VFM 8th Grade Science Fair Project: Step 4: Background Research

  • Step 1: Find a Project Idea
  • Step 2: Formulate a Research Question & do a Project Proposal
  • Step 3: State the Purpose
  • Step 4: Background Research
  • Free Web Search
  • Step 5: Bibliography
  • Step 6: Identify the Variables in your Experiment
  • Step 7: Form a Hypothesis
  • Step 8: Materials
  • Step 9: Design & Write the Procedure
  • Step 10: Perform the Experiment
  • Step 11: Record your Data and Results
  • Step 12: Analyze your Data & Results
  • Step 13: Make a Conclusion
  • Step 14: Write the Abstract
  • Step 15: Acknowledgments
  • Step 16: Title Page and Table of Contents
  • Step 17: Proofread!
  • Step 18: Write a Final Copy of your Lab Report
  • Step 19: Create your Display Board
  • Step 20: The VFMS Science Fair
  • Oral Presentation
  • Lab Journal/Notebook
  • Schedule and Due Dates

In-Text Citation

  • [APA] How do I write an APA parenthetical (in-text) reference? Give Credit to your website or author in the body of your research.

Background Research

Background research should help you to educate the reader of your project about important aspects of your topic.  

Using multiple resources, students should learn about past results of other experiments that are similar to theirs. Students should know how and why previous experimenters arrived at their conclusions. The background research should help the students give the “because…” in the “if… then… because…” section of their hypothesis.

20 - 30 facts from 3 sources  is a reasonable expectation for this section. In the final paper, this background research will be put into paragraph form.

Use the  Background Research Planning Worksheet  to help you formulate questions that you need to answer for your topic.  Each student should become an expert on anything that is closely related to their area of research. 

  • Background Research Worksheet Complete this worksheet prior to beginning your background research for your project.
  • Fact Collection Worksheet Collect 20-30 facts from a minimum of 3 sources: one source must be from Gale Science in Context
  • Sample of Background Research Paragraphs Here is a sample of what your background research paragraphs might look like. Sample found on the web here: http://www.oncoursesystems.com/images/user/2162/302482/img074.jpg

Why You Should Use Databases

background research science report

Databases are sometimes called the "deep web" or "invisible web" because their information is usually only accessible through paid subscriptions using passwords and isn't usually found (indexed) by search engines such as Google.

Database records are organized using a variety of indexes such as author and subject but are keyword searchable as well. 

Databases are either subject specific such as World History in Context or content specific such as the newspaper and magazine database through EBSCO. 

Databases contain information that has been checked for the  ABC's   of  authority  &   accuracy, bias, and content  &  currency . You can trust the information you find in databases, not like on the web or through Google searches. Sometimes it's accurate, but many times it isn't. 

Library Databases: Start your Search Here

background research science report

What is Research?

Research is: 

  • Driven by a question that guides the process.
  • Seeking information with a clear goal.
  • A process, which works best when done step- by-step. The steps may need to be repeated.
  • Collection and interpretation of data in an attempt to resolve the problem.
  • Going beyond facts and old ideas.
  • Taking a new look at the information and taking a stand.

Research is not:

  • Copying and pasting information you find through a Google search.
  • Combining a paragraph from one article with a couple of paragraphs from websites. That's plagiarism.
  • Rearranging facts
  • Rewording each phrase and citing each source. That's just a summary of facts with someone else's name on them and still can be classified as plagiarism.

Words for the wise student: 

  • Remember, begin with a "wide net" and then narrow your search results.
  • If you only look for specific information to answer a specific question, you may miss many opportunities to broaden your understanding .
  • Allow for surprises- you may find your views on your topic will change and take you in an entirely new direction.
  • Remember that research is searching again and again.
  • In the process of doing research, you will be looking at information that others have looked at before, trying to see something that they have not seen.
  • << Previous: Step 3: State the Purpose
  • Next: Free Web Search >>
  • Last Updated: Jan 27, 2016 2:09 PM
  • URL: https://tesd.libguides.com/VFMScienceFairProject
  • Privacy Policy

Research Method

Home » Background of The Study – Examples and Writing Guide

Background of The Study – Examples and Writing Guide

Table of Contents

Background of The Study

Background of The Study

Definition:

Background of the study refers to the context, circumstances, and history that led to the research problem or topic being studied. It provides the reader with a comprehensive understanding of the subject matter and the significance of the study.

The background of the study usually includes a discussion of the relevant literature, the gap in knowledge or understanding, and the research questions or hypotheses to be addressed. It also highlights the importance of the research topic and its potential contributions to the field. A well-written background of the study sets the stage for the research and helps the reader to appreciate the need for the study and its potential significance.

How to Write Background of The Study

Here are some steps to help you write the background of the study:

Identify the Research Problem

Start by identifying the research problem you are trying to address. This problem should be significant and relevant to your field of study.

Provide Context

Once you have identified the research problem, provide some context. This could include the historical, social, or political context of the problem.

Review Literature

Conduct a thorough review of the existing literature on the topic. This will help you understand what has been studied and what gaps exist in the current research.

Identify Research Gap

Based on your literature review, identify the gap in knowledge or understanding that your research aims to address. This gap will be the focus of your research question or hypothesis.

State Objectives

Clearly state the objectives of your research . These should be specific, measurable, achievable, relevant, and time-bound (SMART).

Discuss Significance

Explain the significance of your research. This could include its potential impact on theory , practice, policy, or society.

Finally, summarize the key points of the background of the study. This will help the reader understand the research problem, its context, and its significance.

How to Write Background of The Study in Proposal

The background of the study is an essential part of any proposal as it sets the stage for the research project and provides the context and justification for why the research is needed. Here are the steps to write a compelling background of the study in your proposal:

  • Identify the problem: Clearly state the research problem or gap in the current knowledge that you intend to address through your research.
  • Provide context: Provide a brief overview of the research area and highlight its significance in the field.
  • Review literature: Summarize the relevant literature related to the research problem and provide a critical evaluation of the current state of knowledge.
  • Identify gaps : Identify the gaps or limitations in the existing literature and explain how your research will contribute to filling these gaps.
  • Justify the study : Explain why your research is important and what practical or theoretical contributions it can make to the field.
  • Highlight objectives: Clearly state the objectives of the study and how they relate to the research problem.
  • Discuss methodology: Provide an overview of the methodology you will use to collect and analyze data, and explain why it is appropriate for the research problem.
  • Conclude : Summarize the key points of the background of the study and explain how they support your research proposal.

How to Write Background of The Study In Thesis

The background of the study is a critical component of a thesis as it provides context for the research problem, rationale for conducting the study, and the significance of the research. Here are some steps to help you write a strong background of the study:

  • Identify the research problem : Start by identifying the research problem that your thesis is addressing. What is the issue that you are trying to solve or explore? Be specific and concise in your problem statement.
  • Review the literature: Conduct a thorough review of the relevant literature on the topic. This should include scholarly articles, books, and other sources that are directly related to your research question.
  • I dentify gaps in the literature: After reviewing the literature, identify any gaps in the existing research. What questions remain unanswered? What areas have not been explored? This will help you to establish the need for your research.
  • Establish the significance of the research: Clearly state the significance of your research. Why is it important to address this research problem? What are the potential implications of your research? How will it contribute to the field?
  • Provide an overview of the research design: Provide an overview of the research design and methodology that you will be using in your study. This should include a brief explanation of the research approach, data collection methods, and data analysis techniques.
  • State the research objectives and research questions: Clearly state the research objectives and research questions that your study aims to answer. These should be specific, measurable, achievable, relevant, and time-bound.
  • Summarize the chapter: Summarize the chapter by highlighting the key points and linking them back to the research problem, significance of the study, and research questions.

How to Write Background of The Study in Research Paper

Here are the steps to write the background of the study in a research paper:

  • Identify the research problem: Start by identifying the research problem that your study aims to address. This can be a particular issue, a gap in the literature, or a need for further investigation.
  • Conduct a literature review: Conduct a thorough literature review to gather information on the topic, identify existing studies, and understand the current state of research. This will help you identify the gap in the literature that your study aims to fill.
  • Explain the significance of the study: Explain why your study is important and why it is necessary. This can include the potential impact on the field, the importance to society, or the need to address a particular issue.
  • Provide context: Provide context for the research problem by discussing the broader social, economic, or political context that the study is situated in. This can help the reader understand the relevance of the study and its potential implications.
  • State the research questions and objectives: State the research questions and objectives that your study aims to address. This will help the reader understand the scope of the study and its purpose.
  • Summarize the methodology : Briefly summarize the methodology you used to conduct the study, including the data collection and analysis methods. This can help the reader understand how the study was conducted and its reliability.

Examples of Background of The Study

Here are some examples of the background of the study:

Problem : The prevalence of obesity among children in the United States has reached alarming levels, with nearly one in five children classified as obese.

Significance : Obesity in childhood is associated with numerous negative health outcomes, including increased risk of type 2 diabetes, cardiovascular disease, and certain cancers.

Gap in knowledge : Despite efforts to address the obesity epidemic, rates continue to rise. There is a need for effective interventions that target the unique needs of children and their families.

Problem : The use of antibiotics in agriculture has contributed to the development of antibiotic-resistant bacteria, which poses a significant threat to human health.

Significance : Antibiotic-resistant infections are responsible for thousands of deaths each year and are a major public health concern.

Gap in knowledge: While there is a growing body of research on the use of antibiotics in agriculture, there is still much to be learned about the mechanisms of resistance and the most effective strategies for reducing antibiotic use.

Edxample 3:

Problem : Many low-income communities lack access to healthy food options, leading to high rates of food insecurity and diet-related diseases.

Significance : Poor nutrition is a major contributor to chronic diseases such as obesity, type 2 diabetes, and cardiovascular disease.

Gap in knowledge : While there have been efforts to address food insecurity, there is a need for more research on the barriers to accessing healthy food in low-income communities and effective strategies for increasing access.

Examples of Background of The Study In Research

Here are some real-life examples of how the background of the study can be written in different fields of study:

Example 1 : “There has been a significant increase in the incidence of diabetes in recent years. This has led to an increased demand for effective diabetes management strategies. The purpose of this study is to evaluate the effectiveness of a new diabetes management program in improving patient outcomes.”

Example 2 : “The use of social media has become increasingly prevalent in modern society. Despite its popularity, little is known about the effects of social media use on mental health. This study aims to investigate the relationship between social media use and mental health in young adults.”

Example 3: “Despite significant advancements in cancer treatment, the survival rate for patients with pancreatic cancer remains low. The purpose of this study is to identify potential biomarkers that can be used to improve early detection and treatment of pancreatic cancer.”

Examples of Background of The Study in Proposal

Here are some real-time examples of the background of the study in a proposal:

Example 1 : The prevalence of mental health issues among university students has been increasing over the past decade. This study aims to investigate the causes and impacts of mental health issues on academic performance and wellbeing.

Example 2 : Climate change is a global issue that has significant implications for agriculture in developing countries. This study aims to examine the adaptive capacity of smallholder farmers to climate change and identify effective strategies to enhance their resilience.

Example 3 : The use of social media in political campaigns has become increasingly common in recent years. This study aims to analyze the effectiveness of social media campaigns in mobilizing young voters and influencing their voting behavior.

Example 4 : Employee turnover is a major challenge for organizations, especially in the service sector. This study aims to identify the key factors that influence employee turnover in the hospitality industry and explore effective strategies for reducing turnover rates.

Examples of Background of The Study in Thesis

Here are some real-time examples of the background of the study in the thesis:

Example 1 : “Women’s participation in the workforce has increased significantly over the past few decades. However, women continue to be underrepresented in leadership positions, particularly in male-dominated industries such as technology. This study aims to examine the factors that contribute to the underrepresentation of women in leadership roles in the technology industry, with a focus on organizational culture and gender bias.”

Example 2 : “Mental health is a critical component of overall health and well-being. Despite increased awareness of the importance of mental health, there are still significant gaps in access to mental health services, particularly in low-income and rural communities. This study aims to evaluate the effectiveness of a community-based mental health intervention in improving mental health outcomes in underserved populations.”

Example 3: “The use of technology in education has become increasingly widespread, with many schools adopting online learning platforms and digital resources. However, there is limited research on the impact of technology on student learning outcomes and engagement. This study aims to explore the relationship between technology use and academic achievement among middle school students, as well as the factors that mediate this relationship.”

Examples of Background of The Study in Research Paper

Here are some examples of how the background of the study can be written in various fields:

Example 1: The prevalence of obesity has been on the rise globally, with the World Health Organization reporting that approximately 650 million adults were obese in 2016. Obesity is a major risk factor for several chronic diseases such as diabetes, cardiovascular diseases, and cancer. In recent years, several interventions have been proposed to address this issue, including lifestyle changes, pharmacotherapy, and bariatric surgery. However, there is a lack of consensus on the most effective intervention for obesity management. This study aims to investigate the efficacy of different interventions for obesity management and identify the most effective one.

Example 2: Antibiotic resistance has become a major public health threat worldwide. Infections caused by antibiotic-resistant bacteria are associated with longer hospital stays, higher healthcare costs, and increased mortality. The inappropriate use of antibiotics is one of the main factors contributing to the development of antibiotic resistance. Despite numerous efforts to promote the rational use of antibiotics, studies have shown that many healthcare providers continue to prescribe antibiotics inappropriately. This study aims to explore the factors influencing healthcare providers’ prescribing behavior and identify strategies to improve antibiotic prescribing practices.

Example 3: Social media has become an integral part of modern communication, with millions of people worldwide using platforms such as Facebook, Twitter, and Instagram. Social media has several advantages, including facilitating communication, connecting people, and disseminating information. However, social media use has also been associated with several negative outcomes, including cyberbullying, addiction, and mental health problems. This study aims to investigate the impact of social media use on mental health and identify the factors that mediate this relationship.

Purpose of Background of The Study

The primary purpose of the background of the study is to help the reader understand the rationale for the research by presenting the historical, theoretical, and empirical background of the problem.

More specifically, the background of the study aims to:

  • Provide a clear understanding of the research problem and its context.
  • Identify the gap in knowledge that the study intends to fill.
  • Establish the significance of the research problem and its potential contribution to the field.
  • Highlight the key concepts, theories, and research findings related to the problem.
  • Provide a rationale for the research questions or hypotheses and the research design.
  • Identify the limitations and scope of the study.

When to Write Background of The Study

The background of the study should be written early on in the research process, ideally before the research design is finalized and data collection begins. This allows the researcher to clearly articulate the rationale for the study and establish a strong foundation for the research.

The background of the study typically comes after the introduction but before the literature review section. It should provide an overview of the research problem and its context, and also introduce the key concepts, theories, and research findings related to the problem.

Writing the background of the study early on in the research process also helps to identify potential gaps in knowledge and areas for further investigation, which can guide the development of the research questions or hypotheses and the research design. By establishing the significance of the research problem and its potential contribution to the field, the background of the study can also help to justify the research and secure funding or support from stakeholders.

Advantage of Background of The Study

The background of the study has several advantages, including:

  • Provides context: The background of the study provides context for the research problem by highlighting the historical, theoretical, and empirical background of the problem. This allows the reader to understand the research problem in its broader context and appreciate its significance.
  • Identifies gaps in knowledge: By reviewing the existing literature related to the research problem, the background of the study can identify gaps in knowledge that the study intends to fill. This helps to establish the novelty and originality of the research and its potential contribution to the field.
  • Justifies the research : The background of the study helps to justify the research by demonstrating its significance and potential impact. This can be useful in securing funding or support for the research.
  • Guides the research design: The background of the study can guide the development of the research questions or hypotheses and the research design by identifying key concepts, theories, and research findings related to the problem. This ensures that the research is grounded in existing knowledge and is designed to address the research problem effectively.
  • Establishes credibility: By demonstrating the researcher’s knowledge of the field and the research problem, the background of the study can establish the researcher’s credibility and expertise, which can enhance the trustworthiness and validity of the research.

Disadvantages of Background of The Study

Some Disadvantages of Background of The Study are as follows:

  • Time-consuming : Writing a comprehensive background of the study can be time-consuming, especially if the research problem is complex and multifaceted. This can delay the research process and impact the timeline for completing the study.
  • Repetitive: The background of the study can sometimes be repetitive, as it often involves summarizing existing research and theories related to the research problem. This can be tedious for the reader and may make the section less engaging.
  • Limitations of existing research: The background of the study can reveal the limitations of existing research related to the problem. This can create challenges for the researcher in developing research questions or hypotheses that address the gaps in knowledge identified in the background of the study.
  • Bias : The researcher’s biases and perspectives can influence the content and tone of the background of the study. This can impact the reader’s perception of the research problem and may influence the validity of the research.
  • Accessibility: Accessing and reviewing the literature related to the research problem can be challenging, especially if the researcher does not have access to a comprehensive database or if the literature is not available in the researcher’s language. This can limit the depth and scope of the background of the study.

About the author

' src=

Muhammad Hassan

Researcher, Academic Writer, Web developer

You may also like

References in Research

References in Research – Types, Examples and...

Institutional Review Board (IRB)

Institutional Review Board – Application Sample...

Limitations in Research

Limitations in Research – Types, Examples and...

Research Questions

Research Questions – Types, Examples and Writing...

Research Process

Research Process – Steps, Examples and Tips

Research Objectives

Research Objectives – Types, Examples and...

  • Research Process
  • Manuscript Preparation
  • Manuscript Review
  • Publication Process
  • Publication Recognition
  • Language Editing Services
  • Translation Services

Elsevier QRcode Wechat

What is the Background of a Study and How Should it be Written?

  • 3 minute read
  • 980.2K views

Table of Contents

The background of a study is one of the most important components of a research paper. The quality of the background determines whether the reader will be interested in the rest of the study. Thus, to ensure that the audience is invested in reading the entire research paper, it is important to write an appealing and effective background. So, what constitutes the background of a study, and how must it be written?

What is the background of a study?

The background of a study is the first section of the paper and establishes the context underlying the research. It contains the rationale, the key problem statement, and a brief overview of research questions that are addressed in the rest of the paper. The background forms the crux of the study because it introduces an unaware audience to the research and its importance in a clear and logical manner. At times, the background may even explore whether the study builds on or refutes findings from previous studies. Any relevant information that the readers need to know before delving into the paper should be made available to them in the background.

How is a background different from the introduction?

The introduction of your research paper is presented before the background. Let’s find out what factors differentiate the background from the introduction.

  • The introduction only contains preliminary data about the research topic and does not state the purpose of the study. On the contrary, the background clarifies the importance of the study in detail.
  • The introduction provides an overview of the research topic from a broader perspective, while the background provides a detailed understanding of the topic.
  • The introduction should end with the mention of the research questions, aims, and objectives of the study. In contrast, the background follows no such format and only provides essential context to the study.

How should one write the background of a research paper?

