Hungarian Method

Class Registration Banner

The Hungarian method is a computational optimization technique that addresses the assignment problem in polynomial time and foreshadows following primal-dual alternatives. In 1955, Harold Kuhn used the term “Hungarian method” to honour two Hungarian mathematicians, Dénes Kőnig and Jenő Egerváry. Let’s go through the steps of the Hungarian method with the help of a solved example.

Hungarian Method to Solve Assignment Problems

The Hungarian method is a simple way to solve assignment problems. Let us first discuss the assignment problems before moving on to learning the Hungarian method.

What is an Assignment Problem?

A transportation problem is a type of assignment problem. The goal is to allocate an equal amount of resources to the same number of activities. As a result, the overall cost of allocation is minimised or the total profit is maximised.

Because available resources such as workers, machines, and other resources have varying degrees of efficiency for executing different activities, and hence the cost, profit, or loss of conducting such activities varies.

Assume we have ‘n’ jobs to do on ‘m’ machines (i.e., one job to one machine). Our goal is to assign jobs to machines for the least amount of money possible (or maximum profit). Based on the notion that each machine can accomplish each task, but at variable levels of efficiency.

Hungarian Method Steps

Check to see if the number of rows and columns are equal; if they are, the assignment problem is considered to be balanced. Then go to step 1. If it is not balanced, it should be balanced before the algorithm is applied.

Step 1 – In the given cost matrix, subtract the least cost element of each row from all the entries in that row. Make sure that each row has at least one zero.

Step 2 – In the resultant cost matrix produced in step 1, subtract the least cost element in each column from all the components in that column, ensuring that each column contains at least one zero.

Step 3 – Assign zeros

  • Analyse the rows one by one until you find a row with precisely one unmarked zero. Encircle this lonely unmarked zero and assign it a task. All other zeros in the column of this circular zero should be crossed out because they will not be used in any future assignments. Continue in this manner until you’ve gone through all of the rows.
  • Examine the columns one by one until you find one with precisely one unmarked zero. Encircle this single unmarked zero and cross any other zero in its row to make an assignment to it. Continue until you’ve gone through all of the columns.

Step 4 – Perform the Optimal Test

  • The present assignment is optimal if each row and column has exactly one encircled zero.
  • The present assignment is not optimal if at least one row or column is missing an assignment (i.e., if at least one row or column is missing one encircled zero). Continue to step 5. Subtract the least cost element from all the entries in each column of the final cost matrix created in step 1 and ensure that each column has at least one zero.

Step 5 – Draw the least number of straight lines to cover all of the zeros as follows:

(a) Highlight the rows that aren’t assigned.

(b) Label the columns with zeros in marked rows (if they haven’t already been marked).

(c) Highlight the rows that have assignments in indicated columns (if they haven’t previously been marked).

(d) Continue with (b) and (c) until no further marking is needed.

(f) Simply draw the lines through all rows and columns that are not marked. If the number of these lines equals the order of the matrix, then the solution is optimal; otherwise, it is not.

Step 6 – Find the lowest cost factor that is not covered by the straight lines. Subtract this least-cost component from all the uncovered elements and add it to all the elements that are at the intersection of these straight lines, but leave the rest of the elements alone.

Step 7 – Continue with steps 1 – 6 until you’ve found the highest suitable assignment.

Hungarian Method Example

Use the Hungarian method to solve the given assignment problem stated in the table. The entries in the matrix represent each man’s processing time in hours.

\(\begin{array}{l}\begin{bmatrix} & I & II & III & IV & V \\1 & 20 & 15 & 18 & 20 & 25 \\2 & 18 & 20 & 12 & 14 & 15 \\3 & 21 & 23 & 25 & 27 & 25 \\4 & 17 & 18 & 21 & 23 & 20 \\5 & 18 & 18 & 16 & 19 & 20 \\\end{bmatrix}\end{array} \)

With 5 jobs and 5 men, the stated problem is balanced.

\(\begin{array}{l}A = \begin{bmatrix}20 & 15 & 18 & 20 & 25 \\18 & 20 & 12 & 14 & 15 \\21 & 23 & 25 & 27 & 25 \\17 & 18 & 21 & 23 & 20 \\18 & 18 & 16 & 19 & 20 \\\end{bmatrix}\end{array} \)

Subtract the lowest cost element in each row from all of the elements in the given cost matrix’s row. Make sure that each row has at least one zero.

