Urinary System Anatomy and Physiology

lab assignment urinary system

Welcome to the fascinating world of the Urinary System Anatomy and Physiology tailored for nurses. As the body’s vital system for filtering and expelling waste, understanding its intricate workings is crucial for every nurse . Dive in to explore its structures, functions, and importance in maintaining overall health, ensuring you’re equipped with comprehensive knowledge to provide the best patient care .

Table of Contents

  • Functions of the Urinary System

The Kidneys

Urinary bladder, urine formation, characteristics of urine, micturition, age-related physiological changes in the urinary system, functions of the urinary system.

The function of the kidneys are as follows:

  • Filter. Every day, the kidneys filter gallons of fluid from the bloodstream.
  • Waste processing. The kidneys then process this filtrate, allowing wastes and excess ions to leave the body in urine while returning needed substances to the blood in just the right proportions.
  • Elimination. Although the lungs and the skin also play roles in excretion, the kidneys bear the major responsibility for eliminating nitrogenous wastes , toxins , and drugs from the body.
  • Regulation. The kidneys also regulate the blood’s volume and chemical makeup so that the proper balance between water and salts and between acids and bases is maintained.
  • Other regulatory functions. By producing the enzyme renin , they help regulate blood pressure , and their hormone erythropoietin stimulates red blood cell production in the bone marrow.
  • Conversion. Kidney cells also convert vitamin D to its active form.

Anatomy of the Urinary System

The urinary system consists of two kidneys, two ureters, a urinary bladder , and a urethra. The kidneys alone perform the functions just described and manufacture urine in the process, while the other organs of the urinary system provide temporary storage reservoirs for urine or serve as transportation channels to carry it from one body region to another.

Urinary System- Urinary System Anatomy and Physiology

The kidneys, which maintain the purity and constancy of our internal fluids, are perfect examples of homeostatic organs.

  • Location. These small, dark red organs with a kidney-bean shape lie against the dorsal body wall in a retroperitoneal position (beneath the parietal peritoneum) in the superior lumbar region ; they extend from the T12 to the L3 vertebra, thus they receive protection from the lower part of the rib cage.
  • Positioning . Because it is crowded by the liver , the right kidney is positioned slightly lower than the left.
  • Size. An adult kidney is about 12 cm (5 inches) long , 6 cm (2.5 inches) wide , and 3 cm  (1 inch) thick , about the size of a large bar of soap.
  • Adrenal gland. Atop each kidney is an adrenal gland, which is part of the endocrine system is a distinctly separate organ functionally.
  • Fibrous capsule. A transparent fibrous capsule encloses each kidney and gives a fresh kidney a glistening appearance .
  • Perirenal fat capsule. A fatty mass, the perirenal fat capsule, surrounds each kidney and acts to cushion it against blows.
  • Renal fascia. The renal fascia, the outermost capsule, anchors the kidney and helps hold it in place against the muscles of the trunk wall.
  • Renal cortex. The outer region , which is light in color, is the renal cortex.
  • Renal medulla. Deep to the cortex is a darker, reddish-brown area, the renal medulla.
  • Renal pyramids. The medulla has many basically triangular regions with a striped appearance, the renal, or medullary pyramids; the broader base of each pyramid faces toward the cortex while its tip, the apex, points toward the inner region of the kidney.
  • Renal columns. The pyramids are separated by extensions of cortex-like tissue, the renal columns.
  • Renal pelvis. Medial to the hilum is a flat, basinlike cavity, the renal pelvis, which is continuous with the ureter leaving the hilum.
  • Calyces. Extensions of the pelvis, calyces, form cup-shaped areas that enclose the tips of the pyramid and collect urine, which continuously drains from the tips of the pyramids into the renal pelvis.
  • Renal artery. The arterial supply of each kidney is the renal artery, which divides into segmental arteries as it approaches the hilum, and each segmental artery gives off several branches called interlobar arteries .
  • Arcuate arteries. At the cortex-medulla junction, interlobar arteries give off arcuate arteries, which curve over the medullary pyramids.
  • Cortical radiate arteries. Small cortical radiate arteries then branch off the arcuate arteries and run outward to supply the cortical tissue.