The length and detail presented in the background varies for different research papers, depending on the complexity and novelty of the research topic. At times, a simple background suffices, even if the study is complex. Before writing and adding details in the background, take a note of these additional points:

  • Start with a strong beginning: Begin the background by defining the research topic and then identify the target audience.
  • Cover key components: Explain all theories, concepts, terms, and ideas that may feel unfamiliar to the target audience thoroughly.
  • Take note of important prerequisites: Go through the relevant literature in detail. Take notes while reading and cite the sources.
  • Maintain a balance: Make sure that the background is focused on important details, but also appeals to a broader audience.
  • Include historical data: Current issues largely originate from historical events or findings. If the research borrows information from a historical context, add relevant data in the background.
  • Explain novelty: If the research study or methodology is unique or novel, provide an explanation that helps to understand the research better.
  • Increase engagement: To make the background engaging, build a story around the central theme of the research

Avoid these mistakes while writing the background:

  • Ambiguity: Don’t be ambiguous. While writing, assume that the reader does not understand any intricate detail about your research.
  • Unrelated themes: Steer clear from topics that are not related to the key aspects of your research topic.
  • Poor organization: Do not place information without a structure. Make sure that the background reads in a chronological manner and organize the sub-sections so that it flows well.

Writing the background for a research paper should not be a daunting task. But directions to go about it can always help. At Elsevier Author Services we provide essential insights on how to write a high quality, appealing, and logically structured paper for publication, beginning with a robust background. For further queries, contact our experts now!

How to Use Tables and Figures effectively in Research Papers

How to Use Tables and Figures effectively in Research Papers

Qualities of Every Good Researcher

The Top 5 Qualities of Every Good Researcher

You may also like.

Academic paper format

Submission 101: What format should be used for academic papers?

Being Mindful of Tone and Structure in Artilces

Page-Turner Articles are More Than Just Good Arguments: Be Mindful of Tone and Structure!

How to Ensure Inclusivity in Your Scientific Writing

A Must-see for Researchers! How to Ensure Inclusivity in Your Scientific Writing

impactful introduction section

Make Hook, Line, and Sinker: The Art of Crafting Engaging Introductions

Limitations of a Research

Can Describing Study Limitations Improve the Quality of Your Paper?

Guide to Crafting Impactful Sentences

A Guide to Crafting Shorter, Impactful Sentences in Academic Writing

Write an Excellent Discussion in Your Manuscript

6 Steps to Write an Excellent Discussion in Your Manuscript

How to Write Clear Civil Engineering Papers

How to Write Clear and Crisp Civil Engineering Papers? Here are 5 Key Tips to Consider

Input your search keywords and press Enter.

How to Write a Science Fair Project Report

Lab Reports and Research Essays

  • Projects & Experiments
  • Chemical Laws
  • Periodic Table
  • Scientific Method
  • Biochemistry
  • Physical Chemistry
  • Medical Chemistry
  • Chemistry In Everyday Life
  • Famous Chemists
  • Activities for Kids
  • Abbreviations & Acronyms
  • Weather & Climate
  • Ph.D., Biomedical Sciences, University of Tennessee at Knoxville
  • B.A., Physics and Mathematics, Hastings College

Writing a science fair project report may seem like a challenging task, but it is not as difficult as it first appears. This is a format that you may use to write a science project report. If your project included animals, humans, hazardous materials, or regulated substances, you can attach an appendix that describes any special activities your project required. Also, some reports may benefit from additional sections, such as abstracts and bibliographies. You may find it helpful to fill out the science fair lab report template to prepare your report.

Important: Some science fairs have guidelines put forth by the science fair committee or an instructor. If your science fair has these guidelines, be sure to follow them.

  • Title:  For a science fair, you probably want a catchy, clever title. Otherwise, try to make it an accurate description of the project. For example, I could entitle a project, "Determining Minimum NaCl Concentration That Can Be Tasted in Water." Avoid unnecessary words, while covering the essential purpose of the project. Whatever title you come up with, get it critiqued by friends, family, or teachers.
  • Introduction and Purpose:  Sometimes this section is called "background." Whatever its name, this section introduces the topic of the project, notes any information already available, explains why you are interested in the project, and states the purpose of the project. If you are going to state references in your report, this is where most of the citations are likely to be, with the actual references listed at the end of the entire report in the form of a bibliography or reference section.
  • The Hypothesis or Question:  Explicitly state your hypothesis or question.
  • Materials and Methods:  List the materials you used in your project and describe the procedure that you used to perform the project. If you have a photo or diagram of your project, this is a good place to include it.
  • Data and Results:  Data and results are not the same things. Some reports will require that they be in separate sections, so make sure you understand the difference between the concepts. Data refers to the actual numbers or other information you obtained in your project. Data can be presented in tables or charts, if appropriate. The results section is where the data is manipulated or the hypothesis is tested. Sometimes this analysis will yield tables, graphs, or charts, too. For example, a table listing the minimum concentration of salt that I can taste in water, with each line in the table being a separate test or trial, would be data. If I average the data or perform a statistical test of a null hypothesis , the information would be the results of the project.
  • Conclusion:  The conclusion focuses on the hypothesis or question as it compares to the data and results. What was the answer to the question? Was the hypothesis supported (keep in mind a hypothesis cannot be proved, only disproved)? What did you find out from the experiment? Answer these questions first. Then, depending on your answers, you may wish to explain the ways in which the project might be improved or introduce new questions that have come up as a result of the project. This section is judged not only by what you were able to conclude but also by your recognition of areas where you could not draw valid conclusions based on your data.

Appearances Matter

Neatness counts, spelling counts, grammar counts. Take the time to make the report look nice. Pay attention to margins, avoid fonts that are difficult to read or are too small or too large, use clean paper, and make print the report cleanly on as good a printer or copier as you can.

  • Science Fair Project Help
  • How to Select a Science Fair Project Topic
  • Chemistry Science Fair Project Ideas
  • Science Fair Project Ideas for 12th Graders
  • 11th Grade Science Fair Projects
  • 3rd Grade Science Fair Projects
  • College Science Fair Projects
  • 10th Grade Science Fair Projects
  • 5th Grade Science Fair Projects
  • 8th Grade Science Fair Project Ideas
  • First-Grade Science Projects
  • Sports Science Fair Project Ideas
  • Why Do a Science Fair Project?
  • Magnetism Science Fair Projects
  • Crystal Science Fair Projects
  • 6th Grade Science Fair Projects

Educational resources and simple solutions for your research journey

background research science report

What is the Background of a Study and How to Write It (Examples Included)

background research science report

Have you ever found yourself struggling to write a background of the study for your research paper? You’re not alone. While the background of a study is an essential element of a research manuscript, it’s also one of the most challenging pieces to write. This is because it requires researchers to provide context and justification for their research, highlight the significance of their study, and situate their work within the existing body of knowledge in the field.  

Despite its challenges, the background of a study is crucial for any research paper. A compelling well-written background of the study can not only promote confidence in the overall quality of your research analysis and findings, but it can also determine whether readers will be interested in knowing more about the rest of the research study.  

In this article, we’ll explore the key elements of the background of a study and provide simple guidelines on how to write one effectively. Whether you’re a seasoned researcher or a graduate student working on your first research manuscript, this post will explain how to write a background for your study that is compelling and informative.  

Table of Contents

What is the background of a study ?  

Typically placed in the beginning of your research paper, the background of a study serves to convey the central argument of your study and its significance clearly and logically to an uninformed audience. The background of a study in a research paper helps to establish the research problem or gap in knowledge that the study aims to address, sets the stage for the research question and objectives, and highlights the significance of the research. The background of a study also includes a review of relevant literature, which helps researchers understand where the research study is placed in the current body of knowledge in a specific research discipline. It includes the reason for the study, the thesis statement, and a summary of the concept or problem being examined by the researcher. At times, the background of a study can may even examine whether your research supports or contradicts the results of earlier studies or existing knowledge on the subject.  

background research science report

How is the background of a study different from the introduction?  

It is common to find early career researchers getting confused between the background of a study and the introduction in a research paper. Many incorrectly consider these two vital parts of a research paper the same and use these terms interchangeably. The confusion is understandable, however, it’s important to know that the introduction and the background of the study are distinct elements and serve very different purposes.   

  • The basic different between the background of a study and the introduction is kind of information that is shared with the readers . While the introduction provides an overview of the specific research topic and touches upon key parts of the research paper, the background of the study presents a detailed discussion on the existing literature in the field, identifies research gaps, and how the research being done will add to current knowledge.  
  • The introduction aims to capture the reader’s attention and interest and to provide a clear and concise summary of the research project. It typically begins with a general statement of the research problem and then narrows down to the specific research question. It may also include an overview of the research design, methodology, and scope. The background of the study outlines the historical, theoretical, and empirical background that led to the research question to highlight its importance. It typically offers an overview of the research field and may include a review of the literature to highlight gaps, controversies, or limitations in the existing knowledge and to justify the need for further research.  
  • Both these sections appear at the beginning of a research paper. In some cases the introduction may come before the background of the study , although in most instances the latter is integrated into the introduction itself. The length of the introduction and background of a study can differ based on the journal guidelines and the complexity of a specific research study.  

Learn to convey study relevance, integrate literature reviews, and articulate research gaps in the background section. Get your All Access Pack now!    

To put it simply, the background of the study provides context for the study by explaining how your research fills a research gap in existing knowledge in the field and how it will add to it. The introduction section explains how the research fills this gap by stating the research topic, the objectives of the research and the findings – it sets the context for the rest of the paper.   

Where is the background of a study placed in a research paper?  

T he background of a study is typically placed in the introduction section of a research paper and is positioned after the statement of the problem. Researchers should try and present the background of the study in clear logical structure by dividing it into several sections, such as introduction, literature review, and research gap. This will make it easier for the reader to understand the research problem and the motivation for the study.  

So, when should you write the background of your study ? It’s recommended that researchers write this section after they have conducted a thorough literature review and identified the research problem, research question, and objectives. This way, they can effectively situate their study within the existing body of knowledge in the field and provide a clear rationale for their research.  

background research science report

Creating an effective background of a study structure  

Given that the purpose of writing the background of your study is to make readers understand the reasons for conducting the research, it is important to create an outline and basic framework to work within. This will make it easier to write the background of the study and will ensure that it is comprehensive and compelling for readers.  

While creating a background of the study structure for research papers, it is crucial to have a clear understanding of the essential elements that should be included. Make sure you incorporate the following elements in the background of the study section :   

  • Present a general overview of the research topic, its significance, and main aims; this may be like establishing the “importance of the topic” in the introduction.   
  • Discuss the existing level of research done on the research topic or on related topics in the field to set context for your research. Be concise and mention only the relevant part of studies, ideally in chronological order to reflect the progress being made.  
  • Highlight disputes in the field as well as claims made by scientists, organizations, or key policymakers that need to be investigated. This forms the foundation of your research methodology and solidifies the aims of your study.   
  • Describe if and how the methods and techniques used in the research study are different from those used in previous research on similar topics.   

By including these critical elements in the background of your study , you can provide your readers with a comprehensive understanding of your research and its context.  

What is the background of a study and how to write it

How to write a background of the study in research papers ?  

Now that you know the essential elements to include, it’s time to discuss how to write the background of the study in a concise and interesting way that engages audiences. The best way to do this is to build a clear narrative around the central theme of your research so that readers can grasp the concept and identify the gaps that the study will address. While the length and detail presented in the background of a study could vary depending on the complexity and novelty of the research topic, it is imperative to avoid wordiness. For research that is interdisciplinary, mentioning how the disciplines are connected and highlighting specific aspects to be studied helps readers understand the research better.   

While there are different styles of writing the background of a study , it always helps to have a clear plan in place. Let us look at how to write a background of study for research papers.    

  • Identify the research problem: Begin the background by defining the research topic, and highlighting the main issue or question that the research aims to address. The research problem should be clear, specific, and relevant to the field of study. It should be framed using simple, easy to understand language and must be meaningful to intended audiences.  
  • Craft an impactful statement of the research objectives: While writing the background of the study it is critical to highlight the research objectives and specific goals that the study aims to achieve. The research objectives should be closely related to the research problem and must be aligned with the overall purpose of the study.  
  • Conduct a review of available literature: When writing the background of the research , provide a summary of relevant literature in the field and related research that has been conducted around the topic. Remember to record the search terms used and keep track of articles that you read so that sources can be cited accurately. Ensure that the literature you include is sourced from credible sources.  
  • Address existing controversies and assumptions: It is a good idea to acknowledge and clarify existing claims and controversies regarding the subject of your research. For example, if your research topic involves an issue that has been widely discussed due to ethical or politically considerations, it is best to address them when writing the background of the study .  
  • Present the relevance of the study: It is also important to provide a justification for the research. This is where the researcher explains why the study is important and what contributions it will make to existing knowledge on the subject. Highlighting key concepts and theories and explaining terms and ideas that may feel unfamiliar to readers makes the background of the study content more impactful.  
  • Proofread to eliminate errors in language, structure, and data shared: Once the first draft is done, it is a good idea to read and re-read the draft a few times to weed out possible grammatical errors or inaccuracies in the information provided. In fact, experts suggest that it is helpful to have your supervisor or peers read and edit the background of the study . Their feedback can help ensure that even inadvertent errors are not overlooked.  

Get exclusive discounts on e xpert-led editing to publication support with Researcher.Life’s All Access Pack. Get yours now!  

background research science report

How to avoid mistakes in writing the background of a study  

While figuring out how to write the background of a study , it is also important to know the most common mistakes authors make so you can steer clear of these in your research paper.   

  • Write the background of a study in a formal academic tone while keeping the language clear and simple. Check for the excessive use of jargon and technical terminology that could confuse your readers.   
  • Avoid including unrelated concepts that could distract from the subject of research. Instead, focus your discussion around the key aspects of your study by highlighting gaps in existing literature and knowledge and the novelty and necessity of your study.   
  • Provide relevant, reliable evidence to support your claims and citing sources correctly; be sure to follow a consistent referencing format and style throughout the paper.   
  • Ensure that the details presented in the background of the study are captured chronologically and organized into sub-sections for easy reading and comprehension.  
  • Check the journal guidelines for the recommended length for this section so that you include all the important details in a concise manner. 

By keeping these tips in mind, you can create a clear, concise, and compelling background of the study for your research paper. Take this example of a background of the study on the impact of social media on mental health.  

Social media has become a ubiquitous aspect of modern life, with people of all ages, genders, and backgrounds using platforms such as Facebook, Instagram, and Twitter to connect with others, share information, and stay updated on news and events. While social media has many potential benefits, including increased social connectivity and access to information, there is growing concern about its impact on mental health.   Research has suggested that social media use is associated with a range of negative mental health outcomes, including increased rates of anxiety, depression, and loneliness. This is thought to be due, in part, to the social comparison processes that occur on social media, whereby users compare their lives to the idealized versions of others that are presented online.   Despite these concerns, there is also evidence to suggest that social media can have positive effects on mental health. For example, social media can provide a sense of social support and community, which can be beneficial for individuals who are socially isolated or marginalized.   Given the potential benefits and risks of social media use for mental health, it is important to gain a better understanding of the mechanisms underlying these effects. This study aims to investigate the relationship between social media use and mental health outcomes, with a particular focus on the role of social comparison processes. By doing so, we hope to shed light on the potential risks and benefits of social media use for mental health, and to provide insights that can inform interventions and policies aimed at promoting healthy social media use.  

To conclude, the background of a study is a crucial component of a research manuscript and must be planned, structured, and presented in a way that attracts reader attention, compels them to read the manuscript, creates an impact on the minds of readers and sets the stage for future discussions. 

A well-written background of the study not only provides researchers with a clear direction on conducting their research, but it also enables readers to understand and appreciate the relevance of the research work being done.   

background research science report

Frequently Asked Questions (FAQs) on background of the study

Q: How does the background of the study help the reader understand the research better?

The background of the study plays a crucial role in helping readers understand the research better by providing the necessary context, framing the research problem, and establishing its significance. It helps readers:

  • understand the larger framework, historical development, and existing knowledge related to a research topic
  • identify gaps, limitations, or unresolved issues in the existing literature or knowledge
  • outline potential contributions, practical implications, or theoretical advancements that the research aims to achieve
  • and learn the specific context and limitations of the research project

Q: Does the background of the study need citation?

Yes, the background of the study in a research paper should include citations to support and acknowledge the sources of information and ideas presented. When you provide information or make statements in the background section that are based on previous studies, theories, or established knowledge, it is important to cite the relevant sources. This establishes credibility, enables verification, and demonstrates the depth of literature review you’ve done.

Q: What is the difference between background of the study and problem statement?

The background of the study provides context and establishes the research’s foundation while the problem statement clearly states the problem being addressed and the research questions or objectives.

Editage All Access is a subscription-based platform that unifies the best AI tools and services designed to speed up, simplify, and streamline every step of a researcher’s journey. The Editage All Access Pack is a one-of-a-kind subscription that unlocks full access to an AI writing assistant, literature recommender, journal finder, scientific illustration tool, and exclusive discounts on professional publication services from Editage.  

Based on 22+ years of experience in academia, Editage All Access empowers researchers to put their best research forward and move closer to success. Explore our top AI Tools pack, AI Tools + Publication Services pack, or Build Your Own Plan. Find everything a researcher needs to succeed, all in one place –  Get All Access now starting at just $14 a month !    

Related Posts

IMRAD format

What is IMRaD Format in Research?

what is a review article

What is a Review Article? How to Write it?

Banner

Background Research

What is background research, tyes of background information.

  • General Sources
  • Subject Specific Sources

Background research (or pre-research) is the research that you do before you start writing your paper or working on your project. Sometimes background research happens before you've even chosen a topic. The purpose of background research is to make the research that goes into your paper or project easier and more successful.

Some reasons to do background research include:

  • Determining an appropriate scope for your research: Successful research starts with a topic or question that is appropriate to the scope of the assignment. A topic that is too broad means too much relevant information to review and distill. If your topic is too narrow, there won't be enough information to do meaningful research.
  • Understanding how your research fits in with the broader conversation surrounding the topic: What are the major points of view or areas of interest in discussions of your research topic and how does your research fit in with these? Answering this question can help you define the parts of your topic that you need to explore.
  • Establishing the value of your research : What is the impact of your research and why does it matter? How might your research clarify or change our understanding of the topic?
  • Identifying experts and other important perspectives: Are there scholars whose work you need to understand for your research to be complete? Are there points of view that you need to include or address?

Doing background research helps you choose a topic that you'll be happy with and develop a sense of what research you'll need to do in order to successfully complete your assignment. It will also help you plan your research and understand how much time you'll need to dedicate to understanding and exploring your topic.

Some types of information sources can be particularly helpful when you're doing background research. These are often primarily tertiary sources meaning that, rather than conducting original research they often summarize existing research on the topic.

Current Events Briefs Databases like CQ Researcher are focused on understanding controversial topics in current events. They provide information about the background of the issue as well as explanations of the positions of those on either side of a controversy.

Encyclopedias  Encyclopedias are ideal sources for doing background research in order build your knowledge about a topic sufficiently to identify a topic and develop a research plan.

Dictionaries Dictionaries include both general dictionaries like the Oxford English Dictionary as well as more specialized dictionaries focused on a single area. Dictionary entries are usually shorter and less detailed than encyclopedia entries and generally do not include references. However, they can be helpful when your research introduces you to concepts with which you aren't familiar.