\(\begin{array}{l}A = \begin{bmatrix}5 & 0 & 3 & 5 & 10 \\6 & 8 & 0 & 2 & 3 \\0 & 2 & 4 & 6 & 4 \\0 & 1 & 4 & 6 & 3 \\2 & 2 & 0 & 3 & 4 \\\end{bmatrix}\end{array} \)

Subtract the least cost element in each Column from all of the components in the given cost matrix’s Column. Check to see if each column has at least one zero.

\(\begin{array}{l}A = \begin{bmatrix}5 & 0 & 3 & 3 & 7 \\6 & 8 & 0 & 0 & 0 \\0 & 2 & 4 & 4 & 1 \\0 & 1 & 4 & 4 & 0 \\2 & 2 & 0 & 1 & 1 \\\end{bmatrix}\end{array} \)

When the zeros are assigned, we get the following:

Hungarian Method

The present assignment is optimal because each row and column contain precisely one encircled zero.

Where 1 to II, 2 to IV, 3 to I, 4 to V, and 5 to III are the best assignments.

Hence, z = 15 + 14 + 21 + 20 + 16 = 86 hours is the optimal time.

Practice Question on Hungarian Method

Use the Hungarian method to solve the following assignment problem shown in table. The matrix entries represent the time it takes for each job to be processed by each machine in hours.

\(\begin{array}{l}\begin{bmatrix}J/M & I & II & III & IV & V \\1 & 9 & 22 & 58 & 11 & 19 \\2 & 43 & 78 & 72 & 50 & 63 \\3 & 41 & 28 & 91 & 37 & 45 \\4 & 74 & 42 & 27 & 49 & 39 \\5 & 36 & 11 & 57 & 22 & 25 \\\end{bmatrix}\end{array} \)

Stay tuned to BYJU’S – The Learning App and download the app to explore all Maths-related topics.

Frequently Asked Questions on Hungarian Method

What is hungarian method.

The Hungarian method is defined as a combinatorial optimization technique that solves the assignment problems in polynomial time and foreshadowed subsequent primal–dual approaches.

What are the steps involved in Hungarian method?

The following is a quick overview of the Hungarian method: Step 1: Subtract the row minima. Step 2: Subtract the column minimums. Step 3: Use a limited number of lines to cover all zeros. Step 4: Add some more zeros to the equation.

What is the purpose of the Hungarian method?

When workers are assigned to certain activities based on cost, the Hungarian method is beneficial for identifying minimum costs.

MATHS Related Links

Leave a Comment Cancel reply

Your Mobile number and Email id will not be published. Required fields are marked *

Request OTP on Voice Call

Post My Comment

the method used for solving assignment problem is called

Register with BYJU'S & Download Free PDFs

Register with byju's & watch live videos.

Assignment Problem: Meaning, Methods and Variations | Operations Research

the method used for solving assignment problem is called

After reading this article you will learn about:- 1. Meaning of Assignment Problem 2. Definition of Assignment Problem 3. Mathematical Formulation 4. Hungarian Method 5. Variations.

Meaning of Assignment Problem:

An assignment problem is a particular case of transportation problem where the objective is to assign a number of resources to an equal number of activities so as to minimise total cost or maximize total profit of allocation.

The problem of assignment arises because available resources such as men, machines etc. have varying degrees of efficiency for performing different activities, therefore, cost, profit or loss of performing the different activities is different.

Thus, the problem is “How should the assignments be made so as to optimize the given objective”. Some of the problem where the assignment technique may be useful are assignment of workers to machines, salesman to different sales areas.

Definition of Assignment Problem:

ADVERTISEMENTS:

Suppose there are n jobs to be performed and n persons are available for doing these jobs. Assume that each person can do each job at a term, though with varying degree of efficiency, let c ij be the cost if the i-th person is assigned to the j-th job. The problem is to find an assignment (which job should be assigned to which person one on-one basis) So that the total cost of performing all jobs is minimum, problem of this kind are known as assignment problem.

