People, and Power; and Powerlessness are just a few of the book titles that describe the scope and emergence of the mobilization surrounding environmental problems. Since the publication of Silent Spring, the struggle to define, understand, and resolve environmental problems has inundated environmental literature as well as the agendas of environmental organizations at both the national and local levels.

The environmental movement in the United States can be traced back to the early conservationists at the turn of the 20th century, whose focus was on control of natural resources for technological and societal use. Accompanying this was a movement toward the preservation of the natural environment simply for nature’s sake and separate from any use and/or value that human society had placed upon it.

The contemporary environmental movement embraced both of these traditions while focusing on building a political alliance to ensure the passage of legislation that would protect both nature and human health. As evidenced by the multitude of legislative victories the environmental movement claimed during the 1970s, the environmental movement was gaining prominence as one of the most successful efforts of social movement organizers.

Politically, momentum began to shift back toward the wise-use movement throughout the 1980s. Environmental problems were framed in opposition to capitalist goals. Politicians took an either/or stance: jobs or the environment. With one’s economic livelihood seemingly at stake, it is no wonder that concern for the environment was diminished in the public agenda. The environmental health movement is arguably one area that continued to keep environmental issues in the public’s consciousness. One of the classic and influential cases in environmental organizing, Love Canal, illustrates the interconnectedness of politics, science, and the environment.

To understand the factors contributing to the emergence, awareness, and mobilization around environmental problems, the scope and focus of the problem must be considered. This analysis focuses on the emergence of and mobilization around toxic waste sites found in residential communities. Literature addressing toxic waste sites in communities place Love Canal, New York, as the first community to encounter such a problem that received national media attention. Although community protests were occurring around the toxics issue as early as 1970, no other site received the same degree of national media attention (Szasz, 1994).

In 1978, Love Canal was declared a federal disaster area, but the final homeowner evacuation was voluntary, not mandatory, even though the state had said a health emergency may exist. Given the possibility of ill-health effects, residents were given the choice about whether to stay or move. Because of the lack of strong correlational evidence, public health officials were not able to substantiate a link between exposure to chemicals and disease (Robinson, 2002).

The questionable contaminated area was evacuated and became known as the Emergency Declaration Area (EDA). It was divided into seven sampling areas. Two studies were performed to assess the habitability and safety of the area. The first study was completed in 1982 by the New York State Department of Health (DOH), the EPA, and the U.S. Department of Health and Human Services. Problems arose about the study’s conclusion, which was that the EDA was as habitable as comparable control areas. The Congressional Office of Technology Assessment found that the study lacked information to determine whether unsafe levels of contamination existed and that it did not make clear what next steps should be taken. Thereafter, DOH and EPA conducted a second study on habitability; it was released in 1988. Habitability and safety have been studied in regard to numerous hazardous waste sites, but actual rates of illness have not been linked to exposure to toxic substances from nearby chemical waste sites.

The Superfund Act, passed in 1980, was written specifically in response to the known hazardous waste site at Love Canal. Policymakers recognized that industry used land-based disposal methods, that industrial sites were contaminated, and that an increase in clean air and water standards led to a decrease in land-based regulated disposal (Barnett, 1994). The problem was that there was neither an informed way of counting or tracking these sites, nor evidence of an adverse ecosystem and human effects (Barnett, 1994).

Since Love Canal, no other neighborhood has received the same degree of attention, although many have encountered toxic waste contaminants in their communities (Brown & Mikkelsen, 1990; Bryant & Mohai, 1992; Cable, Walsh, & Warland, 1988). No conclusive, significant correlation between chemicals and cancer has been found at Love Canal or at the other identified exposure sites. Nor has any truly verifiable evidence been found that exposure to, and living near, any other toxic waste site causes disease, though disorders have been loosely associated with chemical exposure, such as asthma, respiratory disease, nerve damage, miscarriages, and cancer.