Textbooks Your textbook is a potential source of background information, providing an explanation of the topic that prepares you to focus and dig deeper. Textbooks give a general overview of lot of information.

Statistics While you may find that it's difficult to make sense of statistics related to your topic while you're still exploring, statistics can be a powerful tool for establishing the context and importance of your research.

  • Next: General Sources >>
  • Last Updated: Jul 16, 2024 8:42 AM
  • URL: https://guides.lib.odu.edu/background
  • Resources Home 🏠
  • Try SciSpace Copilot
  • Search research papers
  • Add Copilot Extension
  • Try AI Detector
  • Try Paraphraser
  • Try Citation Generator
  • April Papers
  • June Papers
  • July Papers

SciSpace Resources

How to Write an Effective Background of the Study: A Comprehensive Guide

Madalsa

Table of Contents

The background of the study in a research paper offers a clear context, highlighting why the research is essential and the problem it aims to address.

As a researcher, this foundational section is essential for you to chart the course of your study, Moreover, it allows readers to understand the importance and path of your research.

Whether in academic communities or to the general public, a well-articulated background aids in communicating the essence of the research effectively.

While it may seem straightforward, crafting an effective background requires a blend of clarity, precision, and relevance. Therefore, this article aims to be your guide, offering insights into:

  • Understanding the concept of the background of the study.
  • Learning how to craft a compelling background effectively.
  • Identifying and sidestepping common pitfalls in writing the background.
  • Exploring practical examples that bring the theory to life.
  • Enhancing both your writing and reading of academic papers.

Keeping these compelling insights in mind, let's delve deeper into the details of the empirical background of the study, exploring its definition, distinctions, and the art of writing it effectively.

What is the background of the study?

The background of the study is placed at the beginning of a research paper. It provides the context, circumstances, and history that led to the research problem or topic being explored.

It offers readers a snapshot of the existing knowledge on the topic and the reasons that spurred your current research.

When crafting the background of your study, consider the following questions.

  • What's the context of your research?
  • Which previous research will you refer to?
  • Are there any knowledge gaps in the existing relevant literature?
  • How will you justify the need for your current research?
  • Have you concisely presented the research question or problem?

In a typical research paper structure, after presenting the background, the introduction section follows. The introduction delves deeper into the specific objectives of the research and often outlines the structure or main points that the paper will cover.

Together, they create a cohesive starting point, ensuring readers are well-equipped to understand the subsequent sections of the research paper.

While the background of the study and the introduction section of the research manuscript may seem similar and sometimes even overlap, each serves a unique purpose in the research narrative.

Difference between background and introduction

A well-written background of the study and introduction are preliminary sections of a research paper and serve distinct purposes.

Here’s a detailed tabular comparison between the two of them.

Aspect

Background

Introduction

Primary purpose

Provides context and logical reasons for the research, explaining why the study is necessary.

Entails the broader scope of the research, hinting at its objectives and significance.

Depth of information

It delves into the existing literature, highlighting gaps or unresolved questions that the research aims to address.

It offers a general overview, touching upon the research topic without going into extensive detail.

Content focus

The focus is on historical context, previous studies, and the evolution of the research topic.

The focus is on the broader research field, potential implications, and a preview of the research structure.

Position in a research paper

Typically comes at the very beginning, setting the stage for the research.

Follows the background, leading readers into the main body of the research.

Tone

Analytical, detailing the topic and its significance.

General and anticipatory, preparing readers for the depth and direction of the focus of the study.

What is the relevance of the background of the study?

It is necessary for you to provide your readers with the background of your research. Without this, readers may grapple with questions such as: Why was this specific research topic chosen? What led to this decision? Why is this study relevant? Is it worth their time?

Such uncertainties can deter them from fully engaging with your study, leading to the rejection of your research paper. Additionally, this can diminish its impact in the academic community, and reduce its potential for real-world application or policy influence .

To address these concerns and offer clarity, the background section plays a pivotal role in research papers.

The background of the study in research is important as it:

  • Provides context: It offers readers a clear picture of the existing knowledge, helping them understand where the current research fits in.
  • Highlights relevance: By detailing the reasons for the research, it underscores the study's significance and its potential impact.
  • Guides the narrative: The background shapes the narrative flow of the paper, ensuring a logical progression from what's known to what the research aims to uncover.
  • Enhances engagement: A well-crafted background piques the reader's interest, encouraging them to delve deeper into the research paper.
  • Aids in comprehension: By setting the scenario, it aids readers in better grasping the research objectives, methodologies, and findings.

How to write the background of the study in a research paper?

The journey of presenting a compelling argument begins with the background study. This section holds the power to either captivate or lose the reader's interest.

An effectively written background not only provides context but also sets the tone for the entire research paper. It's the bridge that connects a broad topic to a specific research question, guiding readers through the logic behind the study.

But how does one craft a background of the study that resonates, informs, and engages?

Here, we’ll discuss how to write an impactful background study, ensuring your research stands out and captures the attention it deserves.

Identify the research problem

The first step is to start pinpointing the specific issue or gap you're addressing. This should be a significant and relevant problem in your field.

A well-defined problem is specific, relevant, and significant to your field. It should resonate with both experts and readers.

Here’s more on how to write an effective research problem .

Provide context

Here, you need to provide a broader perspective, illustrating how your research aligns with or contributes to the overarching context or the wider field of study. A comprehensive context is grounded in facts, offers multiple perspectives, and is relatable.

In addition to stating facts, you should weave a story that connects key concepts from the past, present, and potential future research. For instance, consider the following approach.

  • Offer a brief history of the topic, highlighting major milestones or turning points that have shaped the current landscape.
  • Discuss contemporary developments or current trends that provide relevant information to your research problem. This could include technological advancements, policy changes, or shifts in societal attitudes.
  • Highlight the views of different stakeholders. For a topic like sustainable agriculture, this could mean discussing the perspectives of farmers, environmentalists, policymakers, and consumers.
  • If relevant, compare and contrast global trends with local conditions and circumstances. This can offer readers a more holistic understanding of the topic.

Literature review

For this step, you’ll deep dive into the existing literature on the same topic. It's where you explore what scholars, researchers, and experts have already discovered or discussed about your topic.

Conducting a thorough literature review isn't just a recap of past works. To elevate its efficacy, it's essential to analyze the methods, outcomes, and intricacies of prior research work, demonstrating a thorough engagement with the existing body of knowledge.

  • Instead of merely listing past research study, delve into their methodologies, findings, and limitations. Highlight groundbreaking studies and those that had contrasting results.
  • Try to identify patterns. Look for recurring themes or trends in the literature. Are there common conclusions or contentious points?
  • The next step would be to connect the dots. Show how different pieces of research relate to each other. This can help in understanding the evolution of thought on the topic.

By showcasing what's already known, you can better highlight the background of the study in research.

Highlight the research gap

This step involves identifying the unexplored areas or unanswered questions in the existing literature. Your research seeks to address these gaps, providing new insights or answers.

A clear research gap shows you've thoroughly engaged with existing literature and found an area that needs further exploration.

How can you efficiently highlight the research gap?

  • Find the overlooked areas. Point out topics or angles that haven't been adequately addressed.
  • Highlight questions that have emerged due to recent developments or changing circumstances.
  • Identify areas where insights from other fields might be beneficial but haven't been explored yet.

State your objectives

Here, it’s all about laying out your game plan — What do you hope to achieve with your research? You need to mention a clear objective that’s specific, actionable, and directly tied to the research gap.

How to state your objectives?

  • List the primary questions guiding your research.
  • If applicable, state any hypotheses or predictions you aim to test.
  • Specify what you hope to achieve, whether it's new insights, solutions, or methodologies.

Discuss the significance

This step describes your 'why'. Why is your research important? What broader implications does it have?

The significance of “why” should be both theoretical (adding to the existing literature) and practical (having real-world implications).

How do we effectively discuss the significance?

  • Discuss how your research adds to the existing body of knowledge.
  • Highlight how your findings could be applied in real-world scenarios, from policy changes to on-ground practices.
  • Point out how your research could pave the way for further studies or open up new areas of exploration.

Summarize your points

A concise summary acts as a bridge, smoothly transitioning readers from the background to the main body of the paper. This step is a brief recap, ensuring that readers have grasped the foundational concepts.

How to summarize your study?

  • Revisit the key points discussed, from the research problem to its significance.
  • Prepare the reader for the subsequent sections, ensuring they understand the research's direction.

Include examples for better understanding

Research and come up with real-world or hypothetical examples to clarify complex concepts or to illustrate the practical applications of your research. Relevant examples make abstract ideas tangible, aiding comprehension.

How to include an effective example of the background of the study?

  • Use past events or scenarios to explain concepts.
  • Craft potential scenarios to demonstrate the implications of your findings.
  • Use comparisons to simplify complex ideas, making them more relatable.

Crafting a compelling background of the study in research is about striking the right balance between providing essential context, showcasing your comprehensive understanding of the existing literature, and highlighting the unique value of your research .

While writing the background of the study, keep your readers at the forefront of your mind. Every piece of information, every example, and every objective should be geared toward helping them understand and appreciate your research.

How to avoid mistakes in the background of the study in research?

To write a well-crafted background of the study, you should be aware of the following potential research pitfalls .

  • Stay away from ambiguity. Always assume that your reader might not be familiar with intricate details about your topic.
  • Avoid discussing unrelated themes. Stick to what's directly relevant to your research problem.
  • Ensure your background is well-organized. Information should flow logically, making it easy for readers to follow.
  • While it's vital to provide context, avoid overwhelming the reader with excessive details that might not be directly relevant to your research problem.
  • Ensure you've covered the most significant and relevant studies i` n your field. Overlooking key pieces of literature can make your background seem incomplete.
  • Aim for a balanced presentation of facts, and avoid showing overt bias or presenting only one side of an argument.
  • While academic paper often involves specialized terms, ensure they're adequately explained or use simpler alternatives when possible.
  • Every claim or piece of information taken from existing literature should be appropriately cited. Failing to do so can lead to issues of plagiarism.
  • Avoid making the background too lengthy. While thoroughness is appreciated, it should not come at the expense of losing the reader's interest. Maybe prefer to keep it to one-two paragraphs long.
  • Especially in rapidly evolving fields, it's crucial to ensure that your literature review section is up-to-date and includes the latest research.

Example of an effective background of the study

Let's consider a topic: "The Impact of Online Learning on Student Performance." The ideal background of the study section for this topic would be as follows.

In the last decade, the rise of the internet has revolutionized many sectors, including education. Online learning platforms, once a supplementary educational tool, have now become a primary mode of instruction for many institutions worldwide. With the recent global events, such as the COVID-19 pandemic, there has been a rapid shift from traditional classroom learning to online modes, making it imperative to understand its effects on student performance.

Previous studies have explored various facets of online learning, from its accessibility to its flexibility. However, there is a growing need to assess its direct impact on student outcomes. While some educators advocate for its benefits, citing the convenience and vast resources available, others express concerns about potential drawbacks, such as reduced student engagement and the challenges of self-discipline.

This research aims to delve deeper into this debate, evaluating the true impact of online learning on student performance.

Why is this example considered as an effective background section of a research paper?

This background section example effectively sets the context by highlighting the rise of online learning and its increased relevance due to recent global events. It references prior research on the topic, indicating a foundation built on existing knowledge.

By presenting both the potential advantages and concerns of online learning, it establishes a balanced view, leading to the clear purpose of the study: to evaluate the true impact of online learning on student performance.

As we've explored, writing an effective background of the study in research requires clarity, precision, and a keen understanding of both the broader landscape and the specific details of your topic.

From identifying the research problem, providing context, reviewing existing literature to highlighting research gaps and stating objectives, each step is pivotal in shaping the narrative of your research. And while there are best practices to follow, it's equally crucial to be aware of the pitfalls to avoid.

Remember, writing or refining the background of your study is essential to engage your readers, familiarize them with the research context, and set the ground for the insights your research project will unveil.

Drawing from all the important details, insights and guidance shared, you're now in a strong position to craft a background of the study that not only informs but also engages and resonates with your readers.

Now that you've a clear understanding of what the background of the study aims to achieve, the natural progression is to delve into the next crucial component — write an effective introduction section of a research paper. Read here .

Frequently Asked Questions

The background of the study should include a clear context for the research, references to relevant previous studies, identification of knowledge gaps, justification for the current research, a concise overview of the research problem or question, and an indication of the study's significance or potential impact.

The background of the study is written to provide readers with a clear understanding of the context, significance, and rationale behind the research. It offers a snapshot of existing knowledge on the topic, highlights the relevance of the study, and sets the stage for the research questions and objectives. It ensures that readers can grasp the importance of the research and its place within the broader field of study.

The background of the study is a section in a research paper that provides context, circumstances, and history leading to the research problem or topic being explored. It presents existing knowledge on the topic and outlines the reasons that spurred the current research, helping readers understand the research's foundation and its significance in the broader academic landscape.

The number of paragraphs in the background of the study can vary based on the complexity of the topic and the depth of the context required. Typically, it might range from 3 to 5 paragraphs, but in more detailed or complex research papers, it could be longer. The key is to ensure that all relevant information is presented clearly and concisely, without unnecessary repetition.

background research science report

You might also like

Boosting Citations: A Comparative Analysis of Graphical Abstract vs. Video Abstract

Boosting Citations: A Comparative Analysis of Graphical Abstract vs. Video Abstract

Sumalatha G

The Impact of Visual Abstracts on Boosting Citations

Introducing SciSpace’s Citation Booster To Increase Research Visibility

Introducing SciSpace’s Citation Booster To Increase Research Visibility

The Writing Center • University of North Carolina at Chapel Hill

Scientific Reports

What this handout is about.

This handout provides a general guide to writing reports about scientific research you’ve performed. In addition to describing the conventional rules about the format and content of a lab report, we’ll also attempt to convey why these rules exist, so you’ll get a clearer, more dependable idea of how to approach this writing situation. Readers of this handout may also find our handout on writing in the sciences useful.

Background and pre-writing

Why do we write research reports.

You did an experiment or study for your science class, and now you have to write it up for your teacher to review. You feel that you understood the background sufficiently, designed and completed the study effectively, obtained useful data, and can use those data to draw conclusions about a scientific process or principle. But how exactly do you write all that? What is your teacher expecting to see?

To take some of the guesswork out of answering these questions, try to think beyond the classroom setting. In fact, you and your teacher are both part of a scientific community, and the people who participate in this community tend to share the same values. As long as you understand and respect these values, your writing will likely meet the expectations of your audience—including your teacher.

So why are you writing this research report? The practical answer is “Because the teacher assigned it,” but that’s classroom thinking. Generally speaking, people investigating some scientific hypothesis have a responsibility to the rest of the scientific world to report their findings, particularly if these findings add to or contradict previous ideas. The people reading such reports have two primary goals:

  • They want to gather the information presented.
  • They want to know that the findings are legitimate.

Your job as a writer, then, is to fulfill these two goals.

How do I do that?

Good question. Here is the basic format scientists have designed for research reports:

  • Introduction

Methods and Materials

This format, sometimes called “IMRAD,” may take slightly different shapes depending on the discipline or audience; some ask you to include an abstract or separate section for the hypothesis, or call the Discussion section “Conclusions,” or change the order of the sections (some professional and academic journals require the Methods section to appear last). Overall, however, the IMRAD format was devised to represent a textual version of the scientific method.

The scientific method, you’ll probably recall, involves developing a hypothesis, testing it, and deciding whether your findings support the hypothesis. In essence, the format for a research report in the sciences mirrors the scientific method but fleshes out the process a little. Below, you’ll find a table that shows how each written section fits into the scientific method and what additional information it offers the reader.

states your hypothesis explains how you derived that hypothesis and how it connects to previous research; gives the purpose of the experiment/study
details how you tested your hypothesis clarifies why you performed your study in that particular way
provides raw (i.e., uninterpreted) data collected (perhaps) expresses the data in table form, as an easy-to-read figure, or as percentages/ratios
considers whether the data you obtained support the hypothesis explores the implications of your finding and judges the potential limitations of your experimental design

Thinking of your research report as based on the scientific method, but elaborated in the ways described above, may help you to meet your audience’s expectations successfully. We’re going to proceed by explicitly connecting each section of the lab report to the scientific method, then explaining why and how you need to elaborate that section.

Although this handout takes each section in the order in which it should be presented in the final report, you may for practical reasons decide to compose sections in another order. For example, many writers find that composing their Methods and Results before the other sections helps to clarify their idea of the experiment or study as a whole. You might consider using each assignment to practice different approaches to drafting the report, to find the order that works best for you.

What should I do before drafting the lab report?

The best way to prepare to write the lab report is to make sure that you fully understand everything you need to about the experiment. Obviously, if you don’t quite know what went on during the lab, you’re going to find it difficult to explain the lab satisfactorily to someone else. To make sure you know enough to write the report, complete the following steps:

  • What are we going to do in this lab? (That is, what’s the procedure?)
  • Why are we going to do it that way?
  • What are we hoping to learn from this experiment?
  • Why would we benefit from this knowledge?
  • Consult your lab supervisor as you perform the lab. If you don’t know how to answer one of the questions above, for example, your lab supervisor will probably be able to explain it to you (or, at least, help you figure it out).
  • Plan the steps of the experiment carefully with your lab partners. The less you rush, the more likely it is that you’ll perform the experiment correctly and record your findings accurately. Also, take some time to think about the best way to organize the data before you have to start putting numbers down. If you can design a table to account for the data, that will tend to work much better than jotting results down hurriedly on a scrap piece of paper.
  • Record the data carefully so you get them right. You won’t be able to trust your conclusions if you have the wrong data, and your readers will know you messed up if the other three people in your group have “97 degrees” and you have “87.”
  • Consult with your lab partners about everything you do. Lab groups often make one of two mistakes: two people do all the work while two have a nice chat, or everybody works together until the group finishes gathering the raw data, then scrams outta there. Collaborate with your partners, even when the experiment is “over.” What trends did you observe? Was the hypothesis supported? Did you all get the same results? What kind of figure should you use to represent your findings? The whole group can work together to answer these questions.
  • Consider your audience. You may believe that audience is a non-issue: it’s your lab TA, right? Well, yes—but again, think beyond the classroom. If you write with only your lab instructor in mind, you may omit material that is crucial to a complete understanding of your experiment, because you assume the instructor knows all that stuff already. As a result, you may receive a lower grade, since your TA won’t be sure that you understand all the principles at work. Try to write towards a student in the same course but a different lab section. That student will have a fair degree of scientific expertise but won’t know much about your experiment particularly. Alternatively, you could envision yourself five years from now, after the reading and lectures for this course have faded a bit. What would you remember, and what would you need explained more clearly (as a refresher)?

Once you’ve completed these steps as you perform the experiment, you’ll be in a good position to draft an effective lab report.

Introductions

How do i write a strong introduction.

For the purposes of this handout, we’ll consider the Introduction to contain four basic elements: the purpose, the scientific literature relevant to the subject, the hypothesis, and the reasons you believed your hypothesis viable. Let’s start by going through each element of the Introduction to clarify what it covers and why it’s important. Then we can formulate a logical organizational strategy for the section.