The assignment problem can be stated in the form of n x n cost matrix C real members as given in the following table:

the method used for solving assignment problem is called

www.springer.com The European Mathematical Society

  • StatProb Collection
  • Recent changes
  • Current events
  • Random page
  • Project talk
  • Request account
  • What links here
  • Related changes
  • Special pages
  • Printable version
  • Permanent link
  • Page information
  • View source

Assignment problem

The problem of optimally assigning $ m $ individuals to $ m $ jobs. It can be formulated as a linear programming problem that is a special case of the transport problem :

maximize $ \sum _ {i,j } c _ {ij } x _ {ij } $

$$ \sum _ { j } x _ {ij } = a _ {i} , i = 1 \dots m $$

(origins or supply),

$$ \sum _ { i } x _ {ij } = b _ {j} , j = 1 \dots n $$

(destinations or demand), where $ x _ {ij } \geq 0 $ and $ \sum a _ {i} = \sum b _ {j} $, which is called the balance condition. The assignment problem arises when $ m = n $ and all $ a _ {i} $ and $ b _ {j} $ are $ 1 $.

If all $ a _ {i} $ and $ b _ {j} $ in the transposed problem are integers, then there is an optimal solution for which all $ x _ {ij } $ are integers (Dantzig's theorem on integral solutions of the transport problem).

In the assignment problem, for such a solution $ x _ {ij } $ is either zero or one; $ x _ {ij } = 1 $ means that person $ i $ is assigned to job $ j $; the weight $ c _ {ij } $ is the utility of person $ i $ assigned to job $ j $.

The special structure of the transport problem and the assignment problem makes it possible to use algorithms that are more efficient than the simplex method . Some of these use the Hungarian method (see, e.g., [a5] , [a1] , Chapt. 7), which is based on the König–Egervary theorem (see König theorem ), the method of potentials (see [a1] , [a2] ), the out-of-kilter algorithm (see, e.g., [a3] ) or the transportation simplex method.

In turn, the transportation problem is a special case of the network optimization problem.

A totally different assignment problem is the pole assignment problem in control theory.

[a1] D.B. Yudin, E.G. Gol'shtein, "Linear programming" , Israel Program Sci. Transl. (1965) (In Russian)
[a2] R. Frisch, "La résolution des problèmes de programme linéaire par la méthode du potentiel logarithmique" , (1956) pp. 20–23
[a3] K. Murtz, "Linear and combinatorial programming" , Wiley (1976)
[a4] M. Grötschel, L. Lovász, A. Schrijver, "Geometric algorithms and combinatorial optimization" , Springer (1987)
[a5] C.H. Papadimitriou, K. Steiglitz, "Combinatorial optimization" , Prentice-Hall (1982)
  • This page was last edited on 5 April 2020, at 18:48.
  • Privacy policy
  • About Encyclopedia of Mathematics
  • Disclaimers
  • Impressum-Legal
  • DSA Tutorial
  • Data Structures
  • Linked List
  • Dynamic Programming
  • Binary Tree
  • Binary Search Tree
  • Divide & Conquer
  • Mathematical
  • Backtracking
  • Branch and Bound
  • Pattern Searching

Hungarian Algorithm for Assignment Problem | Set 2 (Implementation)

Given a 2D array , arr of size N*N where arr[i][j] denotes the cost to complete the j th job by the i th worker. Any worker can be assigned to perform any job. The task is to assign the jobs such that exactly one worker can perform exactly one job in such a way that the total cost of the assignment is minimized.

Input: arr[][] = {{3, 5}, {10, 1}} Output: 4 Explanation: The optimal assignment is to assign job 1 to the 1st worker, job 2 to the 2nd worker. Hence, the optimal cost is 3 + 1 = 4. Input: arr[][] = {{2500, 4000, 3500}, {4000, 6000, 3500}, {2000, 4000, 2500}} Output: 4 Explanation: The optimal assignment is to assign job 2 to the 1st worker, job 3 to the 2nd worker and job 1 to the 3rd worker. Hence, the optimal cost is 4000 + 3500 + 2000 = 9500.

Different approaches to solve this problem are discussed in this article .

Approach: The idea is to use the Hungarian Algorithm to solve this problem. The algorithm is as follows:

  • For each row of the matrix, find the smallest element and subtract it from every element in its row.
  • Repeat the step 1 for all columns.
  • Cover all zeros in the matrix using the minimum number of horizontal and vertical lines.
  • Test for Optimality : If the minimum number of covering lines is N , an optimal assignment is possible. Else if lines are lesser than N , an optimal assignment is not found and must proceed to step 5.
  • Determine the smallest entry not covered by any line. Subtract this entry from each uncovered row, and then add it to each covered column. Return to step 3.