People living near these sites must often decide on how much they want to expose themselves to risk. Once the presence of a waste site is known, they must decide, without data to guide their decisions, whether to stay in their homes or leave. This has historically interfered with the availability and collection of valid data. When a study is conducted, residents request to be informed of the results and progress of the study. Because most epidemiological studies require longitudinal or cohort analysis in order to be reliable and valid, it is advantageous to have a stable, nonmobile population. This begs ethical questions, on behalf of the researchers, to disclose data relating to exposure before the study is completed. Researchers cannot both verify exposure findings and expect residents to remain so that they can carry out the remainder of the study. Thus, individuals, families, and communities are asked to base their decisions on claims that cannot be substantiated one way or the other.

Toxic waste sites continue to be discovered in communities. In many cases, the resulting community struggles are extended battles. The operative phrase in many cases is “once a site is discovered.” The chemicals in Love Canal were buried 30 years before it was known to the community that their houses, school, and playground were built on top of and surrounding a chemical site containing 22,000 tons of waste. This is not to say that the problem didn’t exist before its discovery by residents; it just wasn’t defined as a problem. From the time the chemicals were buried to the discovery of the site by residents 30 years later, residents noticed dogs with burned noses, children with skin rashes, and increased rates of miscarriages, leukemia, and nerve and respiratory disorders. But they were not aware that these rates were out of the ordinary. The effects of the problem did not change, but the way the problem was represented did. The shift was in an awareness of the existence of the problem.

In addition to the chemical disaster at Love Canal, other environmental issues have been the subject of various social movement activities, as well as political legislation. In each instance, public perception influences how and whether the problem is acted on by those with the power to make a difference.

Culturally and socially, environmental problems represent problems of social organization, communication, and socialization. Social scientists can look toward the phenomenon, visible in the reaction to environmental problems, to begin making sense of culture and society at large. Our understanding of environmental issues as primarily social constructions offers insight into how these issues are created, maintained, and resolved.

For example, in many cases where chemical contamination is the focal issue of community groups, the level of risk is perceived by affected individuals rather than established by science. It is the social processes in a community that lead to risk determination, not the natural science interpretations of an issue. Individuals have been socialized to trust science for valid information. When the determination of risk is uncertain, individuals are left to determine the level of risk for themselves by other means. In most cases, this determination is made through contact with state or federal government officials, through collaboration with other community members, or through other sources of information, such as the media. This framework helps to explain disagreements over the seriousness of most environmental issues, from global climate change to mountain-top coal removal.

The subjective reality of environmental problems becomes visible in terms of how the issue is circulated in cultural discourse. Each stakeholder constructs different means of projecting information for public consumption. When presented in the media, the perception is that information is true and accurate. Most often the determination of risk takes place in the form of a public meeting. In this situation, public officials are in control of the meeting, drawing on public anticipation surrounding the specific issue and information to be released. At Love Canal, for example, officials kept the information to be discussed at the meeting private until the meeting in order to build anticipation and increase their power over the dissemination of information.

At both the cultural and social level, power is maintained through these exercises. Often, the state controls the dissemination of information that individuals perceive to be true and accurate. However, different modes of collaboration among community members can create a different means of risk determination. The sharing of common experiences among community residents can lead to a broader sense of mobilization. Once commonalties are recognized, residents begin to determine their own level of risk. Risk perception is based on the potential danger of a problem. The sources that individuals base their information and understanding on are numerous. Each source has developed a frame of events and information on which they base their version of reality. Whether from the media, science, the state, or local knowledge, such frames serve as a means to display a problem in terms of a specific group. Social movement development, in relation to the environment, offers a powerful tool for individuals looking to construct the frame of a given environmental reality.

The ways in which environmental realities have been constructed influences how they will be acted on socially, culturally, and politically. Cultural discourse then circulates in the public sphere and becomes normative. Environmental issues become part of the public dialogue. This dialogue serves to help develop an understanding about the factors that coalesce to create, maintain, and resolve social processes that influence environmental problems.

Community-level interaction is an interesting social space from which to witness environmental understanding. Community-based, environmental problems affect individuals in many ways. Some communities mobilize and form environmental organizations to address a specific problem. Others, with existing community organizations, add environmental problems to their agenda. Environmental problems can vary in scope, size, and duration.