Kidney Anatomy- Urinary System Anatomy and Physiology

Nephrons are the structural and functional units of the kidneys.

lab assignment urinary system

  • Nephrons. Each kidney contains over a million tiny structures called nephrons, and they are responsible for forming urine.
  • Glomerulus. One of the main structures of a nephron, a glomerulus is a knot of capillaries.
  • Renal tubule . Another one of the main structures in a nephron is the renal tubule.
  • Bowman’s capsule. The closed end of the renal tubule is enlarged and cup-shaped and completely surrounds the glomerulus, and it is called the glomerular or Bowman’s capsule.
  • Podocytes. The inner layer of the capsule is made up of highly modified octopus-like cells called podocytes.
  • Foot processes. Podocytes have long branching processes called foot processes that intertwine with one another and cling to the glomerulus.
  • Collecting duct. As the tubule extends from the glomerular capsule, it coils and twists before forming a hairpin loop and then again becomes coiled and twisted before entering a collecting tubule called the collecting duct, which receives urine from many nephrons.
  • Proximal convoluted tubule. This is the part of the tubule that is near to the glomerular capsule.
  • Loop of Henle. The loop of Henle is the hairpin loop following the proximal convoluted tubule.
  • Distal convoluted tubule. After the loop of Henle, the tubule continues to coil and twist before the collecting duct, and this part is called the distal convoluted tubule.
  • Cortical nephrons. Most nephrons are called cortical nephrons because they are located almost entirely within the cortex.
  • Juxtamedullary nephrons. In a few cases, the nephrons are called juxtamedullary nephrons because they are situated next to the cortex-medullary junction, and their loops of Henle dip deep into the medulla.
  • Afferent arteriole. The afferent arteriole, which arises from a cortical radiate artery, is the “feeder vessel” .
  • Efferent arteriole. The efferent arteriole receives blood that has passed through the glomerulus.
  • Peritubular capillaries. They arise from the efferent arteriole that drains the glomerulus.

The ureters do play an active role in urine transport.

  • Size. The ureters are two slender tubes each 25 to 30 cm (10 to 12 inches) long and 6 mm (1/4 inch) in diameter.
  • Location. Each ureter runs behind the peritoneum from the renal hilum to the posterior aspect of the bladder, which it enters at a slight angle.
  • Function. Essentially, the ureters are passageways that carry urine from the kidneys to the bladder through contraction of the smooth muscle layers in their walls that propel urine into the bladder by peristalsis and is prevented from flowing back by small valve-like folds of bladder mucosa that flap over the ureter openings.

The urinary bladder is a smooth, collapsible, muscular sac that stores urine temporarily.

  • Location. It is located retroperitoneally in the pelvis just posterior to the symphysis pubis.
  • Function. The detrusor muscles and the transitional epithelium both make the bladder uniquely suited for its function of urine storage.
  • Trigone. The smooth triangular region of the bladder base outlined by these three openings is called the trigone, where infections tend to persist.
  • Detrusor muscles. The bladder wall contains three layers of smooth muscle, collectively called the detrusor muscle, and its mucosa is a special type of epithelium, transitional epithelium .

The urethra is a thin-walled tube that carries urine by peristalsis from the bladder to the outside of the body.

  • Internal urethral sphincter. At the bladder-urethral junction, a thickening of the smooth muscle forms the internal urethral sphincter, an involuntary sphincter that keeps the urethra closed when the urine is not being passed.
  • External urethral sphincter. A second sphincter, the external urethral sphincter, is fashioned by skeletal muscle as the urethra passes through the pelvic floor and is voluntarily controlled.
  • Female urethra. The female urethra is about 3 to 4 cm (1 1/2 inches) long, and its external orifice, or opening, lies anteriorly to the vaginal opening.
  • Male urethra. In me, the urethra is approximately 20 cm (8 inches) long and has three named regions: the prostatic , membranous , and spongy (penile) urethrae; it opens at the tip of the penis after traveling down its length.