Consider an example to understand the approach:

Let the 2D array be: 2500 4000 3500 4000 6000 3500 2000 4000 2500 Step 1: Subtract minimum of every row. 2500, 3500 and 2000 are subtracted from rows 1, 2 and 3 respectively. 0   1500  1000 500  2500   0 0   2000  500 Step 2: Subtract minimum of every column. 0, 1500 and 0 are subtracted from columns 1, 2 and 3 respectively. 0    0   1000 500  1000   0 0   500  500 Step 3: Cover all zeroes with minimum number of horizontal and vertical lines. Step 4: Since we need 3 lines to cover all zeroes, the optimal assignment is found.   2500   4000  3500  4000  6000   3500   2000  4000  2500 So the optimal cost is 4000 + 3500 + 2000 = 9500

For implementing the above algorithm, the idea is to use the max_cost_assignment() function defined in the dlib library . This function is an implementation of the Hungarian algorithm (also known as the Kuhn-Munkres algorithm) which runs in O(N 3 ) time. It solves the optimal assignment problem. 

Below is the implementation of the above approach:

Time Complexity: O(N 3 ) Auxiliary Space: O(N 2 )

Please Login to comment...

Similar reads.

  • How to Get a Free SSL Certificate
  • Best SSL Certificates Provider in India
  • Elon Musk's xAI releases Grok-2 AI assistant
  • What is OpenAI SearchGPT? How it works and How to Get it?
  • Full Stack Developer Roadmap [2024 Updated]

Improve your Coding Skills with Practice

 alt=

What kind of Experience do you want to share?

  • MapReduce Algorithm
  • Linear Programming using Pyomo
  • Networking and Professional Development for Machine Learning Careers in the USA
  • Predicting Employee Churn in Python
  • Airflow Operators

Machine Learning Geek

Solving Assignment Problem using Linear Programming in Python

Learn how to use Python PuLP to solve Assignment problems using Linear Programming.

In earlier articles, we have seen various applications of Linear programming such as transportation, transshipment problem, Cargo Loading problem, and shift-scheduling problem. Now In this tutorial, we will focus on another model that comes under the class of linear programming model known as the Assignment problem. Its objective function is similar to transportation problems. Here we minimize the objective function time or cost of manufacturing the products by allocating one job to one machine.

If we want to solve the maximization problem assignment problem then we subtract all the elements of the matrix from the highest element in the matrix or multiply the entire matrix by –1 and continue with the procedure. For solving the assignment problem, we use the Assignment technique or Hungarian method, or Flood’s technique.

The transportation problem is a special case of the linear programming model and the assignment problem is a special case of transportation problem, therefore it is also a special case of the linear programming problem.

In this tutorial, we are going to cover the following topics:

Assignment Problem

A problem that requires pairing two sets of items given a set of paired costs or profit in such a way that the total cost of the pairings is minimized or maximized. The assignment problem is a special case of linear programming.

For example, an operation manager needs to assign four jobs to four machines. The project manager needs to assign four projects to four staff members. Similarly, the marketing manager needs to assign the 4 salespersons to 4 territories. The manager’s goal is to minimize the total time or cost.

Problem Formulation

A manager has prepared a table that shows the cost of performing each of four jobs by each of four employees. The manager has stated his goal is to develop a set of job assignments that will minimize the total cost of getting all 4 jobs.  

Assignment Problem

Initialize LP Model

In this step, we will import all the classes and functions of pulp module and create a Minimization LP problem using LpProblem class.

Define Decision Variable

In this step, we will define the decision variables. In our problem, we have two variable lists: workers and jobs. Let’s create them using  LpVariable.dicts()  class.  LpVariable.dicts()  used with Python’s list comprehension.  LpVariable.dicts()  will take the following four values:

  • First, prefix name of what this variable represents.
  • Second is the list of all the variables.
  • Third is the lower bound on this variable.
  • Fourth variable is the upper bound.
  • Fourth is essentially the type of data (discrete or continuous). The options for the fourth parameter are  LpContinuous  or  LpInteger .

Let’s first create a list route for the route between warehouse and project site and create the decision variables using LpVariable.dicts() the method.

Define Objective Function

In this step, we will define the minimum objective function by adding it to the LpProblem  object. lpSum(vector)is used here to define multiple linear expressions. It also used list comprehension to add multiple variables.

Define the Constraints

Here, we are adding two types of constraints: Each job can be assigned to only one employee constraint and Each employee can be assigned to only one job. We have added the 2 constraints defined in the problem by adding them to the LpProblem  object.