The inclusion of the purpose (sometimes called the objective) of the experiment often confuses writers. The biggest misconception is that the purpose is the same as the hypothesis. Not quite. We’ll get to hypotheses in a minute, but basically they provide some indication of what you expect the experiment to show. The purpose is broader, and deals more with what you expect to gain through the experiment. In a professional setting, the hypothesis might have something to do with how cells react to a certain kind of genetic manipulation, but the purpose of the experiment is to learn more about potential cancer treatments. Undergraduate reports don’t often have this wide-ranging a goal, but you should still try to maintain the distinction between your hypothesis and your purpose. In a solubility experiment, for example, your hypothesis might talk about the relationship between temperature and the rate of solubility, but the purpose is probably to learn more about some specific scientific principle underlying the process of solubility.

For starters, most people say that you should write out your working hypothesis before you perform the experiment or study. Many beginning science students neglect to do so and find themselves struggling to remember precisely which variables were involved in the process or in what way the researchers felt that they were related. Write your hypothesis down as you develop it—you’ll be glad you did.

As for the form a hypothesis should take, it’s best not to be too fancy or complicated; an inventive style isn’t nearly so important as clarity here. There’s nothing wrong with beginning your hypothesis with the phrase, “It was hypothesized that . . .” Be as specific as you can about the relationship between the different objects of your study. In other words, explain that when term A changes, term B changes in this particular way. Readers of scientific writing are rarely content with the idea that a relationship between two terms exists—they want to know what that relationship entails.

Not a hypothesis:

“It was hypothesized that there is a significant relationship between the temperature of a solvent and the rate at which a solute dissolves.”

Hypothesis:

“It was hypothesized that as the temperature of a solvent increases, the rate at which a solute will dissolve in that solvent increases.”

Put more technically, most hypotheses contain both an independent and a dependent variable. The independent variable is what you manipulate to test the reaction; the dependent variable is what changes as a result of your manipulation. In the example above, the independent variable is the temperature of the solvent, and the dependent variable is the rate of solubility. Be sure that your hypothesis includes both variables.

Justify your hypothesis

You need to do more than tell your readers what your hypothesis is; you also need to assure them that this hypothesis was reasonable, given the circumstances. In other words, use the Introduction to explain that you didn’t just pluck your hypothesis out of thin air. (If you did pluck it out of thin air, your problems with your report will probably extend beyond using the appropriate format.) If you posit that a particular relationship exists between the independent and the dependent variable, what led you to believe your “guess” might be supported by evidence?

Scientists often refer to this type of justification as “motivating” the hypothesis, in the sense that something propelled them to make that prediction. Often, motivation includes what we already know—or rather, what scientists generally accept as true (see “Background/previous research” below). But you can also motivate your hypothesis by relying on logic or on your own observations. If you’re trying to decide which solutes will dissolve more rapidly in a solvent at increased temperatures, you might remember that some solids are meant to dissolve in hot water (e.g., bouillon cubes) and some are used for a function precisely because they withstand higher temperatures (they make saucepans out of something). Or you can think about whether you’ve noticed sugar dissolving more rapidly in your glass of iced tea or in your cup of coffee. Even such basic, outside-the-lab observations can help you justify your hypothesis as reasonable.

Background/previous research

This part of the Introduction demonstrates to the reader your awareness of how you’re building on other scientists’ work. If you think of the scientific community as engaging in a series of conversations about various topics, then you’ll recognize that the relevant background material will alert the reader to which conversation you want to enter.

Generally speaking, authors writing journal articles use the background for slightly different purposes than do students completing assignments. Because readers of academic journals tend to be professionals in the field, authors explain the background in order to permit readers to evaluate the study’s pertinence for their own work. You, on the other hand, write toward a much narrower audience—your peers in the course or your lab instructor—and so you must demonstrate that you understand the context for the (presumably assigned) experiment or study you’ve completed. For example, if your professor has been talking about polarity during lectures, and you’re doing a solubility experiment, you might try to connect the polarity of a solid to its relative solubility in certain solvents. In any event, both professional researchers and undergraduates need to connect the background material overtly to their own work.

Organization of this section

Most of the time, writers begin by stating the purpose or objectives of their own work, which establishes for the reader’s benefit the “nature and scope of the problem investigated” (Day 1994). Once you have expressed your purpose, you should then find it easier to move from the general purpose, to relevant material on the subject, to your hypothesis. In abbreviated form, an Introduction section might look like this:

“The purpose of the experiment was to test conventional ideas about solubility in the laboratory [purpose] . . . According to Whitecoat and Labrat (1999), at higher temperatures the molecules of solvents move more quickly . . . We know from the class lecture that molecules moving at higher rates of speed collide with one another more often and thus break down more easily [background material/motivation] . . . Thus, it was hypothesized that as the temperature of a solvent increases, the rate at which a solute will dissolve in that solvent increases [hypothesis].”

Again—these are guidelines, not commandments. Some writers and readers prefer different structures for the Introduction. The one above merely illustrates a common approach to organizing material.

How do I write a strong Materials and Methods section?

As with any piece of writing, your Methods section will succeed only if it fulfills its readers’ expectations, so you need to be clear in your own mind about the purpose of this section. Let’s review the purpose as we described it above: in this section, you want to describe in detail how you tested the hypothesis you developed and also to clarify the rationale for your procedure. In science, it’s not sufficient merely to design and carry out an experiment. Ultimately, others must be able to verify your findings, so your experiment must be reproducible, to the extent that other researchers can follow the same procedure and obtain the same (or similar) results.

Here’s a real-world example of the importance of reproducibility. In 1989, physicists Stanley Pons and Martin Fleischman announced that they had discovered “cold fusion,” a way of producing excess heat and power without the nuclear radiation that accompanies “hot fusion.” Such a discovery could have great ramifications for the industrial production of energy, so these findings created a great deal of interest. When other scientists tried to duplicate the experiment, however, they didn’t achieve the same results, and as a result many wrote off the conclusions as unjustified (or worse, a hoax). To this day, the viability of cold fusion is debated within the scientific community, even though an increasing number of researchers believe it possible. So when you write your Methods section, keep in mind that you need to describe your experiment well enough to allow others to replicate it exactly.

With these goals in mind, let’s consider how to write an effective Methods section in terms of content, structure, and style.

Sometimes the hardest thing about writing this section isn’t what you should talk about, but what you shouldn’t talk about. Writers often want to include the results of their experiment, because they measured and recorded the results during the course of the experiment. But such data should be reserved for the Results section. In the Methods section, you can write that you recorded the results, or how you recorded the results (e.g., in a table), but you shouldn’t write what the results were—not yet. Here, you’re merely stating exactly how you went about testing your hypothesis. As you draft your Methods section, ask yourself the following questions:

  • How much detail? Be precise in providing details, but stay relevant. Ask yourself, “Would it make any difference if this piece were a different size or made from a different material?” If not, you probably don’t need to get too specific. If so, you should give as many details as necessary to prevent this experiment from going awry if someone else tries to carry it out. Probably the most crucial detail is measurement; you should always quantify anything you can, such as time elapsed, temperature, mass, volume, etc.
  • Rationale: Be sure that as you’re relating your actions during the experiment, you explain your rationale for the protocol you developed. If you capped a test tube immediately after adding a solute to a solvent, why did you do that? (That’s really two questions: why did you cap it, and why did you cap it immediately?) In a professional setting, writers provide their rationale as a way to explain their thinking to potential critics. On one hand, of course, that’s your motivation for talking about protocol, too. On the other hand, since in practical terms you’re also writing to your teacher (who’s seeking to evaluate how well you comprehend the principles of the experiment), explaining the rationale indicates that you understand the reasons for conducting the experiment in that way, and that you’re not just following orders. Critical thinking is crucial—robots don’t make good scientists.
  • Control: Most experiments will include a control, which is a means of comparing experimental results. (Sometimes you’ll need to have more than one control, depending on the number of hypotheses you want to test.) The control is exactly the same as the other items you’re testing, except that you don’t manipulate the independent variable-the condition you’re altering to check the effect on the dependent variable. For example, if you’re testing solubility rates at increased temperatures, your control would be a solution that you didn’t heat at all; that way, you’ll see how quickly the solute dissolves “naturally” (i.e., without manipulation), and you’ll have a point of reference against which to compare the solutions you did heat.

Describe the control in the Methods section. Two things are especially important in writing about the control: identify the control as a control, and explain what you’re controlling for. Here is an example:

“As a control for the temperature change, we placed the same amount of solute in the same amount of solvent, and let the solution stand for five minutes without heating it.”

Structure and style

Organization is especially important in the Methods section of a lab report because readers must understand your experimental procedure completely. Many writers are surprised by the difficulty of conveying what they did during the experiment, since after all they’re only reporting an event, but it’s often tricky to present this information in a coherent way. There’s a fairly standard structure you can use to guide you, and following the conventions for style can help clarify your points.

  • Subsections: Occasionally, researchers use subsections to report their procedure when the following circumstances apply: 1) if they’ve used a great many materials; 2) if the procedure is unusually complicated; 3) if they’ve developed a procedure that won’t be familiar to many of their readers. Because these conditions rarely apply to the experiments you’ll perform in class, most undergraduate lab reports won’t require you to use subsections. In fact, many guides to writing lab reports suggest that you try to limit your Methods section to a single paragraph.
  • Narrative structure: Think of this section as telling a story about a group of people and the experiment they performed. Describe what you did in the order in which you did it. You may have heard the old joke centered on the line, “Disconnect the red wire, but only after disconnecting the green wire,” where the person reading the directions blows everything to kingdom come because the directions weren’t in order. We’re used to reading about events chronologically, and so your readers will generally understand what you did if you present that information in the same way. Also, since the Methods section does generally appear as a narrative (story), you want to avoid the “recipe” approach: “First, take a clean, dry 100 ml test tube from the rack. Next, add 50 ml of distilled water.” You should be reporting what did happen, not telling the reader how to perform the experiment: “50 ml of distilled water was poured into a clean, dry 100 ml test tube.” Hint: most of the time, the recipe approach comes from copying down the steps of the procedure from your lab manual, so you may want to draft the Methods section initially without consulting your manual. Later, of course, you can go back and fill in any part of the procedure you inadvertently overlooked.
  • Past tense: Remember that you’re describing what happened, so you should use past tense to refer to everything you did during the experiment. Writers are often tempted to use the imperative (“Add 5 g of the solid to the solution”) because that’s how their lab manuals are worded; less frequently, they use present tense (“5 g of the solid are added to the solution”). Instead, remember that you’re talking about an event which happened at a particular time in the past, and which has already ended by the time you start writing, so simple past tense will be appropriate in this section (“5 g of the solid were added to the solution” or “We added 5 g of the solid to the solution”).
  • Active: We heated the solution to 80°C. (The subject, “we,” performs the action, heating.)
  • Passive: The solution was heated to 80°C. (The subject, “solution,” doesn’t do the heating–it is acted upon, not acting.)

Increasingly, especially in the social sciences, using first person and active voice is acceptable in scientific reports. Most readers find that this style of writing conveys information more clearly and concisely. This rhetorical choice thus brings two scientific values into conflict: objectivity versus clarity. Since the scientific community hasn’t reached a consensus about which style it prefers, you may want to ask your lab instructor.

How do I write a strong Results section?

Here’s a paradox for you. The Results section is often both the shortest (yay!) and most important (uh-oh!) part of your report. Your Materials and Methods section shows how you obtained the results, and your Discussion section explores the significance of the results, so clearly the Results section forms the backbone of the lab report. This section provides the most critical information about your experiment: the data that allow you to discuss how your hypothesis was or wasn’t supported. But it doesn’t provide anything else, which explains why this section is generally shorter than the others.

Before you write this section, look at all the data you collected to figure out what relates significantly to your hypothesis. You’ll want to highlight this material in your Results section. Resist the urge to include every bit of data you collected, since perhaps not all are relevant. Also, don’t try to draw conclusions about the results—save them for the Discussion section. In this section, you’re reporting facts. Nothing your readers can dispute should appear in the Results section.

Most Results sections feature three distinct parts: text, tables, and figures. Let’s consider each part one at a time.

This should be a short paragraph, generally just a few lines, that describes the results you obtained from your experiment. In a relatively simple experiment, one that doesn’t produce a lot of data for you to repeat, the text can represent the entire Results section. Don’t feel that you need to include lots of extraneous detail to compensate for a short (but effective) text; your readers appreciate discrimination more than your ability to recite facts. In a more complex experiment, you may want to use tables and/or figures to help guide your readers toward the most important information you gathered. In that event, you’ll need to refer to each table or figure directly, where appropriate:

“Table 1 lists the rates of solubility for each substance”

“Solubility increased as the temperature of the solution increased (see Figure 1).”

If you do use tables or figures, make sure that you don’t present the same material in both the text and the tables/figures, since in essence you’ll just repeat yourself, probably annoying your readers with the redundancy of your statements.

Feel free to describe trends that emerge as you examine the data. Although identifying trends requires some judgment on your part and so may not feel like factual reporting, no one can deny that these trends do exist, and so they properly belong in the Results section. Example:

“Heating the solution increased the rate of solubility of polar solids by 45% but had no effect on the rate of solubility in solutions containing non-polar solids.”

This point isn’t debatable—you’re just pointing out what the data show.

As in the Materials and Methods section, you want to refer to your data in the past tense, because the events you recorded have already occurred and have finished occurring. In the example above, note the use of “increased” and “had,” rather than “increases” and “has.” (You don’t know from your experiment that heating always increases the solubility of polar solids, but it did that time.)

You shouldn’t put information in the table that also appears in the text. You also shouldn’t use a table to present irrelevant data, just to show you did collect these data during the experiment. Tables are good for some purposes and situations, but not others, so whether and how you’ll use tables depends upon what you need them to accomplish.

Tables are useful ways to show variation in data, but not to present a great deal of unchanging measurements. If you’re dealing with a scientific phenomenon that occurs only within a certain range of temperatures, for example, you don’t need to use a table to show that the phenomenon didn’t occur at any of the other temperatures. How useful is this table?

A table labeled Effect of Temperature on Rate of Solubility with temperature of solvent values in 10-degree increments from -20 degrees Celsius to 80 degrees Celsius that does not show a corresponding rate of solubility value until 50 degrees Celsius.

As you can probably see, no solubility was observed until the trial temperature reached 50°C, a fact that the text part of the Results section could easily convey. The table could then be limited to what happened at 50°C and higher, thus better illustrating the differences in solubility rates when solubility did occur.

As a rule, try not to use a table to describe any experimental event you can cover in one sentence of text. Here’s an example of an unnecessary table from How to Write and Publish a Scientific Paper , by Robert A. Day:

A table labeled Oxygen requirements of various species of Streptomyces showing the names of organisms and two columns that indicate growth under aerobic conditions and growth under anaerobic conditions with a plus or minus symbol for each organism in the growth columns to indicate value.

As Day notes, all the information in this table can be summarized in one sentence: “S. griseus, S. coelicolor, S. everycolor, and S. rainbowenski grew under aerobic conditions, whereas S. nocolor and S. greenicus required anaerobic conditions.” Most readers won’t find the table clearer than that one sentence.

When you do have reason to tabulate material, pay attention to the clarity and readability of the format you use. Here are a few tips:

  • Number your table. Then, when you refer to the table in the text, use that number to tell your readers which table they can review to clarify the material.
  • Give your table a title. This title should be descriptive enough to communicate the contents of the table, but not so long that it becomes difficult to follow. The titles in the sample tables above are acceptable.
  • Arrange your table so that readers read vertically, not horizontally. For the most part, this rule means that you should construct your table so that like elements read down, not across. Think about what you want your readers to compare, and put that information in the column (up and down) rather than in the row (across). Usually, the point of comparison will be the numerical data you collect, so especially make sure you have columns of numbers, not rows.Here’s an example of how drastically this decision affects the readability of your table (from A Short Guide to Writing about Chemistry , by Herbert Beall and John Trimbur). Look at this table, which presents the relevant data in horizontal rows:

A table labeled Boyle's Law Experiment: Measuring Volume as a Function of Pressure that presents the trial number, length of air sample in millimeters, and height difference in inches of mercury, each of which is presented in rows horizontally.

It’s a little tough to see the trends that the author presumably wants to present in this table. Compare this table, in which the data appear vertically:

A table labeled Boyle's Law Experiment: Measuring Volume as a Function of Pressure that presents the trial number, length of air sample in millimeters, and height difference in inches of mercury, each of which is presented in columns vertically.

The second table shows how putting like elements in a vertical column makes for easier reading. In this case, the like elements are the measurements of length and height, over five trials–not, as in the first table, the length and height measurements for each trial.

  • Make sure to include units of measurement in the tables. Readers might be able to guess that you measured something in millimeters, but don’t make them try.
1058
432
7
  • Don’t use vertical lines as part of the format for your table. This convention exists because journals prefer not to have to reproduce these lines because the tables then become more expensive to print. Even though it’s fairly unlikely that you’ll be sending your Biology 11 lab report to Science for publication, your readers still have this expectation. Consequently, if you use the table-drawing option in your word-processing software, choose the option that doesn’t rely on a “grid” format (which includes vertical lines).

How do I include figures in my report?

Although tables can be useful ways of showing trends in the results you obtained, figures (i.e., illustrations) can do an even better job of emphasizing such trends. Lab report writers often use graphic representations of the data they collected to provide their readers with a literal picture of how the experiment went.

When should you use a figure?

Remember the circumstances under which you don’t need a table: when you don’t have a great deal of data or when the data you have don’t vary a lot. Under the same conditions, you would probably forgo the figure as well, since the figure would be unlikely to provide your readers with an additional perspective. Scientists really don’t like their time wasted, so they tend not to respond favorably to redundancy.

If you’re trying to decide between using a table and creating a figure to present your material, consider the following a rule of thumb. The strength of a table lies in its ability to supply large amounts of exact data, whereas the strength of a figure is its dramatic illustration of important trends within the experiment. If you feel that your readers won’t get the full impact of the results you obtained just by looking at the numbers, then a figure might be appropriate.

Of course, an undergraduate class may expect you to create a figure for your lab experiment, if only to make sure that you can do so effectively. If this is the case, then don’t worry about whether to use figures or not—concentrate instead on how best to accomplish your task.

Figures can include maps, photographs, pen-and-ink drawings, flow charts, bar graphs, and section graphs (“pie charts”). But the most common figure by far, especially for undergraduates, is the line graph, so we’ll focus on that type in this handout.

At the undergraduate level, you can often draw and label your graphs by hand, provided that the result is clear, legible, and drawn to scale. Computer technology has, however, made creating line graphs a lot easier. Most word-processing software has a number of functions for transferring data into graph form; many scientists have found Microsoft Excel, for example, a helpful tool in graphing results. If you plan on pursuing a career in the sciences, it may be well worth your while to learn to use a similar program.