Physiology of the Urinary System

Every day, the kidneys filter gallons of fluid from the bloodstream. The normal physiology that takes place in the urinary system is as follows:

Urine formation is a result of three processes:

lab assignment urinary system

  • Glomerular filtration . Water and solutes smaller than proteins are forced through the capillary walls and pores of the glomerular capsule into the renal tubule.
  • Tubular reabsorption. Water, glucose , amino acids, and needed ions are transported out of the filtrate into the tubule cells and then enter the capillary blood.
  • Tubular secretion. Hydrogen, potassium , creatinine , and drugs are removed from the peritubular blood and secreted by the tubule cells into the filtrate.

In 24 hours, the marvelously complex kidneys filter some 150 to 180 liters of blood plasma through their glomeruli into the tubules.

  • Daily volume. In 24 hours, only about 1.0 to 1.8 liters of urine are produced.
  • Components.  Urine contains nitrogenous wastes and unneeded substances.
  • Color. Freshly voided urine is generally clear and pale to deep yellow .
  • Odor.  When formed, urine is sterile and slightly aromatic , but if allowed to stand, it takes on an ammonia odor caused by the action of bacteria on the urine solutes.
  • pH.  Urine pH is usually slightly acidic ( around 6 ), but changes in body metabolism and certain foods may cause it to be much more acidic or basic.
  • Specific gravity. Whereas the specific gravity of pure water is 1.0, the specific gravity of urine usually ranges from 1.001 to 1.035 .
  • Solutes.  Solutes normally found in urine include sodium and potassium ions, urea, uric acid, creatinine, ammonia, bicarbonate ions, and various other ions.

Micturition or voiding is the act of emptying the bladder.

  • Accumulation.  Ordinarily, the bladder continues to collect urine until about 200 ml have accumulated.
  • Activation.  At about this point, stretching of the bladder wall activates stretch receptors.
  • Transmission.  Impulses transmitted to the sacral region of the spinal cord and then back to the bladder via the pelvic splanchnic nerves cause the bladder to go into reflex contractions.
  • Passage.  As the contractions become stronger, stored urine is forced past the internal urethral sphincter into the upper part of the urethra.
  • External sphincter. Because the lower external sphincter is skeletal muscle and voluntarily controlled, we can choose to keep it closed or it can be relaxed so that urine is flushed from the body.

The function of the kidney decreases with age but is still able to carry out excretory functions unless a disease process intervenes. Waste products may be filtered and excreted more slowly. Therefore, nurses must include in their responsibility the effect of drugs that older people take to their kidneys.

Aside from the kidneys, the bladder makes more noticeable changes. Complaints of urinary urgency and frequency are common because the capacity of the bladder and its ability to completely empty diminish with age. It is important to note that urinary incontinence (UI) is never normal so the nurse must promptly investigate it, particularly when of new onset.

Good urinary function in older people can be promoted by sufficient fluid intake, reducing bladder-irritant foods in the diet (e.g. sugar, caffeine, spicy and acidic foods), and practicing pelvic muscle exercises.

Don’t miss out! Dive deeper into the urinary system with these must-read posts:

  • Anatomy and Physiology Nursing Test Banks Unlock success in your nursing journey! Dive deep into the intricacies of the human body with our comprehensive Anatomy and Physiology Nursing Test Banks. Tailored for aspiring health professionals, these test banks are your key to mastering the core concepts. Don’t miss out—elevate your understanding and confidence today!
  • Urinary Disorders NCLEX Practice Quiz (150 Questions) Boost your NCLEX prep! Tackle our 150-question Urinary Disorders Practice Quiz and step confidently into exam day. Sharpen your knowledge now!

Other posts you may also like:

  • Urinary Elimination (Urinary Incontinence & Urinary Retention) Nursing Care Plan & Management
  • 7 Urinary Tract Infection Nursing Care Plans
  • Urinary Tract Infection
  • Urinary Catheterization Nursing Procedure & Management

12 thoughts on “Urinary System Anatomy and Physiology”

Good update on the urinary system. I enjoyed this activity. Helps me keep informed.