Solve Model

In this step, we will solve the LP problem by calling solve() method. We can print the final value by using the following for loop.

From the above results, we can infer that Worker-1 will be assigned to Job-1, Worker-2 will be assigned to job-3, Worker-3 will be assigned to Job-2, and Worker-4 will assign with job-4.

In this article, we have learned about Assignment problems, Problem Formulation, and implementation using the python PuLp library. We have solved the Assignment problem using a Linear programming problem in Python. Of course, this is just a simple case study, we can add more constraints to it and make it more complicated. You can also run other case studies on Cargo Loading problems , Staff scheduling problems . In upcoming articles, we will write more on different optimization problems such as transshipment problem, balanced diet problem. You can revise the basics of mathematical concepts in  this article  and learn about Linear Programming  in this article .

  • Solving Blending Problem in Python using Gurobi

Transshipment Problem in Python Using PuLP

You may also like.

the method used for solving assignment problem is called

Understanding Convolutional Neural Network (CNN) using Python

the method used for solving assignment problem is called

Let’s Start with Pandas Library: Introduction and Installation

the method used for solving assignment problem is called

LIVE Course for free

the method used for solving assignment problem is called

  • Ask a Question

Join Bloom Tuition

The method used for solving an assignment problem is called ________ (a) Reduced matrix method (b) MODI method

the method used for solving assignment problem is called

The method used for solving an assignment problem is called ________ 

(a) Reduced matrix method 

(b) MODI method 

(c) Hungarian method 

(d) Graphical method

  • operations research

Please log in or register to add a comment.

Please log in or register to answer this question..

the method used for solving assignment problem is called

(c) Hungarian method

Find MCQs & Mock Test

  • JEE Main 2025 Test Series
  • NEET Test Series
  • Class 12 Chapterwise MCQ Test
  • Class 11 Chapterwise Practice Test
  • Class 10 Chapterwise MCQ Test
  • Class 9 Chapterwise MCQ Test
  • Class 8 Chapterwise MCQ Test
  • Class 7 Chapterwise MCQ Test

Related questions

the method used for solving assignment problem is called

Welcome to Sarthaks eConnect: A unique platform where students can interact with teachers/experts/students to get solutions to their queries. Students (upto class 10+2) preparing for All Government Exams, CBSE Board Exam , ICSE Board Exam , State Board Exam, JEE (Mains+Advance) and NEET can ask questions from any subject and get quick answers by subject teachers/ experts/mentors/students.

  • All categories
  • JEE (36.7k)
  • NEET (9.4k)
  • Science (786k)
  • Mathematics (256k)
  • Statistics (3.0k)
  • Environmental Science (5.4k)
  • Biotechnology (704)
  • Social Science (126k)
  • Commerce (75.0k)
  • Electronics (3.9k)
  • Computer (22.0k)
  • Artificial Intelligence (AI) (3.3k)
  • Information Technology (21.8k)
  • Programming (13.1k)
  • Political Science (10.6k)
  • Home Science (8.1k)
  • Psychology (4.4k)
  • Sociology (7.1k)
  • English (68.2k)
  • Hindi (30.8k)
  • Aptitude (23.7k)
  • Reasoning (14.8k)
  • Olympiad (535)
  • Skill Tips (91)
  • RBSE (49.1k)
  • General (73.4k)
  • MSBSHSE (1.8k)
  • Mathematics (1.5k)
  • Physics (1.9k)
  • Chemistry (4.3k)
  • Bio Botany (1.3k)
  • Bio Zoology (1.4k)
  • English (867)
  • Commerce (1.0k)
  • Economics (1.5k)
  • Accountancy (812)
  • Computer Science (1.2k)
  • Computer Applications (1.7k)
  • Applications of Matrices and Determinants (89)
  • Integral Calculus I (146)
  • Integral Calculus II (94)
  • Differential Equations (104)
  • Numerical Methods (61)
  • Random Variable and Mathematical Expectation (88)
  • Probability Distributions (104)
  • Sampling Techniques and Statistical Inference (81)
  • Applied Statistics (126)
  • Operations Research (72)
  • Class 11 (18.6k)
  • Class 10 (6.1k)
  • Class 9 (3.7k)
  • Class 8 (4.4k)
  • Class 7 (4.2k)
  • Class 6 (3.8k)
  • Kerala Board (24.5k)
  • Send feedback
  • Privacy Policy
  • Terms of Use
  • Refund Policy

examveda.com

The method used for solving an assignment problem is called

Examveda

The method used for solving an assignment problem is called.