Computers can’t, however, decide for you how your graph really works; you have to know how to design your graph to meet your readers’ expectations. Here are some of these expectations:

  • Keep it as simple as possible. You may be tempted to signal the complexity of the information you gathered by trying to design a graph that accounts for that complexity. But remember the purpose of your graph: to dramatize your results in a manner that’s easy to see and grasp. Try not to make the reader stare at the graph for a half hour to find the important line among the mass of other lines. For maximum effectiveness, limit yourself to three to five lines per graph; if you have more data to demonstrate, use a set of graphs to account for it, rather than trying to cram it all into a single figure.
  • Plot the independent variable on the horizontal (x) axis and the dependent variable on the vertical (y) axis. Remember that the independent variable is the condition that you manipulated during the experiment and the dependent variable is the condition that you measured to see if it changed along with the independent variable. Placing the variables along their respective axes is mostly just a convention, but since your readers are accustomed to viewing graphs in this way, you’re better off not challenging the convention in your report.
  • Label each axis carefully, and be especially careful to include units of measure. You need to make sure that your readers understand perfectly well what your graph indicates.
  • Number and title your graphs. As with tables, the title of the graph should be informative but concise, and you should refer to your graph by number in the text (e.g., “Figure 1 shows the increase in the solubility rate as a function of temperature”).
  • Many editors of professional scientific journals prefer that writers distinguish the lines in their graphs by attaching a symbol to them, usually a geometric shape (triangle, square, etc.), and using that symbol throughout the curve of the line. Generally, readers have a hard time distinguishing dotted lines from dot-dash lines from straight lines, so you should consider staying away from this system. Editors don’t usually like different-colored lines within a graph because colors are difficult and expensive to reproduce; colors may, however, be great for your purposes, as long as you’re not planning to submit your paper to Nature. Use your discretion—try to employ whichever technique dramatizes the results most effectively.
  • Try to gather data at regular intervals, so the plot points on your graph aren’t too far apart. You can’t be sure of the arc you should draw between the plot points if the points are located at the far corners of the graph; over a fifteen-minute interval, perhaps the change occurred in the first or last thirty seconds of that period (in which case your straight-line connection between the points is misleading).
  • If you’re worried that you didn’t collect data at sufficiently regular intervals during your experiment, go ahead and connect the points with a straight line, but you may want to examine this problem as part of your Discussion section.
  • Make your graph large enough so that everything is legible and clearly demarcated, but not so large that it either overwhelms the rest of the Results section or provides a far greater range than you need to illustrate your point. If, for example, the seedlings of your plant grew only 15 mm during the trial, you don’t need to construct a graph that accounts for 100 mm of growth. The lines in your graph should more or less fill the space created by the axes; if you see that your data is confined to the lower left portion of the graph, you should probably re-adjust your scale.
  • If you create a set of graphs, make them the same size and format, including all the verbal and visual codes (captions, symbols, scale, etc.). You want to be as consistent as possible in your illustrations, so that your readers can easily make the comparisons you’re trying to get them to see.

How do I write a strong Discussion section?

The discussion section is probably the least formalized part of the report, in that you can’t really apply the same structure to every type of experiment. In simple terms, here you tell your readers what to make of the Results you obtained. If you have done the Results part well, your readers should already recognize the trends in the data and have a fairly clear idea of whether your hypothesis was supported. Because the Results can seem so self-explanatory, many students find it difficult to know what material to add in this last section.

Basically, the Discussion contains several parts, in no particular order, but roughly moving from specific (i.e., related to your experiment only) to general (how your findings fit in the larger scientific community). In this section, you will, as a rule, need to:

Explain whether the data support your hypothesis

  • Acknowledge any anomalous data or deviations from what you expected

Derive conclusions, based on your findings, about the process you’re studying

  • Relate your findings to earlier work in the same area (if you can)

Explore the theoretical and/or practical implications of your findings

Let’s look at some dos and don’ts for each of these objectives.

This statement is usually a good way to begin the Discussion, since you can’t effectively speak about the larger scientific value of your study until you’ve figured out the particulars of this experiment. You might begin this part of the Discussion by explicitly stating the relationships or correlations your data indicate between the independent and dependent variables. Then you can show more clearly why you believe your hypothesis was or was not supported. For example, if you tested solubility at various temperatures, you could start this section by noting that the rates of solubility increased as the temperature increased. If your initial hypothesis surmised that temperature change would not affect solubility, you would then say something like,

“The hypothesis that temperature change would not affect solubility was not supported by the data.”

Note: Students tend to view labs as practical tests of undeniable scientific truths. As a result, you may want to say that the hypothesis was “proved” or “disproved” or that it was “correct” or “incorrect.” These terms, however, reflect a degree of certainty that you as a scientist aren’t supposed to have. Remember, you’re testing a theory with a procedure that lasts only a few hours and relies on only a few trials, which severely compromises your ability to be sure about the “truth” you see. Words like “supported,” “indicated,” and “suggested” are more acceptable ways to evaluate your hypothesis.

Also, recognize that saying whether the data supported your hypothesis or not involves making a claim to be defended. As such, you need to show the readers that this claim is warranted by the evidence. Make sure that you’re very explicit about the relationship between the evidence and the conclusions you draw from it. This process is difficult for many writers because we don’t often justify conclusions in our regular lives. For example, you might nudge your friend at a party and whisper, “That guy’s drunk,” and once your friend lays eyes on the person in question, she might readily agree. In a scientific paper, by contrast, you would need to defend your claim more thoroughly by pointing to data such as slurred words, unsteady gait, and the lampshade-as-hat. In addition to pointing out these details, you would also need to show how (according to previous studies) these signs are consistent with inebriation, especially if they occur in conjunction with one another. To put it another way, tell your readers exactly how you got from point A (was the hypothesis supported?) to point B (yes/no).

Acknowledge any anomalous data, or deviations from what you expected

You need to take these exceptions and divergences into account, so that you qualify your conclusions sufficiently. For obvious reasons, your readers will doubt your authority if you (deliberately or inadvertently) overlook a key piece of data that doesn’t square with your perspective on what occurred. In a more philosophical sense, once you’ve ignored evidence that contradicts your claims, you’ve departed from the scientific method. The urge to “tidy up” the experiment is often strong, but if you give in to it you’re no longer performing good science.

Sometimes after you’ve performed a study or experiment, you realize that some part of the methods you used to test your hypothesis was flawed. In that case, it’s OK to suggest that if you had the chance to conduct your test again, you might change the design in this or that specific way in order to avoid such and such a problem. The key to making this approach work, though, is to be very precise about the weakness in your experiment, why and how you think that weakness might have affected your data, and how you would alter your protocol to eliminate—or limit the effects of—that weakness. Often, inexperienced researchers and writers feel the need to account for “wrong” data (remember, there’s no such animal), and so they speculate wildly about what might have screwed things up. These speculations include such factors as the unusually hot temperature in the room, or the possibility that their lab partners read the meters wrong, or the potentially defective equipment. These explanations are what scientists call “cop-outs,” or “lame”; don’t indicate that the experiment had a weakness unless you’re fairly certain that a) it really occurred and b) you can explain reasonably well how that weakness affected your results.

If, for example, your hypothesis dealt with the changes in solubility at different temperatures, then try to figure out what you can rationally say about the process of solubility more generally. If you’re doing an undergraduate lab, chances are that the lab will connect in some way to the material you’ve been covering either in lecture or in your reading, so you might choose to return to these resources as a way to help you think clearly about the process as a whole.

This part of the Discussion section is another place where you need to make sure that you’re not overreaching. Again, nothing you’ve found in one study would remotely allow you to claim that you now “know” something, or that something isn’t “true,” or that your experiment “confirmed” some principle or other. Hesitate before you go out on a limb—it’s dangerous! Use less absolutely conclusive language, including such words as “suggest,” “indicate,” “correspond,” “possibly,” “challenge,” etc.

Relate your findings to previous work in the field (if possible)

We’ve been talking about how to show that you belong in a particular community (such as biologists or anthropologists) by writing within conventions that they recognize and accept. Another is to try to identify a conversation going on among members of that community, and use your work to contribute to that conversation. In a larger philosophical sense, scientists can’t fully understand the value of their research unless they have some sense of the context that provoked and nourished it. That is, you have to recognize what’s new about your project (potentially, anyway) and how it benefits the wider body of scientific knowledge. On a more pragmatic level, especially for undergraduates, connecting your lab work to previous research will demonstrate to the TA that you see the big picture. You have an opportunity, in the Discussion section, to distinguish yourself from the students in your class who aren’t thinking beyond the barest facts of the study. Capitalize on this opportunity by putting your own work in context.

If you’re just beginning to work in the natural sciences (as a first-year biology or chemistry student, say), most likely the work you’ll be doing has already been performed and re-performed to a satisfactory degree. Hence, you could probably point to a similar experiment or study and compare/contrast your results and conclusions. More advanced work may deal with an issue that is somewhat less “resolved,” and so previous research may take the form of an ongoing debate, and you can use your own work to weigh in on that debate. If, for example, researchers are hotly disputing the value of herbal remedies for the common cold, and the results of your study suggest that Echinacea diminishes the symptoms but not the actual presence of the cold, then you might want to take some time in the Discussion section to recapitulate the specifics of the dispute as it relates to Echinacea as an herbal remedy. (Consider that you have probably already written in the Introduction about this debate as background research.)

This information is often the best way to end your Discussion (and, for all intents and purposes, the report). In argumentative writing generally, you want to use your closing words to convey the main point of your writing. This main point can be primarily theoretical (“Now that you understand this information, you’re in a better position to understand this larger issue”) or primarily practical (“You can use this information to take such and such an action”). In either case, the concluding statements help the reader to comprehend the significance of your project and your decision to write about it.

Since a lab report is argumentative—after all, you’re investigating a claim, and judging the legitimacy of that claim by generating and collecting evidence—it’s often a good idea to end your report with the same technique for establishing your main point. If you want to go the theoretical route, you might talk about the consequences your study has for the field or phenomenon you’re investigating. To return to the examples regarding solubility, you could end by reflecting on what your work on solubility as a function of temperature tells us (potentially) about solubility in general. (Some folks consider this type of exploration “pure” as opposed to “applied” science, although these labels can be problematic.) If you want to go the practical route, you could end by speculating about the medical, institutional, or commercial implications of your findings—in other words, answer the question, “What can this study help people to do?” In either case, you’re going to make your readers’ experience more satisfying, by helping them see why they spent their time learning what you had to teach them.

Works consulted

We consulted these works while writing this handout. This is not a comprehensive list of resources on the handout’s topic, and we encourage you to do your own research to find additional publications. Please do not use this list as a model for the format of your own reference list, as it may not match the citation style you are using. For guidance on formatting citations, please see the UNC Libraries citation tutorial . We revise these tips periodically and welcome feedback.

American Psychological Association. 2010. Publication Manual of the American Psychological Association . 6th ed. Washington, DC: American Psychological Association.

Beall, Herbert, and John Trimbur. 2001. A Short Guide to Writing About Chemistry , 2nd ed. New York: Longman.

Blum, Deborah, and Mary Knudson. 1997. A Field Guide for Science Writers: The Official Guide of the National Association of Science Writers . New York: Oxford University Press.

Booth, Wayne C., Gregory G. Colomb, Joseph M. Williams, Joseph Bizup, and William T. FitzGerald. 2016. The Craft of Research , 4th ed. Chicago: University of Chicago Press.

Briscoe, Mary Helen. 1996. Preparing Scientific Illustrations: A Guide to Better Posters, Presentations, and Publications , 2nd ed. New York: Springer-Verlag.

Council of Science Editors. 2014. Scientific Style and Format: The CSE Manual for Authors, Editors, and Publishers , 8th ed. Chicago & London: University of Chicago Press.

Davis, Martha. 2012. Scientific Papers and Presentations , 3rd ed. London: Academic Press.

Day, Robert A. 1994. How to Write and Publish a Scientific Paper , 4th ed. Phoenix: Oryx Press.

Porush, David. 1995. A Short Guide to Writing About Science . New York: Longman.

Williams, Joseph, and Joseph Bizup. 2017. Style: Lessons in Clarity and Grace , 12th ed. Boston: Pearson.

You may reproduce it for non-commercial use if you use the entire handout and attribute the source: The Writing Center, University of North Carolina at Chapel Hill

Make a Gift

  • USC Libraries
  • Research Guides

Organizing Your Social Sciences Research Paper

  • Background Information
  • Purpose of Guide
  • Design Flaws to Avoid
  • Independent and Dependent Variables
  • Glossary of Research Terms
  • Reading Research Effectively
  • Narrowing a Topic Idea
  • Broadening a Topic Idea
  • Extending the Timeliness of a Topic Idea
  • Academic Writing Style
  • Applying Critical Thinking
  • Choosing a Title
  • Making an Outline
  • Paragraph Development
  • Research Process Video Series
  • Executive Summary
  • The C.A.R.S. Model
  • The Research Problem/Question
  • Theoretical Framework
  • Citation Tracking
  • Content Alert Services
  • Evaluating Sources
  • Primary Sources
  • Secondary Sources
  • Tiertiary Sources
  • Scholarly vs. Popular Publications
  • Qualitative Methods
  • Quantitative Methods
  • Insiderness
  • Using Non-Textual Elements
  • Limitations of the Study
  • Common Grammar Mistakes
  • Writing Concisely
  • Avoiding Plagiarism
  • Footnotes or Endnotes?
  • Further Readings
  • Generative AI and Writing
  • USC Libraries Tutorials and Other Guides
  • Bibliography

Background information identifies and describes the history and nature of a well-defined research problem with reference to contextualizing existing literature. The background information should indicate the root of the problem being studied, appropriate context of the problem in relation to theory, research, and/or practice , its scope, and the extent to which previous studies have successfully investigated the problem, noting, in particular, where gaps exist that your study attempts to address. Background information does not replace the literature review section of a research paper; it is intended to place the research problem within a specific context and an established plan for its solution.

Fitterling, Lori. Researching and Writing an Effective Background Section of a Research Paper. Kansas City University of Medicine & Biosciences; Creating a Research Paper: How to Write the Background to a Study. DurousseauElectricalInstitute.com; Background Information: Definition of Background Information. Literary Devices Definition and Examples of Literary Terms.

Importance of Having Enough Background Information

Background information expands upon the key points stated in the beginning of your introduction but is not intended to be the main focus of the paper. It generally supports the question, what is the most important information the reader needs to understand before continuing to read the paper? Sufficient background information helps the reader determine if you have a basic understanding of the research problem being investigated and promotes confidence in the overall quality of your analysis and findings. This information provides the reader with the essential context needed to conceptualize the research problem and its significance before moving on to a more thorough analysis of prior research.

Forms of contextualization included in background information can include describing one or more of the following:

  • Cultural -- placed within the learned behavior of a specific group or groups of people.
  • Economic -- of or relating to systems of production and management of material wealth and/or business activities.
  • Gender -- located within the behavioral, cultural, or psychological traits typically associated with being self-identified as male, female, or other form of  gender expression.
  • Historical -- the time in which something takes place or was created and how the condition of time influences how you interpret it.
  • Interdisciplinary -- explanation of theories, concepts, ideas, or methodologies borrowed from other disciplines applied to the research problem rooted in a discipline other than the discipline where your paper resides.
  • Philosophical -- clarification of the essential nature of being or of phenomena as it relates to the research problem.
  • Physical/Spatial -- reflects the meaning of space around something and how that influences how it is understood.
  • Political -- concerns the environment in which something is produced indicating it's public purpose or agenda.
  • Social -- the environment of people that surrounds something's creation or intended audience, reflecting how the people associated with something use and interpret it.
  • Temporal -- reflects issues or events of, relating to, or limited by time. Concerns past, present, or future contextualization and not just a historical past.

Background information can also include summaries of important research studies . This can be a particularly important element of providing background information if an innovative or groundbreaking study about the research problem laid a foundation for further research or there was a key study that is essential to understanding your arguments. The priority is to summarize for the reader what is known about the research problem before you conduct the analysis of prior research. This is accomplished with a general summary of the foundational research literature [with citations] that document findings that inform your study's overall aims and objectives.

NOTE: Research studies cited as part of the background information of your introduction should not include very specific, lengthy explanations. This should be discussed in greater detail in your literature review section. If you find a study requiring lengthy explanation, consider moving it to the literature review section.

ANOTHER NOTE: In some cases, your paper's introduction only needs to introduce the research problem, explain its significance, and then describe a road map for how you are going to address the problem; the background information basically forms the introduction part of your literature review. That said, while providing background information is not required, including it in the introduction is a way to highlight important contextual information that could otherwise be hidden or overlooked by the reader if placed in the literature review section.

YET ANOTHER NOTE: In some research studies, the background information is described in a separate section after the introduction and before the literature review. This is most often done if the topic is especially complex or requires a lot of context in order to fully grasp the significance of the research problem. Most college-level research papers do not require this unless required by your professor. However, if you find yourself needing to write more than a couple of pages [double-spaced lines] to provide the background information, it can be written as a separate section to ensure the introduction is not too lengthy.

Background of the Problem Section: What do you Need to Consider? Anonymous. Harvard University; Hopkins, Will G. How to Write a Research Paper. SPORTSCIENCE, Perspectives/Research Resources. Department of Physiology and School of Physical Education, University of Otago, 1999; Green, L. H. How to Write the Background/Introduction Section. Physics 499 Powerpoint slides. University of Illinois; Pyrczak, Fred. Writing Empirical Research Reports: A Basic Guide for Students of the Social and Behavioral Sciences . 8th edition. Glendale, CA: Pyrczak Publishing, 2014; Stevens, Kathleen C. “Can We Improve Reading by Teaching Background Information?.” Journal of Reading 25 (January 1982): 326-329; Woodall, W. Gill. Writing the Background and Significance Section. Senior Research Scientist and Professor of Communication. Center on Alcoholism, Substance Abuse, and Addictions. University of New Mexico.

Structure and Writing Style

Providing background information in the introduction of a research paper serves as a bridge that links the reader to the research problem . Precisely how long and in-depth this bridge should be is largely dependent upon how much information you think the reader will need to know in order to fully understand the problem being discussed and to appreciate why the issues you are investigating are important.

From another perspective, the length and detail of background information also depends on the degree to which you need to demonstrate to your professor how much you understand the research problem. Keep this in mind because providing pertinent background information can be an effective way to demonstrate that you have a clear grasp of key issues, debates, and concepts related to your overall study.

The structure and writing style of your background information can vary depending upon the complexity of your research and/or the nature of the assignment. However, in most cases it should be limited to only one to two paragraphs in your introduction.

Given this, here are some questions to consider while writing this part of your introduction :

  • Are there concepts, terms, theories, or ideas that may be unfamiliar to the reader and, thus, require additional explanation?
  • Are there historical elements that need to be explored in order to provide needed context, to highlight specific people, issues, or events, or to lay a foundation for understanding the emergence of a current issue or event?
  • Are there theories, concepts, or ideas borrowed from other disciplines or academic traditions that may be unfamiliar to the reader and therefore require further explanation?
  • Is there a key study or small set of studies that set the stage for understanding the topic and frames why it is important to conduct further research on the topic?
  • Y our study uses a method of analysis never applied before;
  • Your study investigates a very esoteric or complex research problem;
  • Your study introduces new or unique variables that need to be taken into account ; or,
  • Your study relies upon analyzing unique texts or documents, such as, archival materials or primary documents like diaries or personal letters that do not represent the established body of source literature on the topic?