Nice write up of this system,helps me understand better without disturbance.Do keep it up.BRAVO

Excellent review!

i loved this ……soo helpful

very good and knowledgeable information thank you

Hello Basant,

Thank you for the kind words! I’m delighted to hear that you found the information on the urinary system anatomy and physiology to be both comprehensive and beneficial. If you have any questions or topics you’d like to delve deeper into, please don’t hesitate to let me know. Happy learning!

I need home keller O E reproduction V I study.

This page is a useful page that improve our knowledge. Thank you

It’s great but not for revision purposes, you should outline some revision questions at the end of the topic, my view though.

This is great..Im entering nursing school in September, taking the Accellerated bsn. I have been studying these so ill have a strong understanding of A&P. 😊

Oh you’re gonna be busy! Enjoy your nursing journey and Nurseslabs is here to help you :)

this helps so much I’m going to be going into nursing school in a year

Leave a Comment Cancel reply

IMAGES

  1. Urinary System Anatomy and Physiology: Study Guide for Nurses

    lab assignment urinary system

  2. Solved NAME URINARY LAB ASSIGNMENT 1. Label the parts of the

    lab assignment urinary system

  3. Urinary System Anatomy: Stations Lab by Biology with Brynn and Jack

    lab assignment urinary system

  4. (PDF) Lab 8-Urinary System Anatomy and Urinalysis

    lab assignment urinary system

  5. Pre-Lab for Lab #11: Urinary System

    lab assignment urinary system

  6. A&P-2 Lab assignment Urinary System

    lab assignment urinary system

VIDEO

  1. Pre-Lab Video: Urinary System

  2. Urinary System Histology

  3. Urinary System Lab

  4. Urinary System Lab

  5. urinary system lab(1)

  6. Urinary System Project {Functional} #medicaleducation #kidneys#ureters#bladder#urethra#urine

COMMENTS

  1. Chapter 29

    Lab assignment completed exercise 29 review sheet anatomy of the urinary system name lab section date questions match the description in column with the. ... Anatomy of the Urinary System Name Lab Section Date QUESTIONS 1-5: Match the description in column A with the appropriate structure in column B. Answers may be used once or not at all. A ...

  2. Biology Chapter 26: The urinary system lab assignment

    Biology Chapter 26: The urinary system lab assignment. Discuss the processes shown below in #1, #2 and #3. #1 shows glomerular filtration which is where blood plasma and dissolved substances get filtered into the glomerular capsule. #2 shows tubular reabsorption which is where water, ions, and other substances get reabsorbed from the renal ...

  3. 8 urinary system worksheet Bio242ol

    Lab 8. Urinary System A. - Gross Urinary Anatomy Read through pages 607-610 of your lab manual. Explore the gross anatomy of the urinary system and the kidneys as you complete the following activities 1. Complete Figures 36, 36, 36, and 36 on pages 608, 609, and 611 of your lab manuals. Figure 36. 1 kidney 2 ureter 3 bladder 4

  4. Pre-Lab 25-1 Urinary System Flashcards

    The renal column (or Bertin column, or column of Bertin) is a medullary extension of the renal cortex in between the renal pyramids. It allows the cortex to be better anchored. Each column consists of lines of blood vessels and urinary tubes and a fibrous material. renal pelvis. central collecting region in the kidney.

  5. AP2 Lab 7- The urinary system Flashcards

    AP2 Lab 7- The urinary system. - Each kidney contains approx. 1,000,000 tubular nephrons which produce filtrate from the plasma and then 'add to' or 'take from' this filtrate to produce urine. - Remove water soluble wastes and toxins from the blood. - control how much water and/or electrolytes is lost or retained.

  6. 9.1: Lab 9- Urinary and Reproductive Systems

    Background. The urinary system is one of excretion, elimination and reabsorption. It is made from four organs, only one of which produces urine (the kidney).Nephrons, the smallest functional unit of the kidneys, are found in numbers of one to two million within the kidney and can filter up to 400 gallons of cycled blood, daily.The kidneys receive more blood than the heart, liver, or even the ...

  7. Urinary System Anatomy and Physiology

    Learn about the functions, structures, and processes of the urinary system, including the kidneys, ureters, bladder, and urethra. This comprehensive guide covers the anatomy, physiology, and age-related changes of the urinary system with diagrams and examples.