A. Reduced matrix method

B. MODI method

C. Hungarian method

D. None of the above

Answer: Option C

Solution(By Examveda Team)

This Question Belongs to Management >> Operations Research

Join The Discussion

Related Questions on Operations Research

The use of decision models.

A. Is possible when the variables value is known

B. Reduces the scope of judgement & intuition known with certainty in decision-making

C. Require the use of computer software

Every mathematical model.

A. Must be deterministic

B. Requires computer aid for its solution

C. Represents data in numerical form

D. All of the above

A physical model is example of.

A. An iconic model

B. An analogue model

C. A verbal model

D. A mathematical model

The qualitative approach to decision analysis relies on.

A. Experience

B. Judgement

C. Intuition

More Related Questions on Operations Research

Read More: MCQ Type Questions and Answers

  •   Arithmetic Ability
  •   Competitive Reasoning
  •   Competitive English
  •   Data Interpretation
  •   General Knowledge
  •   State GK
  •   History
  •   Geography
  •   Current Affairs
  •   Banking Awareness
  •   Computer Fundamentals
  •   Networking
  •   C Program
  •   Java Program
  •   Database
  •   HTML
  •   Javascript
  •   Computer Science
  •   Electronics and Communications Engineering
  •   Electrical Engineering
  •   Mechanical Engineering
  •   Civil Engineering
  •   Chemical Engineering
  •   Automobile Engineering
  •   Biotechnology Engineering
  •   Mining Engineering
  •   Commerce
  •   Management
  •   Philosophy
  •   Agriculture
  •   Sociology
  •   Political Science
  •   Pharmacy

IMAGES

  1. (PDF) Ones assignment method for solving assignment problems

    the method used for solving assignment problem is called

  2. Solution of Assignment Problems

    the method used for solving assignment problem is called

  3. (PDF) REVISED ONES ASSIGNMENT METHOD FOR SOLVING ASSIGNMENT PROBLEM

    the method used for solving assignment problem is called

  4. problem solving processes or models

    the method used for solving assignment problem is called

  5. General Problem Solving ProcessWentz Wu

    the method used for solving assignment problem is called

  6. 6 steps of the problem solving process

    the method used for solving assignment problem is called

COMMENTS

  1. Assignment problem

    The assignment problem consists of finding, in a weighted bipartite graph, a matching of a given size, in which the sum of weights of the edges is minimum. If the numbers of agents and tasks are equal, then the problem is called balanced assignment. Otherwise, it is called unbalanced assignment. [ 1] If the total cost of the assignment for all ...

  2. Hungarian Method

    Use the Hungarian method to solve the following assignment problem shown in table. The matrix entries represent the time it takes for each job to be processed by each machine in hours.

  3. Hungarian algorithm

    The Hungarian method is a combinatorial optimization algorithm that solves the assignment problem in polynomial time and which anticipated later primal-dual methods. It was developed and published in 1955 by Harold Kuhn, who gave it the name "Hungarian method" because the algorithm was largely based on the earlier works of two Hungarian mathematicians, Dénes Kőnig and Jenő Egerváry. [ 1 ...

  4. Hungarian Algorithm for Assignment Problem

    The Hungarian algorithm, aka Munkres assignment algorithm, utilizes the following theorem for polynomial runtime complexity ( worst case O (n3)) and guaranteed optimality: If a number is added to or subtracted from all of the entries of any one row or column of a cost matrix, then an optimal assignment for the resulting cost matrix is also an ...

  5. Assignment Problem: Meaning, Methods and Variations

    Hungarian Method for Solving Assignment Problem: The Hungarian method of assignment provides us with an efficient method of finding the optimal solution without having to make a-direct comparison of every solution.

  6. PDF Variants of the hungarian method for assignment problems

    1. INTRODUCTION The Hungarian Method [ 11 is an algorithm for solving assignment problems that is based on the work of D. Konig and J. Egervgry. In one possible interpretation, an assignment problem asks for the best assignment of a set of persons to a set of jobs, where the feasible assignments are ranked by the total scores or ratings of the ...

  7. PDF Hungarian method for assignment problem

    Hungarian method for assignment problem Step 1. Subtract the entries of each row by the row minimum.