Almost all introductions to a research problem require some contextualizing, but the scope and breadth of background information varies depending on your assumption about the reader's level of prior knowledge . However, despite this assessment, background information should be brief and succinct and sets the stage for the elaboration of critical points or in-depth discussion of key issues in the literature review section of your paper.

Writing Tip

Background Information vs. the Literature Review

Incorporating background information into the introduction is intended to provide the reader with critical information about the topic being studied, such as, highlighting and expanding upon foundational studies conducted in the past, describing important historical events that inform why and in what ways the research problem exists, defining key components of your study [concepts, people, places, phenomena] and/or placing the research problem within a particular context. Although introductory background information can often blend into the literature review portion of the paper, essential background information should not be considered a substitute for a comprehensive review and synthesis of relevant research literature.

Hart, Cris. Doing a Literature Review: Releasing the Social Science Research Imagination . Thousand Oaks, CA: Sage, 1998; Pyrczak, Fred. Writing Empirical Research Reports: A Basic Guide for Students of the Social and Behavioral Sciences . 8th edition. Glendale, CA: Pyrczak Publishing, 2014.

  • << Previous: The C.A.R.S. Model
  • Next: The Research Problem/Question >>
  • Last Updated: Jul 30, 2024 10:20 AM
  • URL: https://libguides.usc.edu/writingguide

How to Write the Background of a Study

  • Research Process

The background to a study sets the scene . It lays out the “state of the art”. It tells your reader about other research done on the topic in question, via useful review papers and other summaries of the literature.

Updated on May 5, 2023

a pen by a pair of glasses and a notebook to prepare writing the background of a sutdy

The background to your study, sometimes called the ‘state of the art’ (especially in grant writing), sets the scene for a paper. This section shows readers why your research is important, relevant, and why they should continue reading. You must hook them in with a great background to your study, which is part of the overall introduction to your research paper.

In higher impact articles, such as those published in Nature or Science (which is what we are all aiming for, after all …), the study background is t he middle section of an essentially three-part introduction . This section is framed by a presentation of ‘the question’ (first part of the introduction) and a quick explanation of ‘what this paper will do’ (the third part of the introduction).

The introduction of a research paper should be “shaped” like an upside down triangle: 

Start broad. Set the scene with a large-scale general research area [e.g., why doing a PhD erases your writing skills (ha ha) or mental health in teenagers and why this is such a widespread global issue] and then focus down to the question your research addresses (e.g., how can writing skills be improved in PhD students, or brain scans and how these can be used in treatment).

Read on to learn more about framing your next research paper with a well-written and researched background section.

What is the background of a study?

The background to a study sets the scene . It lays out the “state of the art”. It tells your reader about other research done on the topic in question, via useful review papers and other summaries of the literature. 

A background is not a literature review: No one wants to read endless citations back-to-back in this section. You don’t need to list all the papers you’ve read, or all the work done in the past on this topic. 

Set the scene and frame your question in the context of the literature. Seek out review articles in particular. The aim of this section is to build on what has come before so your reader will be armed with all the information they need to understand the remainder of your article, and why - in context - the aims of your study are important.

How to write the background to your research paper

Cater to your audience.

It’s important to frame your background to the right audience.

The background of your study needs to be pitched differently depending on your target journal. A more subject-area specific journal (e.g. Journal of Brain Studies ) will be read by specialists in your field. Generally, less information to set up the paper in a wider context and less background information will be required. Your readers are already experts on the topic in question .

However, if you are aiming your paper at a more general audience (a journal like Nature or Science , for example) then you're going to need to explain more in your background. A reader of a specialized journal will know about the neocortex within the brain and where this is located, but a general reader will need you to set things up more.

Readers are always the most important people in research publishing, after all: If you want your work to be read, used, and cited (and therefore drive up your H-index as well as your institution’s ranking) you’ll need a well-pitched background of your study.

What is included in the background of a study?

Remember this section sits in the middle of the introduction. Here’s a handy template for what to include:

  • Existing research on the area of study (not everything, but a broad overview. Aim to cite review papers if you can). Start this section with preliminary data and then build it out;
  • Mention any controversies around your topic (either that you’ve identified, or that have been picked up by earlier work. Check the discussion sections of recent articles for pointers here);
  • Any gaps in existing research?, and;
  • How will your study fill these gaps? State your research methodologies. Any further research that needs to be done?

list of what's included in background of a study

Aim for one paragraph , or a series of short paragraphs within one section. The last two of the topics outlined above can be short, just one or two sentences. These are there to hook the reader in and to frame your background so that the text leads into the final section of the introduction where you explain ‘What your paper is going to do’.

Simple really.

And finally…some thoughts

I used to get really bogged down with article writing, especially the shape of the introduction.

Here’s a trick to keep in mind: Remember that the average length of an academic research paper published in a peer reviewed journal is around 4,000 - 5,000 words - not too long. 

This means that you're likely going to be aiming for an article of about this length the next time you sit down to write: Not too many words for an effective and well-structured introduction. You’ve got about 1,500 - 2,000 words maximum. And aim to keep it short (this will be enforced by word count limits, especially in higher impact journals like Nature and Science ). Editors at these journals are trained to cut down your writing to make sure your research fits in.

Less is more, in other words.

Keeping tight word count limits in mind means you can’t write an expansive, flowing background to your study that goes off in all directions and covers a huge amount of ground. Keep an eye on our tips for what to include, cite review papers, and keep your readers interested in the question your paper seeks to address.

A well written background to your study will ensure your paper gets read all the way through to the end. Can’t ask for more than that!

The AJE Team

The AJE Team

See our "Privacy Policy"

Writing an Introduction for a Scientific Paper

Dr. michelle harris, dr. janet batzli, biocore.

This section provides guidelines on how to construct a solid introduction to a scientific paper including background information, study question , biological rationale, hypothesis , and general approach . If the Introduction is done well, there should be no question in the reader’s mind why and on what basis you have posed a specific hypothesis.

Broad Question : based on an initial observation (e.g., “I see a lot of guppies close to the shore. Do guppies like living in shallow water?”). This observation of the natural world may inspire you to investigate background literature or your observation could be based on previous research by others or your own pilot study. Broad questions are not always included in your written text, but are essential for establishing the direction of your research.

Background Information : key issues, concepts, terminology, and definitions needed to understand the biological rationale for the experiment. It often includes a summary of findings from previous, relevant studies. Remember to cite references, be concise, and only include relevant information given your audience and your experimental design. Concisely summarized background information leads to the identification of specific scientific knowledge gaps that still exist. (e.g., “No studies to date have examined whether guppies do indeed spend more time in shallow water.”)

Testable Question : these questions are much more focused than the initial broad question, are specific to the knowledge gap identified, and can be addressed with data. (e.g., “Do guppies spend different amounts of time in water <1 meter deep as compared to their time in water that is >1 meter deep?”)

Biological Rationale : describes the purpose of your experiment distilling what is known and what is not known that defines the knowledge gap that you are addressing. The “BR” provides the logic for your hypothesis and experimental approach, describing the biological mechanism and assumptions that explain why your hypothesis should be true.

The biological rationale is based on your interpretation of the scientific literature, your personal observations, and the underlying assumptions you are making about how you think the system works. If you have written your biological rationale, your reader should see your hypothesis in your introduction section and say to themselves, “Of course, this hypothesis seems very logical based on the rationale presented.”

  • A thorough rationale defines your assumptions about the system that have not been revealed in scientific literature or from previous systematic observation. These assumptions drive the direction of your specific hypothesis or general predictions.
  • Defining the rationale is probably the most critical task for a writer, as it tells your reader why your research is biologically meaningful. It may help to think about the rationale as an answer to the questions— how is this investigation related to what we know, what assumptions am I making about what we don’t yet know, AND how will this experiment add to our knowledge? *There may or may not be broader implications for your study; be careful not to overstate these (see note on social justifications below).
  • Expect to spend time and mental effort on this. You may have to do considerable digging into the scientific literature to define how your experiment fits into what is already known and why it is relevant to pursue.
  • Be open to the possibility that as you work with and think about your data, you may develop a deeper, more accurate understanding of the experimental system. You may find the original rationale needs to be revised to reflect your new, more sophisticated understanding.
  • As you progress through Biocore and upper level biology courses, your rationale should become more focused and matched with the level of study e ., cellular, biochemical, or physiological mechanisms that underlie the rationale. Achieving this type of understanding takes effort, but it will lead to better communication of your science.

***Special note on avoiding social justifications: You should not overemphasize the relevance of your experiment and the possible connections to large-scale processes. Be realistic and logical —do not overgeneralize or state grand implications that are not sensible given the structure of your experimental system. Not all science is easily applied to improving the human condition. Performing an investigation just for the sake of adding to our scientific knowledge (“pure or basic science”) is just as important as applied science. In fact, basic science often provides the foundation for applied studies.

Hypothesis / Predictions : specific prediction(s) that you will test during your experiment. For manipulative experiments, the hypothesis should include the independent variable (what you manipulate), the dependent variable(s) (what you measure), the organism or system , the direction of your results, and comparison to be made.

We hypothesized that reared in warm water will have a greater sexual mating response.

(The dependent variable “sexual response” has not been defined enough to be able to make this hypothesis testable or falsifiable. In addition, no comparison has been specified— greater sexual mating response as compared to what?)

We hypothesized that ) reared in warm water temperatures ranging from 25-28 °C ( ) would produce greater ( ) numbers of male offspring and females carrying haploid egg sacs ( ) than reared in cooler water temperatures of 18-22°C.

If you are doing a systematic observation , your hypothesis presents a variable or set of variables that you predict are important for helping you characterize the system as a whole, or predict differences between components/areas of the system that help you explain how the system functions or changes over time.

We hypothesize that the frequency and extent of algal blooms in Lake Mendota over the last 10 years causes fish kills and imposes a human health risk.

(The variables “frequency and extent of algal blooms,” “fish kills” and “human health risk” have not been defined enough to be able to make this hypothesis testable or falsifiable. How do you measure algal blooms? Although implied, hypothesis should express predicted direction of expected results [ , higher frequency associated with greater kills]. Note that cause and effect cannot be implied without a controlled, manipulative experiment.)

We hypothesize that increasing ( ) cell densities of algae ( ) in Lake Mendota over the last 10 years is correlated with 1. increased numbers of dead fish ( ) washed up on Madison beaches and 2. increased numbers of reported hospital/clinical visits ( .) following full-body exposure to lake water.

Experimental Approach : Briefly gives the reader a general sense of the experiment, the type of data it will yield, and the kind of conclusions you expect to obtain from the data. Do not confuse the experimental approach with the experimental protocol . The experimental protocol consists of the detailed step-by-step procedures and techniques used during the experiment that are to be reported in the Methods and Materials section.

Some Final Tips on Writing an Introduction

  • As you progress through the Biocore sequence, for instance, from organismal level of Biocore 301/302 to the cellular level in Biocore 303/304, we expect the contents of your “Introduction” paragraphs to reflect the level of your coursework and previous writing experience. For example, in Biocore 304 (Cell Biology Lab) biological rationale should draw upon assumptions we are making about cellular and biochemical processes.
  • Be Concise yet Specific: Remember to be concise and only include relevant information given your audience and your experimental design. As you write, keep asking, “Is this necessary information or is this irrelevant detail?” For example, if you are writing a paper claiming that a certain compound is a competitive inhibitor to the enzyme alkaline phosphatase and acts by binding to the active site, you need to explain (briefly) Michaelis-Menton kinetics and the meaning and significance of Km and Vmax. This explanation is not necessary if you are reporting the dependence of enzyme activity on pH because you do not need to measure Km and Vmax to get an estimate of enzyme activity.
  • Another example: if you are writing a paper reporting an increase in Daphnia magna heart rate upon exposure to caffeine you need not describe the reproductive cycle of magna unless it is germane to your results and discussion. Be specific and concrete, especially when making introductory or summary statements.

Where Do You Discuss Pilot Studies? Many times it is important to do pilot studies to help you get familiar with your experimental system or to improve your experimental design. If your pilot study influences your biological rationale or hypothesis, you need to describe it in your Introduction. If your pilot study simply informs the logistics or techniques, but does not influence your rationale, then the description of your pilot study belongs in the Materials and Methods section.  

from an Intro Ecology Lab:

         Researchers studying global warming predict an increase in average global temperature of 1.3°C in the next 10 years (Seetwo 2003). are small zooplankton that live in freshwater inland lakes. They are filter-feeding crustaceans with a transparent exoskeleton that allows easy observation of heart rate and digestive function. Thomas et al (2001) found that heart rate increases significantly in higher water temperatures are also thought to switch their mode of reproduction from asexual to sexual in response to extreme temperatures. Gender is not mediated by genetics, but by the environment. Therefore, reproduction may be sensitive to increased temperatures resulting from global warming (maybe a question?) and may serve as a good environmental indicator for global climate change.

         In this experiment we hypothesized that reared in warm water will switch from an asexual to a sexual mode of reproduction. In order to prove this hypothesis correct we observed grown in warm and cold water and counted the number of males observed after 10 days.

Comments:

Background information

·       Good to recognize as a model organism from which some general conclusions can be made about the quality of the environment; however no attempt is made to connect increased lake temperatures and gender. Link early on to increase focus.

·       Connection to global warming is too far-reaching. First sentence gives impression that Global Warming is topic for this paper. Changes associated with global warming are not well known and therefore little can be concluded about use of as indicator species.

·       Information about heart rate is unnecessary because heart rate in not being tested in this experiment.

Rationale

·       Rationale is missing; how is this study related to what we know about D. magna survivorship and reproduction as related to water temperature, and how will this experiment contribute to our knowledge of the system?

·       Think about the ecosystem in which this organism lives and the context. Under what conditions would D. magna be in a body of water with elevated temperatures?

Hypothesis

·       Not falsifiable; variables need to be better defined (state temperatures or range tested rather than “warm” or “cold”) and predict direction and magnitude of change in number of males after 10 days.

·       It is unclear what comparison will be made or what the control is

·       What dependent variable will be measured to determine “switch” in mode of reproduction (what criteria are definitive for switch?)

Approach

·       Hypotheses cannot be “proven” correct. They are either supported or rejected.

Introduction

         are small zooplankton found in freshwater inland lakes and are thought to switch their mode of reproduction from asexual to sexual in response to extreme temperatures (Mitchell 1999). Lakes containing have an average summer surface temperature of 20°C (Harper 1995) but may increase by more than 15% when expose to warm water effluent from power plants, paper mills, and chemical industry (Baker et al. 2000). Could an increase in lake temperature caused by industrial thermal pollution affect the survivorship and reproduction of ?

         The sex of is mediated by the environment rather than genetics. Under optimal environmental conditions, populations consist of asexually reproducing females. When the environment shifts may be queued to reproduce sexually resulting in the production of male offspring and females carrying haploid eggs in sacs called ephippia (Mitchell 1999).

         The purpose of this laboratory study is to examine the effects of increased water temperature on survivorship and reproduction. This study will help us characterize the magnitude of environmental change required to induce the onset of the sexual life cycle in . Because are known to be a sensitive environmental indicator species (Baker et al. 2000) and share similar structural and physiological features with many aquatic species, they serve as a good model for examining the effects of increasing water temperature on reproduction in a variety of aquatic invertebrates.

         We hypothesized that populations reared in water temperatures ranging from 24-26 °C would have lower survivorship, higher male/female ratio among the offspring, and more female offspring carrying ephippia as compared with grown in water temperatures of 20-22°C. To test this hypothesis we reared populations in tanks containing water at either 24 +/- 2°C or 20 +/- 2°C. Over 10 days, we monitored survivorship, determined the sex of the offspring, and counted the number of female offspring containing ephippia.

Comments:

Background information

·       Opening paragraph provides good focus immediately. The study organism, gender switching response, and temperature influence are mentioned in the first sentence. Although it does a good job documenting average lake water temperature and changes due to industrial run-off, it fails to make an argument that the 15% increase in lake temperature could be considered “extreme” temperature change.

·       The study question is nicely embedded within relevant, well-cited background information. Alternatively, it could be stated as the first sentence in the introduction, or after all background information has been discussed before the hypothesis.

Rationale

·       Good. Well-defined purpose for study; to examine the degree of environmental change necessary to induce the Daphnia sexual life
cycle.

How will introductions be evaluated? The following is part of the rubric we will be using to evaluate your papers.

 

0 = inadequate

(C, D or F)

1 = adequate

(BC)

2 = good

(B)

3 = very good

(AB)

4 = excellent

(A)

Introduction

BIG PICTURE: Did the Intro convey why experiment was performed and what it was designed to test?

 

Introduction provides little to no relevant information. (This often results in a hypothesis that “comes out of nowhere.”)

Many key components are very weak or missing; those stated are unclear and/or are not stated concisely. Weak/missing components make it difficult to follow the rest of the paper.

e.g., background information is not focused on a specific question and minimal biological rationale is presented such that hypothesis isn’t entirely logical

 

Covers most key components but could be done much more logically, clearly, and/or concisely.

e.g., biological rationale not fully developed but still supports hypothesis. Remaining components are done reasonably well, though there is still room for improvement.

Concisely & clearly covers all but one key component (w/ exception of rationale; see left) clearly covers all key components but could be a little more concise and/or clear.

e.g., has done a reasonably nice job with the Intro but fails to state the approach OR has done a nice job with Intro but has also included some irrelevant background information

 

Clearly, concisely, & logically presents all key components: relevant & correctly cited background information, question, biological rationale, hypothesis, approach.

Enago Academy

What Is Background in a Research Paper?

' src=

So you have carefully written your research paper  and probably ran it through your colleagues ten to fifteen times. While there are many elements to a good research article, one of the most important elements for your readers is the background of your study.

What is Background of the Study in Research

The background of your study will provide context to the information discussed throughout the research paper . Background information may include both important and relevant studies. This is particularly important if a study either supports or refutes your thesis.

Why is Background of the Study Necessary in Research?

The background of the study discusses your problem statement, rationale, and research questions. It links  introduction to your research topic  and ensures a logical flow of ideas.  Thus, it helps readers understand your reasons for conducting the study.

Providing Background Information

The reader should be able to understand your topic and its importance. The length and detail of your background also depend on the degree to which you need to demonstrate your understanding of the topic. Paying close attention to the following questions will help you in writing background information:

  • Are there any theories, concepts, terms, and ideas that may be unfamiliar to the target audience and will require you to provide any additional explanation?
  • Any historical data that need to be shared in order to provide context on why the current issue emerged?
  • Are there any concepts that may have been borrowed from other disciplines that may be unfamiliar to the reader and need an explanation?
Related: Ready with the background and searching for more information on journal ranking? Check this infographic on the SCImago Journal Rank today!