  8. PDF Lab #8: ANATOMY OF THE URINARY SYSTEM and CHARACTERISTICS OF URINE

    stituents of human urineGROSS ANATOMY OF THE HUMAN URINARY SYSTEMExercise 1: Using Figures 23.1, 27.10, and 28.1 in your Saladin text, identify the right and left kidneys, ren. l arteries and renal veins, ureters, urinary bladder, and urethra. Since the male and female urethras are differe. be sure you examine models with both male and female ...

  9. Chapter 29

    completed lab assignment exercise 29 review sheet anatomy of the urinary system name lab section date questions match the description in column with the. Skip to document ... Anatomy of the Urinary System Name Lab Section Date QUESTIONS 1-5: Match the description in column A with the appropriate structure in column B. Answers may be used once ...

  10. BIO102 Unit 8 The Urinary System Assignment 1

    BIO102 Unit 8 The Urinary System Assignment 1 1. Characterize the roles of each of the parts of the urinary system. (Kidneys, nephrons, ureters, urinary bladder, and urethra) Kidneys: Excretes unwanted substances, such as cellular metabolic waste, excess salts, toxins, and urea, water balance, pH balance, blood pressure regulation, and regulation of RBC production.

  11. AP 2 Lab 7- The urinary system Flashcards

    Study with Quizlet and memorize flashcards containing terms like Kidneys, ureters, bladder, urethra, tubular nephrons; filtrate, urine and more.

  12. 22.6: Practice Practical- Urinary System

    Anatomy and Physiology. General Human Anatomy (Lange et al.) 22: Urinary System. 22.6: Practice Practical- Urinary System. Expand/collapse global location. 22.6: Practice Practical- Urinary System. Page ID. Fill in the blanks with the correct word or words. Query 22.6.1 22.6. 1.

  13. Urinalysis Lab report

    Urinalysis Lab report. Human Anatomy and Physiology II BIO 2312. Introduction. Urine is a waste product of metabolism that is formed in the kidneys and is usually excreted in urine or urination. The biological system responsible for producing urine is the urinary system. It consists of the kidneys, ureters, bladder, and urethra.

  14. PDF PRE

    PRE !LAB EXERCISES µná=7 } Ë/á0HØÄö á¦öá«rÏ þHr«=Ø}á/áÏ á«Ï Hþ á r =«rÄöÄ} á97 á¹}=H áØ = á ... 1.List the organs of the urinary system and locate them in the view. You may want to use the Select Others and Fade tools to get a clearer view of the highlighted structures.

  15. chapter 23 urinary system lab practical Flashcards

    internal urethral orifice. Anterior opening in urinary bladder that leads into urethra. Transitional epithelium. lamina propria bladder. Submucosa. detrusor muscle of bladder. 3 layers of smooth muscle. Study with Quizlet and memorize flashcards containing terms like cortex of kidney, medulla of kidney, pyramids of kidney and more.

  16. LAB 14

    Lab 14 lab 14 the urinary system bio202l student name: click here to enter text. access code (located on the lid of your lab kit): click here to enter text. Skip to document ... Jason Damron, Fall 2016, Weekly Assignments for Online UNST Class; 339 case 2 Scientific Glass Case Study; Related Studylists AP2 lab 11 A&P2 Ap lab. Preview text ...

  17. 9: Lab 9: Urinary and Reproductive Systems

    The LibreTexts libraries are Powered by NICE CXone Expert and are supported by the Department of Education Open Textbook Pilot Project, the UC Davis Office of the Provost, the UC Davis Library, the California State University Affordable Learning Solutions Program, and Merlot. We also acknowledge previous National Science Foundation support under grant numbers 1246120, 1525057, and 1413739.

  18. Urinary System- Lab Practical Flashcards

    Urinary Trigone. Urethra. Adrenal Glands. Glomerulus slide. Bowman's Capsule slide. Capsular Space. Renal Tubule slide. Study with Quizlet and memorize flashcards containing terms like Renal Capsule, Renal Cortex, Renal Medulla and more.