Mobilization in these communities may occur due to individuals’ fear that nothing is being done to ensure the safety of their children and families. It may also occur on the basis of frustration and an inability to understand what and why this is happening in their community. In addition, community groups often mobilize as a result of a lack of trust in government. The mobilization of individuals to resist the state’s discourse challenges the power of the state. The level of trust in government is a key factor in determining the level of power the state can maintain during the presentation of its frame. For example, if trust in government is low, then a stronger frame needs to be developed to legitimize the government’s position. Government often emerges as the key stakeholder, as the actor that will have the power to create change.

Previous research addresses the state’s desire to maintain legitimacy at the same time that community groups seek to resist state discourse. Admitting that there is a problem shows that the state is capable of mistakes, and thus, the state’s legitimacy can be questioned and it is vulnerable. The goal in the rhetoric of the state is not to raise questions, thereby maintaining legitimacy.

Most environmental problems are categorized by place: global, local, or national. These categories are not mutually exclusive. For example, ozone depletion is a global problem because of the total atmospheric effects the ozone layer has on the biosphere from ultraviolet rays. Yet the problem can be seen as being local in an area where heavy smog is causing ozone depletion and high surface area ozone levels, such as in a highly urban area like Los Angeles.

Similarly, the discovery of toxic waste sites across the United States can be seen as a national problem. But in the specific communities where these sites are discovered, it is a local problem affecting individuals directly. The problem is no longer seen as away from them; it is now part of their community. This developing framework of environmental issues has helped individuals become aware of the multitude of impacts that these problems have. Social scientists have been able to develop an understanding of the environment that moves away from the depiction of the earth as something separate from human society, but, instead, the earth is a system with interrelated consequences and realities. One of the most vivid paradigm shifts has been the movement away from an anthropocentric worldview and toward an environmental worldview. This shift can be represented in the movement from the human environmental paradigm (HEP) to the new environmental paradigm (NEP).

Social scientists focus on this shift as a way to explain a cultural movement that has embraced a way of understanding the impact that society has on the environment. Arguably, once the NEP is part of the natural discourse of environmental issues, they become more easily recognized as problems that have risen from a system out of balance. This approach focuses on sustainable development and other modes of development that provide environmentally sensitive growth models. These efforts move toward a culture that is sensitive to a responsibility that ensures less devastating environmental impact in the future. As environmental sociologists and other environmental researchers seek answers for a sustainable society, we must consider the devastating impacts of our current modes of production. New modes of production that take into consideration innovative, green energy solutions will provide a stronger sustainable economy and environment for culture and society.

Bibliography:

  • Alinsky, S. (1971). Rules for radicals. New York: Random House.
  • Barnett, H. G. (1994). Toxic debts and the superfund dilemma. Chapel Hill: University of North Carolina Press.
  • Bell, M. (2008). Invitation to environmental sociology (3rd ed.). Thousand Oaks, CA: Pine Forge Press.
  • Brown, P., & Mikkelsen, E. (1990). No safe place: Toxic waste, leukemia and community action. Berkeley: University of California Press.
  • Bryant, B., & Mohai, P. (Eds.). (1992). Race and the incidence of environmental hazards: A time for discourse. Boulder, CO: Westview Press.
  • Cable, S., & Cable, C. (1997). Environmental problems, grassroots solutions: The politics of grassroots environmental conflict. New York: St. Martin’s Press.
  • Cable, S., Walsh, E., & Warland, R. (1988). Differential paths to political activism: Comparison of four mobilization processes after the Three Mile Island accident. Social Forces, 66, 951–969.
  • Carnow, B. W., Lepper, M. H., Shekelle, R. B., & Stamler, J. (1969). Chicago air pollution study: SO 2 levels and acute illness in patients with chronic bronchiopulmonary disease. Archives of Environmental Health, 18, 768–776.
  • Carson, R. (1962). Silent spring. Boston: Houghton Mifflin.
  • Cylke, F. K. (1993). The environment. New York: HarperCollins.
  • Davis, D. (2008). The secret history of the war on cancer. New York: Basic Books.
  • Dunlap, R., & Mertig, A. (1992). The evolution of the U.S. environmental movement from 1970 to 1990: An overview. London: Taylor & Francis.
  • Freudenburg, W. (1993). Risk and recreancy: Weber, the division of labor, and the rationality of risk perceptions. Social Forces, 71 (4), 909–932.
  • Gaventa, J. (1980). Power and powerlessness: Quiescence and rebellion in an Appalachian Valley. Urbana: University of Illinois Press.
  • Gibbs, L. (1982). Love Canal: My story. Albany, NY: SUNY Press.
  • Gore, A., Jr. (2006). An inconvenient truth: The planetary emergency of global warming and what we can do about it. Emmaus, NY: Rodale Press.
  • Gots, R. E. (1993). Toxic risks: Science regulation and perception. Boca Raton, FL: Lewis.
  • Gould, K. A., Pellow, D., & Schnaiberg, A. (2008). The treadmill of production: Injustice and unsustainability in the global economy. Boulder, CO: Paradigm.
  • Griffith, J. R. C., Duncan, R. C., Riggan, W. B., & Pellom, A. C. (1989). Cancer mortality in U.S. counties with hazardous waste sites and ground water pollution. Archives of Environmental Health, 44, 69–74.
  • Hannigan, J. (1995). Environmental sociology: A social constructionist perspective. London: Routledge.
  • Kennedy, R. F., Jr. (2004). Crimes against nature: How George Bush and his corporate pals are plundering the country and hijacking our democracy. New York: HarperCollins.
  • Kettel, B. (1996). Women, health and the environment. Social Science & Medicine, 42, 1367–1379.
  • Lagakos, S. W., Wessen, B., & Lelen, M. (1986). Contaminated well water and health effects in Woburn, Massachusetts . Journal of the American Statistical Association, 81, 583–614.
  • Landrigan, P. J. (1990). Prevention of toxic environmental illness in the twenty-first century. Environmental Health Perspectives, 86, 197–199.
  • Landrigan, P. J. (1992). Commentary: Environmental disease— A preventable epidemic. American Journal of Public Health, 82, 941–943.
  • Levine, A. (1982). Love Canal: Science, politics, people. Lexington, MA: D. C. Heath.
  • Lipscomb, J. A., Goldman, L. R., Satin, K. P., Smith, D. F., Vance, W., & Neutra, R. (1991). A follow-up study of the community near the McColl Waste Disposal Site. Environmental Health Perspectives, 94, 15–24.
  • National Research Council. (1991). Environmental epidemiology: Public health and hazardous wastes. Washington, DC: National Academy Press.
  • Neutra, R., Lipscomb, J., Satin, K., & Shusterman, D. (1991). Hypotheses to explain the higher symptom rates observed around hazardous waste sites. Environmental Health Perspectives, 94, 31–38.
  • Paigen, B., Goldman, L., Mougnant, M., Highland, J., & Steegman, A. T. (1987). Growth of children living near the hazardous waste site, Love Canal. Human Biology, 59, 489–508.
  • Robinson, E. (2002). Community frame analysis in Love Canal: Understanding messages in a contaminated community. Sociological Spectrum, 22, 139–169.
  • Robinson, E. (2009). Competing frames of environmental contamination: Influences on grassroots mobilization. Sociological Spectrum, 29, 3–27.
  • Sarbin, T., & Kitsuse, J. (1994). Constructing the social. London: Sage.
  • Snow, D., & Benford, R. D. (1988). Ideology, frame resonance and participant mobilization. International Social Movement Research, 1, 197–217.
  • Steingraber, S. (2001). Having faith: An ecologist’s journey to motherhood. Cambridge, MA: Perseus.
  • Szasz, A. (1994). Ecopopulism: Toxic waste and the movement for environmental justice. Minneapolis: University of Minnesota Press.
  • Tilly, C. (1978). From mobilization to revolution. New York: McGraw-Hill.
  • Townsend, P. (2009). Environmental anthropology: From pigs to policies (2nd ed.). Long Grove, IL: Waveland Press.
  • Wong, O., Morgan, R. W., Whorton, M. D., Gordon, N., & Kheifets, L. (1989). Ecological analysis and case-control studies of gastric cancer and leukemia in relation to DBCP in drinking water in Fresno County, California. British Journal of Independent Medicine, 46, 521–528.

Browse more research papers on environmental issues:

Order high quality custom paper.

research paper on environmental problems

--> AGU