Is the research study unique for which additional explanation is needed? For instance, you may have used a completely new method

How to Write a Background of the Study

The structure of a background study in a research paper generally follows a logical sequence to provide context, justification, and an understanding of the research problem. It includes an introduction, general background, literature review , rationale , objectives, scope and limitations , significance of the study and the research hypothesis . Following the structure can provide a comprehensive and well-organized background for your research.

Here are the steps to effectively write a background of the study.

1. Identify Your Audience:

Determine the level of expertise of your target audience. Tailor the depth and complexity of your background information accordingly.

2. Understand the Research Problem:

Define the research problem or question your study aims to address. Identify the significance of the problem within the broader context of the field.

3. Review Existing Literature:

Conduct a thorough literature review to understand what is already known in the area. Summarize key findings, theories, and concepts relevant to your research.

4. Include Historical Data:

Integrate historical data if relevant to the research, as current issues often trace back to historical events.

5. Identify Controversies and Gaps:

Note any controversies or debates within the existing literature. Identify gaps , limitations, or unanswered questions that your research can address.

6. Select Key Components:

Choose the most critical elements to include in the background based on their relevance to your research problem. Prioritize information that helps build a strong foundation for your study.

7. Craft a Logical Flow:

Organize the background information in a logical sequence. Start with general context, move to specific theories and concepts, and then focus on the specific problem.

8. Highlight the Novelty of Your Research:

Clearly explain the unique aspects or contributions of your study. Emphasize why your research is different from or builds upon existing work.

Here are some extra tips to increase the quality of your research background:

Example of a Research Background

Here is an example of a research background to help you understand better.

The above hypothetical example provides a research background, addresses the gap and highlights the potential outcome of the study; thereby aiding a better understanding of the proposed research.

What Makes the Introduction Different from the Background?

Your introduction is different from your background in a number of ways.

  • The introduction contains preliminary data about your topic that  the reader will most likely read , whereas the background clarifies the importance of the paper.
  • The background of your study discusses in depth about the topic, whereas the introduction only gives an overview.
  • The introduction should end with your research questions, aims, and objectives, whereas your background should not (except in some cases where your background is integrated into your introduction). For instance, the C.A.R.S. ( Creating a Research Space ) model, created by John Swales is based on his analysis of journal articles. This model attempts to explain and describe the organizational pattern of writing the introduction in social sciences.

Points to Note

Your background should begin with defining a topic and audience. It is important that you identify which topic you need to review and what your audience already knows about the topic. You should proceed by searching and researching the relevant literature. In this case, it is advisable to keep track of the search terms you used and the articles that you downloaded. It is helpful to use one of the research paper management systems such as Papers, Mendeley, Evernote, or Sente. Next, it is helpful to take notes while reading. Be careful when copying quotes verbatim and make sure to put them in quotation marks and cite the sources. In addition, you should keep your background focused but balanced enough so that it is relevant to a broader audience. Aside from these, your background should be critical, consistent, and logically structured.

Writing the background of your study should not be an overly daunting task. Many guides that can help you organize your thoughts as you write the background. The background of the study is the key to introduce your audience to your research topic and should be done with strong knowledge and thoughtful writing.

The background of a research paper typically ranges from one to two paragraphs, summarizing the relevant literature and context of the study. It should be concise, providing enough information to contextualize the research problem and justify the need for the study. Journal instructions about any word count limits should be kept in mind while deciding on the length of the final content.

The background of a research paper provides the context and relevant literature to understand the research problem, while the introduction also introduces the specific research topic, states the research objectives, and outlines the scope of the study. The background focuses on the broader context, whereas the introduction focuses on the specific research project and its objectives.

When writing the background for a study, start by providing a brief overview of the research topic and its significance in the field. Then, highlight the gaps in existing knowledge or unresolved issues that the study aims to address. Finally, summarize the key findings from relevant literature to establish the context and rationale for conducting the research, emphasizing the need and importance of the study within the broader academic landscape.

The background in a research paper is crucial as it sets the stage for the study by providing essential context and rationale. It helps readers understand the significance of the research problem and its relevance in the broader field. By presenting relevant literature and highlighting gaps, the background justifies the need for the study, building a strong foundation for the research and enhancing its credibility.

' src=

The presentation very informative

' src=

It is really educative. I love the workshop. It really motivated me into writing my first paper for publication.

' src=

an interesting clue here, thanks.

thanks for the answers.

Good and interesting explanation. Thanks

Thank you for good presentation.

' src=

Hi Adam, we are glad to know that you found our article beneficial

The background of the study is the key to introduce your audience to YOUR research topic.

Awesome. Exactly what i was looking forwards to 😉

Hi Maryam, we are glad to know that you found our resource useful.

my understanding of ‘Background of study’ has been elevated.

Hi Peter, we are glad to know that our article has helped you get a better understanding of the background in a research paper.

thanks to give advanced information

Hi Shimelis, we are glad to know that you found the information in our article beneficial.

When i was studying it is very much hard for me to conduct a research study and know the background because my teacher in practical research is having a research so i make it now so that i will done my research

Very informative……….Thank you.

The confusion i had before, regarding an introduction and background to a research work is now a thing of the past. Thank you so much.

Thanks for your help…

Thanks for your kind information about the background of a research paper.

Thanks for the answer

Very informative. I liked even more when the difference between background and introduction was given. I am looking forward to learning more from this site. I am in Botswana

Hello, I am Benoît from Central African Republic. Right now I am writing down my research paper in order to get my master degree in British Literature. Thank you very much for posting all this information about the background of the study. I really appreciate. Thanks!

The write up is quite good, detailed and informative. Thanks a lot. The article has certainly enhanced my understanding of the topic.

Rate this article Cancel Reply

Your email address will not be published.

background research science report

Enago Academy's Most Popular Articles

manuscript writing with AI

  • AI in Academia
  • Infographic
  • Manuscripts & Grants
  • Reporting Research
  • Trending Now

Can AI Tools Prepare a Research Manuscript From Scratch? — A comprehensive guide

As technology continues to advance, the question of whether artificial intelligence (AI) tools can prepare…

difference between abstract and introduction

Abstract Vs. Introduction — Do you know the difference?

Ross wants to publish his research. Feeling positive about his research outcomes, he begins to…

background research science report

  • Old Webinars
  • Webinar Mobile App

Demystifying Research Methodology With Field Experts

Choosing research methodology Research design and methodology Evidence-based research approach How RAxter can assist researchers

Best Research Methodology

  • Manuscript Preparation
  • Publishing Research

How to Choose Best Research Methodology for Your Study

Successful research conduction requires proper planning and execution. While there are multiple reasons and aspects…

Methods and Methodology

Top 5 Key Differences Between Methods and Methodology

While burning the midnight oil during literature review, most researchers do not realize that the…

How to Draft the Acknowledgment Section of a Manuscript

Discussion Vs. Conclusion: Know the Difference Before Drafting Manuscripts

background research science report

Sign-up to read more

Subscribe for free to get unrestricted access to all our resources on research writing and academic publishing including:

  • 2000+ blog articles
  • 50+ Webinars
  • 10+ Expert podcasts
  • 50+ Infographics
  • 10+ Checklists
  • Research Guides

We hate spam too. We promise to protect your privacy and never spam you.

  • Industry News
  • Promoting Research
  • Career Corner
  • Diversity and Inclusion
  • Infographics
  • Expert Video Library
  • Other Resources
  • Enago Learn
  • Upcoming & On-Demand Webinars
  • Peer-Review Week 2023
  • Open Access Week 2023
  • Conference Videos
  • Enago Report
  • Journal Finder
  • Enago Plagiarism & AI Grammar Check
  • Editing Services
  • Publication Support Services
  • Research Impact
  • Translation Services
  • Publication solutions
  • AI-Based Solutions
  • Thought Leadership
  • Call for Articles
  • Call for Speakers
  • Author Training
  • Edit Profile

I am looking for Editing/ Proofreading services for my manuscript Tentative date of next journal submission:

background research science report

In your opinion, what is the most effective way to improve integrity in the peer review process?

in the light of the science!

  • Planet Earth
  • Strange News

How To Write A Background Paper For Science Fair

APA Background Research Paper . Science Fair Background Research Process: 1. You will need 60 index cards 2. You will make a list of 20 questions about your topic and then find answers for each of your 20 questions from 3…

Typing The APA Background Research Paper – Science Fair Background Research Process:1. You will need 60 index cards2. You will make a list of 20 questions about your topic and then find answers for each of your 20 questions from 3 different sources: Books, Internet, and Encyclopedias3. You will then write each of your 20 questions on one side of the index cards; one per index card. Repeat this a total of three times so that you have 60 index cards. IE: Topic: Sun Spots Question #1 “What causes sun spots?

Video advice: How to Write the Background of the Study in Research (Part 1). See Links Below for Parts 2, 3, and 4

Full transcript of the video lecture on \”How to Write the Background of the Study Part 1\” is available at:

How To Write A Background Paper For Science Fair

Acaciawood Prep :: Science Fair – Acaciawood School 5th-8th grade students participate in an annual Science Fair competition. Projects are prepared throughout the fall semester and the first part of the spring semester for a competition in the early spring. The top projects in each grade of the school’s competition compete at the Orange County Science and Engineering Fair. Winners at the county level move on to the State Science Fair competition.

Background Information for Science Projects

Science projects for school students range from simple setups and graphs to more complex fair-style displays or even extended activities. Students and teachers can complete some projects directly in the classroom, while others may need some at-home care to finish. Whether you (or your child or student) create an …

. . Science projects for college students vary from simple setups and graphs to more complicated fair-style displays or perhaps extended activities. Students and teachers can complete some projects directly within the classroom, while some may require some at-homecare to complete. Regardless of whether you (or perhaps your child or student) create a more sophisticated activity or something like that more fundamental, all science projects should contain history or perhaps a purpose statement. Explore this short article What’s History? Additional Information to incorporate Keeping History Finding History 1 What’s History? Science project history includes all research that you simply conduct prior to starting the game. For instance, should you design a task about how acids and bases react when mixed together, the backdrop section should contain specific info on acids, bases, litmus tests, chemical formulas, solutions, molecules and reactions.

Video advice: Challenge A Science Fair part 2… Research Question, Background Research, and Hypothesis

How To Write A Background Paper For Science Fair

Video advice: Introduction to Science Fair Background Research Paper

How To Write A Background Paper For Science Fair

What is a background paper for science project?

The purpose of the Background Research Report is for you to gain knowledge about your Science Fair Project topic. This way you will be able to interpret the results of your experiment and draw conclusions based on the previous knowledge you gained by writing this report.

How do you write a science background?

The background should be written as a summary of your interpretation of previous research and what your study proposes to accomplish .... How to avoid common mistakes in writing the background

  • Don't write a background that is too long or too short. ...
  • Don't be ambiguous. ...
  • Don't discuss unrelated themes. ...
  • Don't be disorganized.

What is the background information of an experiment?

Science project background information includes all research that you conduct before beginning the activity .

How do you start a background research?

The background study for a thesis includes a review of the area being researched, current information surrounding the issue, previous studies on the issue, and relevant history on the issue. Ideally, the study should effectively set forth the history and background information on your thesis problem.

What is an example of background information?

Background information is often provided after the hook, or opening statement that is used to grab the reader's attention. ... Examples of Background Information: In his inaugural speech at Rice University, John F. Kennedy spoke about the space race and going to the moon.

Related Articles:

  • How To Write Background Information For Science Fair
  • What Is Background Research For Science Fair
  • What Is Background Research For Science Fair Project
  • How To Write A Computer Science Paper
  • How To Write Abstract For Science Research Paper
  • Which Paper Towel Absorbs The Most Water Science Fair Project

background research science report

Science Journalist

Science atlas, our goal is to spark the curiosity that exists in all of us. We invite readers to visit us daily, explore topics of interest, and gain new perspectives along the way.

You may also like

Is A Bachelors In Biology Useless

Is A Bachelors In Biology Useless

When Was It Proven That The Earth Is Round

When Was It Proven That The Earth Is Round

How Do I Read Davids Concrete Innovation Catalog

How Do I Read Davids Concrete Innovation Catalog

Add comment, cancel reply.

Your email address will not be published. Required fields are marked *

Save my name, email, and website in this browser for the next time I comment.

Recent discoveries

What Geology Contains Most Gold

What Geology Contains Most Gold

Is The Second Law Of Thermodynamics Capitalized

Is The Second Law Of Thermodynamics Capitalized

How Is Stress Defined In Geology

How Is Stress Defined In Geology

How Will An Innovation In Technology Affect A Labors Wage

How Will An Innovation In Technology Affect A Labors Wage

  • Animals 3041
  • Astronomy 8
  • Biology 2281
  • Chemistry 482
  • Culture 1333
  • Health 8466
  • History 2152
  • Physics 913
  • Planet Earth 3239
  • Science 2158
  • Strange News 1230
  • Technology 3625

Random fact

Toxicity of Protein Involved with Alzheimer’s Triggered by Chemical “Switch

Toxicity of Protein Involved with Alzheimer’s Triggered by Chemical “Switch

Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, generate accurate citations for free.

  • Knowledge Base
  • Academic writing
  • How to write a lab report

How To Write A Lab Report | Step-by-Step Guide & Examples

Published on May 20, 2021 by Pritha Bhandari . Revised on July 23, 2023.

A lab report conveys the aim, methods, results, and conclusions of a scientific experiment. The main purpose of a lab report is to demonstrate your understanding of the scientific method by performing and evaluating a hands-on lab experiment. This type of assignment is usually shorter than a research paper .

Lab reports are commonly used in science, technology, engineering, and mathematics (STEM) fields. This article focuses on how to structure and write a lab report.

Instantly correct all language mistakes in your text

Upload your document to correct all your mistakes in minutes

upload-your-document-ai-proofreader

Table of contents

Structuring a lab report, introduction, other interesting articles, frequently asked questions about lab reports.

The sections of a lab report can vary between scientific fields and course requirements, but they usually contain the purpose, methods, and findings of a lab experiment .

Each section of a lab report has its own purpose.

  • Title: expresses the topic of your study
  • Abstract : summarizes your research aims, methods, results, and conclusions
  • Introduction: establishes the context needed to understand the topic
  • Method: describes the materials and procedures used in the experiment
  • Results: reports all descriptive and inferential statistical analyses
  • Discussion: interprets and evaluates results and identifies limitations
  • Conclusion: sums up the main findings of your experiment
  • References: list of all sources cited using a specific style (e.g. APA )
  • Appendices : contains lengthy materials, procedures, tables or figures

Although most lab reports contain these sections, some sections can be omitted or combined with others. For example, some lab reports contain a brief section on research aims instead of an introduction, and a separate conclusion is not always required.

If you’re not sure, it’s best to check your lab report requirements with your instructor.

Receive feedback on language, structure, and formatting

Professional editors proofread and edit your paper by focusing on:

  • Academic style
  • Vague sentences
  • Style consistency

See an example

background research science report

Your title provides the first impression of your lab report – effective titles communicate the topic and/or the findings of your study in specific terms.

Create a title that directly conveys the main focus or purpose of your study. It doesn’t need to be creative or thought-provoking, but it should be informative.

  • The effects of varying nitrogen levels on tomato plant height.
  • Testing the universality of the McGurk effect.
  • Comparing the viscosity of common liquids found in kitchens.

An abstract condenses a lab report into a brief overview of about 150–300 words. It should provide readers with a compact version of the research aims, the methods and materials used, the main results, and the final conclusion.

Think of it as a way of giving readers a preview of your full lab report. Write the abstract last, in the past tense, after you’ve drafted all the other sections of your report, so you’ll be able to succinctly summarize each section.

To write a lab report abstract, use these guiding questions:

  • What is the wider context of your study?
  • What research question were you trying to answer?
  • How did you perform the experiment?
  • What did your results show?
  • How did you interpret your results?
  • What is the importance of your findings?

Nitrogen is a necessary nutrient for high quality plants. Tomatoes, one of the most consumed fruits worldwide, rely on nitrogen for healthy leaves and stems to grow fruit. This experiment tested whether nitrogen levels affected tomato plant height in a controlled setting. It was expected that higher levels of nitrogen fertilizer would yield taller tomato plants.

Levels of nitrogen fertilizer were varied between three groups of tomato plants. The control group did not receive any nitrogen fertilizer, while one experimental group received low levels of nitrogen fertilizer, and a second experimental group received high levels of nitrogen fertilizer. All plants were grown from seeds, and heights were measured 50 days into the experiment.

The effects of nitrogen levels on plant height were tested between groups using an ANOVA. The plants with the highest level of nitrogen fertilizer were the tallest, while the plants with low levels of nitrogen exceeded the control group plants in height. In line with expectations and previous findings, the effects of nitrogen levels on plant height were statistically significant. This study strengthens the importance of nitrogen for tomato plants.

Your lab report introduction should set the scene for your experiment. One way to write your introduction is with a funnel (an inverted triangle) structure:

  • Start with the broad, general research topic
  • Narrow your topic down your specific study focus
  • End with a clear research question

Begin by providing background information on your research topic and explaining why it’s important in a broad real-world or theoretical context. Describe relevant previous research on your topic and note how your study may confirm it or expand it, or fill a gap in the research field.

This lab experiment builds on previous research from Haque, Paul, and Sarker (2011), who demonstrated that tomato plant yield increased at higher levels of nitrogen. However, the present research focuses on plant height as a growth indicator and uses a lab-controlled setting instead.

Next, go into detail on the theoretical basis for your study and describe any directly relevant laws or equations that you’ll be using. State your main research aims and expectations by outlining your hypotheses .

Based on the importance of nitrogen for tomato plants, the primary hypothesis was that the plants with the high levels of nitrogen would grow the tallest. The secondary hypothesis was that plants with low levels of nitrogen would grow taller than plants with no nitrogen.

Your introduction doesn’t need to be long, but you may need to organize it into a few paragraphs or with subheadings such as “Research Context” or “Research Aims.”

Check for common mistakes

Use the best grammar checker available to check for common mistakes in your text.

Fix mistakes for free

A lab report Method section details the steps you took to gather and analyze data. Give enough detail so that others can follow or evaluate your procedures. Write this section in the past tense. If you need to include any long lists of procedural steps or materials, place them in the Appendices section but refer to them in the text here.

You should describe your experimental design, your subjects, materials, and specific procedures used for data collection and analysis.

Experimental design

Briefly note whether your experiment is a within-subjects  or between-subjects design, and describe how your sample units were assigned to conditions if relevant.

A between-subjects design with three groups of tomato plants was used. The control group did not receive any nitrogen fertilizer. The first experimental group received a low level of nitrogen fertilizer, while the second experimental group received a high level of nitrogen fertilizer.

Describe human subjects in terms of demographic characteristics, and animal or plant subjects in terms of genetic background. Note the total number of subjects as well as the number of subjects per condition or per group. You should also state how you recruited subjects for your study.

List the equipment or materials you used to gather data and state the model names for any specialized equipment.