  8. Assignment Problem and Hungarian Algorithm

    General description of the algorithm This problem is known as the assignment problem. The assignment problem is a special case of the transportation problem, which in turn is a special case of the min-cost flow problem, so it can be solved using algorithms that solve the more general cases.

  9. Hungarian Method, Assignment Problem, Hungarian Algorithm

    Hungarian Method is an efficient method for solving assignment problems. This method is based on the following principle: If a constant is added to, or subtracted from, every element of a row and/or a column of the given cost matrix of an assignment problem, the resulting assignment problem has the same optimal solution as the original problem.

  10. PDF Section 7.5: The Assignment Problem

    The Hungarian Method for Solving the Assignment Problem We're ready to state the Hungarian method now that we've seen a couple of examples. Initialize the algorithm: { Subtract the lowest row value from each row. { For each column, subtract the lowest value. Steps 1 and 2 create zeros to start the algorithm o .

  11. Assignment problem

    The special structure of the transport problem and the assignment problem makes it possible to use algorithms that are more efficient than the simplex method.

  12. PDF The Hungarian method for the assignment problem

    THE HUNGARIAN METHOD FOR THE ASSIGNMENT. PROBLEM'. H. W. Kuhn. Bryn Y a w College. Assuming that numerical scores are available for the perform- ance of each of n persons on each of n jobs, the "assignment problem" is the quest for an assignment of persons to jobs so that the sum of the. n scores so obtained is as large as possible.

  13. PDF Microsoft Word

    Unit 4: ASSIGNMENT PROBLEM The assignment problem is a special case of transportation problem in which the objective is to assign 'm' jobs or workers to 'n' machines such that the cost incurred is minimized.

  14. Hungarian Algorithm for Assignment Problem

    Output: 4 Explanation: The optimal assignment is to assign job 2 to the 1st worker, job 3 to the 2nd worker and job 1 to the 3rd worker. Hence, the optimal cost is 4000 + 3500 + 2000 = 9500. Different approaches to solve this problem are discussed in this article. Approach: The idea is to use the Hungarian Algorithm to solve this problem.

  15. Assignment Problem, Maximization Example, Hungarian Method

    The Hungarian Method can also solve such assignment problems, as it is easy to obtain an equivalent minimization problem by converting every number in the matrix to an opportunity loss. The conversion is accomplished by subtracting all the elements of the given matrix from the highest element. It turns out that minimizing opportunity loss ...

  16. PDF On Approximation Methods for the Assignment Problem*

    Even though thedevelopment and analysis of these approximation e h are ds trongly directed toward digital computers, the methods areespecially desirable for hand computation. The assignment problem is defined inSection 1,and the results ofa solution-time study ofan exact method, theMunkres algorithm, are described.

  17. Solving Assignment Problem using Linear Programming in Python

    For solving the assignment problem, we use the Assignment technique or Hungarian method, or Flood's technique. The transportation problem is a special case of the linear programming model and the assignment problem is a special case of transportation problem, therefore it is also a special case of the linear programming problem.

  18. PDF Applications of Discrete Mathematics

    The assignment problem is particularly interesting because many seemingly different problems may be solved as assignment problems. Moreover, it is an important example of a combinatorial optimization problem; that is, a problem that seeks the best possible arrangement of objects among a specified set of many possible arrangements.

  19. MCQ QT

    Onewords document for solving an assignment problem, which method is used? hungarian american german both are incorrect to make an unbalanced assignment problem

  20. Assignment Method

    The Hungarian assignment method problem, developed by mathematician D. Konig, is a faster and more efficient approach to solving assignment problems. It involves determining the cost of making all possible assignments using a matrix.

  21. The method used for solving an assignment problem is called ________ (a

    The method used for solving an assignment problem is called ________ (a) Reduced matrix method (b) MODI method ← Prev Question Next Question → +1 vote 25.7k views asked Aug 27, 2020 in Operations Research by Vijay01 (48.1k points) The method used for solving an assignment problem is called ________ (a) Reduced matrix method (b) MODI method (c) Hungarian method (d) Graphical method ...

  22. The method used for solving an assignment problem is called.

    The method used for solving an assignment problem is called Hungarian method. The Hungarian method is a combinatorial optimization algorithm that solves the assignment problem in polynomial time and which anticipated later primal-dual methods.

  23. Which of the following methods is commonly used to solve assignment

    Explanation: There are mainly four methods to solve assignment problems: Hungarian method Enumeration Method Simplex method Transportation method The m.