List of materials

35 Tomato seeds

15 plant pots (15 cm tall)

Light lamps (50,000 lux)

Nitrogen fertilizer

Measuring tape

Describe your experimental settings and conditions in detail. You can provide labelled diagrams or images of the exact set-up necessary for experimental equipment. State how extraneous variables were controlled through restriction or by fixing them at a certain level (e.g., keeping the lab at room temperature).

Light levels were fixed throughout the experiment, and the plants were exposed to 12 hours of light a day. Temperature was restricted to between 23 and 25℃. The pH and carbon levels of the soil were also held constant throughout the experiment as these variables could influence plant height. The plants were grown in rooms free of insects or other pests, and they were spaced out adequately.

Your experimental procedure should describe the exact steps you took to gather data in chronological order. You’ll need to provide enough information so that someone else can replicate your procedure, but you should also be concise. Place detailed information in the appendices where appropriate.

In a lab experiment, you’ll often closely follow a lab manual to gather data. Some instructors will allow you to simply reference the manual and state whether you changed any steps based on practical considerations. Other instructors may want you to rewrite the lab manual procedures as complete sentences in coherent paragraphs, while noting any changes to the steps that you applied in practice.

If you’re performing extensive data analysis, be sure to state your planned analysis methods as well. This includes the types of tests you’ll perform and any programs or software you’ll use for calculations (if relevant).

First, tomato seeds were sown in wooden flats containing soil about 2 cm below the surface. Each seed was kept 3-5 cm apart. The flats were covered to keep the soil moist until germination. The seedlings were removed and transplanted to pots 8 days later, with a maximum of 2 plants to a pot. Each pot was watered once a day to keep the soil moist.

The nitrogen fertilizer treatment was applied to the plant pots 12 days after transplantation. The control group received no treatment, while the first experimental group received a low concentration, and the second experimental group received a high concentration. There were 5 pots in each group, and each plant pot was labelled to indicate the group the plants belonged to.

50 days after the start of the experiment, plant height was measured for all plants. A measuring tape was used to record the length of the plant from ground level to the top of the tallest leaf.

In your results section, you should report the results of any statistical analysis procedures that you undertook. You should clearly state how the results of statistical tests support or refute your initial hypotheses.

The main results to report include:

  • any descriptive statistics
  • statistical test results
  • the significance of the test results
  • estimates of standard error or confidence intervals

The mean heights of the plants in the control group, low nitrogen group, and high nitrogen groups were 20.3, 25.1, and 29.6 cm respectively. A one-way ANOVA was applied to calculate the effect of nitrogen fertilizer level on plant height. The results demonstrated statistically significant ( p = .03) height differences between groups.

Next, post-hoc tests were performed to assess the primary and secondary hypotheses. In support of the primary hypothesis, the high nitrogen group plants were significantly taller than the low nitrogen group and the control group plants. Similarly, the results supported the secondary hypothesis: the low nitrogen plants were taller than the control group plants.

These results can be reported in the text or in tables and figures. Use text for highlighting a few key results, but present large sets of numbers in tables, or show relationships between variables with graphs.

You should also include sample calculations in the Results section for complex experiments. For each sample calculation, provide a brief description of what it does and use clear symbols. Present your raw data in the Appendices section and refer to it to highlight any outliers or trends.

The Discussion section will help demonstrate your understanding of the experimental process and your critical thinking skills.

In this section, you can:

  • Interpret your results
  • Compare your findings with your expectations
  • Identify any sources of experimental error
  • Explain any unexpected results
  • Suggest possible improvements for further studies

Interpreting your results involves clarifying how your results help you answer your main research question. Report whether your results support your hypotheses.

  • Did you measure what you sought out to measure?
  • Were your analysis procedures appropriate for this type of data?

Compare your findings with other research and explain any key differences in findings.

  • Are your results in line with those from previous studies or your classmates’ results? Why or why not?

An effective Discussion section will also highlight the strengths and limitations of a study.

  • Did you have high internal validity or reliability?
  • How did you establish these aspects of your study?

When describing limitations, use specific examples. For example, if random error contributed substantially to the measurements in your study, state the particular sources of error (e.g., imprecise apparatus) and explain ways to improve them.

The results support the hypothesis that nitrogen levels affect plant height, with increasing levels producing taller plants. These statistically significant results are taken together with previous research to support the importance of nitrogen as a nutrient for tomato plant growth.

However, unlike previous studies, this study focused on plant height as an indicator of plant growth in the present experiment. Importantly, plant height may not always reflect plant health or fruit yield, so measuring other indicators would have strengthened the study findings.

Another limitation of the study is the plant height measurement technique, as the measuring tape was not suitable for plants with extreme curvature. Future studies may focus on measuring plant height in different ways.

The main strengths of this study were the controls for extraneous variables, such as pH and carbon levels of the soil. All other factors that could affect plant height were tightly controlled to isolate the effects of nitrogen levels, resulting in high internal validity for this study.

Your conclusion should be the final section of your lab report. Here, you’ll summarize the findings of your experiment, with a brief overview of the strengths and limitations, and implications of your study for further research.

Some lab reports may omit a Conclusion section because it overlaps with the Discussion section, but you should check with your instructor before doing so.

If you want to know more about AI for academic writing, AI tools, or fallacies make sure to check out some of our other articles with explanations and examples or go directly to our tools!

  • Ad hominem fallacy
  • Post hoc fallacy
  • Appeal to authority fallacy
  • False cause fallacy
  • Sunk cost fallacy
  • Deep learning
  • Generative AI
  • Machine learning
  • Reinforcement learning
  • Supervised vs. unsupervised learning

 (AI) Tools

  • Grammar Checker
  • Paraphrasing Tool
  • Text Summarizer
  • AI Detector
  • Plagiarism Checker
  • Citation Generator

A lab report conveys the aim, methods, results, and conclusions of a scientific experiment . Lab reports are commonly assigned in science, technology, engineering, and mathematics (STEM) fields.

The purpose of a lab report is to demonstrate your understanding of the scientific method with a hands-on lab experiment. Course instructors will often provide you with an experimental design and procedure. Your task is to write up how you actually performed the experiment and evaluate the outcome.

In contrast, a research paper requires you to independently develop an original argument. It involves more in-depth research and interpretation of sources and data.

A lab report is usually shorter than a research paper.

The sections of a lab report can vary between scientific fields and course requirements, but it usually contains the following:

  • Abstract: summarizes your research aims, methods, results, and conclusions
  • References: list of all sources cited using a specific style (e.g. APA)
  • Appendices: contains lengthy materials, procedures, tables or figures

The results chapter or section simply and objectively reports what you found, without speculating on why you found these results. The discussion interprets the meaning of the results, puts them in context, and explains why they matter.

In qualitative research , results and discussion are sometimes combined. But in quantitative research , it’s considered important to separate the objective results from your interpretation of them.

Cite this Scribbr article

If you want to cite this source, you can copy and paste the citation or click the “Cite this Scribbr article” button to automatically add the citation to our free Citation Generator.

Bhandari, P. (2023, July 23). How To Write A Lab Report | Step-by-Step Guide & Examples. Scribbr. Retrieved August 8, 2024, from https://www.scribbr.com/academic-writing/lab-report/

Is this article helpful?

Pritha Bhandari

Pritha Bhandari

Other students also liked, guide to experimental design | overview, steps, & examples, how to write an apa methods section, how to write an apa results section, what is your plagiarism score.

Organizing Your Social Sciences Research Paper: Background Information

  • Purpose of Guide
  • Writing a Research Proposal
  • Design Flaws to Avoid
  • Independent and Dependent Variables
  • Narrowing a Topic Idea
  • Broadening a Topic Idea
  • The Research Problem/Question
  • Academic Writing Style
  • Choosing a Title
  • Making an Outline
  • Paragraph Development
  • The C.A.R.S. Model
  • Background Information
  • Theoretical Framework
  • Citation Tracking
  • Evaluating Sources
  • Reading Research Effectively
  • Primary Sources
  • Secondary Sources
  • What Is Scholarly vs. Popular?
  • Is it Peer-Reviewed?
  • Qualitative Methods
  • Quantitative Methods
  • Common Grammar Mistakes
  • Writing Concisely
  • Avoiding Plagiarism [linked guide]
  • Annotated Bibliography
  • Grading Someone Else's Paper

Background information identifies and describes the history and nature of a well-defined research problem with reference to the existing literature. The background information should indicate the root of the problem being studied, appropriate context of the problem in relation to theory, research, and/or practice , its scope, and the extent to which previous studies have successfully investigated the problem, noting, in particular, where gaps exist that your study attempts to address.

Structure and Writing Style

Providing background information in the introduction of a research paper serves as a bridge that links the reader to the topic of your study . Precisely how long and in-depth this bridge should be is largely dependent upon how much information you think the reader will need to know in order to fully understand the topic being discussed and to appreciate why the issues you are investigating are important.

From another perspective, the length and detail of background information also depends on the degree to which you need to demonstrate to your professor how much you understand the research problem. Keep this in mind because providing pertinent background information can be an effective way to demonstrate that you have a clear grasp of key issues and concepts underpinning your overall study. Don't try to show off, though! And, avoid stating the obvious.

The structure and writing style of your background information can vary depending upon the complexity of your research and/or the nature of the assignment. Given this, here are some questions to consider while writing this part of your introduction :

  • Are there concepts, terms, theories, or ideas that may be unfamiliar to the reader and, thus, require additional explanation?
  • Are there historical elements that need to be explored in order to provide needed context, to highlight specific people, issues, or events, or to lay a foundation for understanding the emergence of a current issue or event?
  • Are there theories, concepts, or ideas borrowed from other disciplines or academic traditions that may be unfamiliar to the reader and therefore require further explanation?
  • Is the research study unusual in a way that requires additional explanation, such as, 1) your study uses a method of analysis never applied before; 2) your study investigates a very esoteric or complex research problem; or, 3) your study relies upon analyzing unique texts or documents, such as, archival materials or primary documents like diaries or personal letters that do not represent the established body of source literature on the topic.

Almost all introductions to a research problem require some contextualizing, but the scope and breadth of background information varies depending on your assumption about the reader's level of prior knowledge . Despite this assessment, however, background information should be brief and succinct; save any elaboration of critical points or in-depth discussion of key issues for the literature review section of your paper.

Background of the Problem Section: What do you Need to Consider? Anonymous. Harvard University; Hopkins, Will G. How to Write a Research Paper . SPORTSCIENCE, Perspectives/Research Resources. Department of Physiology and School of Physical Education, University of Otago, 1999; Green, L. H. How to Write the Background/Introduction Section . Physics 499 Powerpoint slides. University of Illinois; Woodall, W. Gill. Writing the Background and Significance Section . Senior Research Scientist and Professor of Communication. Center on Alcoholism, Substance Abuse, and Addictions. University of New Mexico.

Writing Tip

Background Information vs. the Literature Review

Incorporating background information into the introduction is intended to provide the reader with critical information about the topic being studied, such as, highlighting and expanding upon foundational studies conducted in the past, describing important historical events that inform why and in what ways the research problem exists, or defining key components of your study [concepts, people, places, things]. Although in  social sciences research introductory background information can often blend into the literature review portion of the paper, basic background information should not be considered a substitute for a comprehensive review and synthesis of relevant research literature.

Hart, Cris. Doing a Literature Review: Releasing the Social Science Research Imagination . Thousand Oaks, CA: Sage, 1998.

  • << Previous: The C.A.R.S. Model
  • Next: Theoretical Framework >>
  • Last Updated: Sep 8, 2023 12:19 PM
  • URL: https://guides.library.txstate.edu/socialscienceresearch

Site Logo

BML Summer Students Share Their Science Through Short Films

  • August 06, 2024

Coastal Marine Research (BIS 124) was taught at Bodega Marine Laboratory during Summer Session I by Professor Eric Sanford. Undergraduate students in this course received training in all aspects of the research process and then put their new skills to work during independent research projects conducted in teams of two. Students shared their research findings via a scientific talk delivered at the BML Student Research Symposium on August 1, and a final paper archived in the Cadet Hand Library at BML. 

Students also developed science communication skills for engaging non-scientists. Students produced 3-minute films to highlight their research for general audiences and premiered their work at a Film Festival at Bodega Marine Lab on July 30.  These films are now available to watch below.

Survival of the Smelliest: Does Smell Play a Role in Competitive Interactions Between Sea Slugs?

Filmmakers: Dorado Barrios & Charlise Cambronero

Shifting Shores

Filmmakers: Natalia Goston & Christian Long

Don’t Put All of Your Crabs Under One Rock!

Filmmakers: Jasper Jacobs & Makayla Peixoto

Hot as Shell

Filmmakers: Emily Horn & Ava Hurley

From Farm to Sea

Filmmaker: Indi Mejia

The Elegant Dove Snail has a Dark Secret…

Filmmakers: Nathan Cole & Kaden Stone

Will Climate Change Cause a Crabtastrophe?

Filmmakers: Zoe Roberson & Darien Valdez

The Sunburnt Urchins & The Search for Sunscreen

Filmmakers: Jamison Nagle & Austin Wang

Hungry Hungry Barnacles!

Filmmakers: Michell Valencia-Ortega & Kristen Wojciechowski

Honey, My Sponge Tastes Funny!

Filmmaker: Max Mao

Primary Category

Data Science Students Win American Statistical Association Award

  • Share on Facebook
  • Share on Twitter
  • Share on LinkedIn
  • Share through Email
  • Copy permalink

Ashley Yung headshot

Data science students William Hou and Ashley Yung were recently recognized for “demonstrated ability, leadership, and professional promise” by the Orange County / Long Beach chapter of the American Statistical Association . Both graduated from UC Irvine’s Donald Bren School of Information and Computer Sciences (ICS) in June of this year and while their paths to statistics differed, they share a similar passion for the field.

Hou’s interest in data science was first sparked in high school after analyzing competition data on the robotics team. Yung, who started out as a psychological sciences major, realized she had an interest in statistical methods and quantitative measures while conducting experiments in the social sciences setting.

“Both Ashley and William have been not only excellent students but also great peers,” says Associate Professor of Teaching Mine Dogucu , who nominated each for the student award. She has been particularly impressed by their outreach to other students through the Data@UCI student organization. “Under their leadership, Data@UCI has thrived.”

Demonstrated Leadership

Hou and a few friends founded Data@UCI in 2022, and he served as club president in 2022-23. “In the years since its founding, our club has grown to reach thousands of students, and we’ve established ourselves as the premier club for all things data at UCI,” says Hou. “I even leveraged my experience planning software hackathons to organize UCI’s very first data hackathon , bringing together hundreds of data enthusiasts around Southern California to learn together in a competitive setting.”

William sits on a bench next to a bronze anteater statue

The hackathon continued this year, with help from Yung, who served as co-director of community development. In that role, she worked with other Data@UCI leaders to offer workshops, professional panels and speaker events to help students improve their analytical skills. Yung held a similar role in the Women in Information and Computer Sciences ( WICS ) student organization at UCI as well.

“In both organizations, I was an active club member dedicated to fostering community building and outreach,” says Yung. “I had the opportunity to meet and develop relationships with a lot of intelligent and passionate people.”

Yung stresses that her peers are also deserving of recognition. “I was extremely grateful to be recognized by the Orange County / Long Beach American Statistical Association [but] I also want to acknowledge all of my fellow data science peers at UCI, whom I believe are just as deserving of this award,” she says. “I am really fortunate to have attended UCI, where I’ve been able to meet so many inspiring people.”

Eleven women stand on stairs at UCI, outside the computer science building

Professional Promise

As Hou and Yung start their data science careers, they do so with a wealth of knowledge and experience. Hou worked with Jonathan Watanabe in the School of Pharmaceutical Sciences, analyzing real-world medical data to inform clinical care and improve patient outcomes. He also completed an internship at Atlassian, where he is now employed and will be contributing insights to its product and marketing divisions.

Yung interned at JP Morgan Chase, gaining hands-on experience working on projects related to automation and time-series forecasting. She also emphasizes the practical experience gained through her capstone course. “I really enjoyed the final capstone project!” she says. “With guidance from our professors and corporate partners, we were able to build a project from scratch and present it at the ICS Project Expo . Overall, it was a great experience.” The two-quarter capstone course is required of all data science majors, ensuring students learn how to apply statistical and computational principles to large-scale real-world data analysis problems.

Hou also highlights UCI’s focus on practical application. “I appreciate how UCI’s data science major puts emphasis on both the computer science and statistics aspects of the field,” he says. “Many other programs focus on one more than the other, which often leads to critical skills employers are looking for falling between the gaps. Though you should know the theory behind any analysis, it is equally important to understand the tools used to put them into practice.”

This is one of the benefits of UCI offering its data science major through the School of ICS, which houses both the Department of Computer Science and the Department of Statistics. It fosters an environment of interdisciplinary collaboration.

Five students stand around Professor Dogucu

“I believe I speak for faculty from both departments,” says Docugu, “when I say we cannot wait to see these two students taking over the data science world as UCI alumni.”

— Shani Murray

Related Posts

Faculty and staff honored at 2024 ics awards celebration, how ai is impacting the medical imaging field (spectrum news 1), attacks on bytecode interpreters conceal malicious injection activity (dark reading), smart health research to reduce cancer risks, $1.4 million awarded for alzheimer’s disease research training (uci news), ics students win 2024 gen ai hackathon.

  • Systematic review
  • Open access
  • Published: 07 August 2024

Models and frameworks for assessing the implementation of clinical practice guidelines: a systematic review

  • Nicole Freitas de Mello   ORCID: orcid.org/0000-0002-5228-6691 1 , 2 ,
  • Sarah Nascimento Silva   ORCID: orcid.org/0000-0002-1087-9819 3 ,
  • Dalila Fernandes Gomes   ORCID: orcid.org/0000-0002-2864-0806 1 , 2 ,
  • Juliana da Motta Girardi   ORCID: orcid.org/0000-0002-7547-7722 4 &
  • Jorge Otávio Maia Barreto   ORCID: orcid.org/0000-0002-7648-0472 2 , 4  

Implementation Science volume  19 , Article number:  59 ( 2024 ) Cite this article

179 Accesses

5 Altmetric

Metrics details

The implementation of clinical practice guidelines (CPGs) is a cyclical process in which the evaluation stage can facilitate continuous improvement. Implementation science has utilized theoretical approaches, such as models and frameworks, to understand and address this process. This article aims to provide a comprehensive overview of the models and frameworks used to assess the implementation of CPGs.

A systematic review was conducted following the Cochrane methodology, with adaptations to the "selection process" due to the unique nature of this review. The findings were reported following PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) reporting guidelines. Electronic databases were searched from their inception until May 15, 2023. A predetermined strategy and manual searches were conducted to identify relevant documents from health institutions worldwide. Eligible studies presented models and frameworks for assessing the implementation of CPGs. Information on the characteristics of the documents, the context in which the models were used (specific objectives, level of use, type of health service, target group), and the characteristics of each model or framework (name, domain evaluated, and model limitations) were extracted. The domains of the models were analyzed according to the key constructs: strategies, context, outcomes, fidelity, adaptation, sustainability, process, and intervention. A subgroup analysis was performed grouping models and frameworks according to their levels of use (clinical, organizational, and policy) and type of health service (community, ambulatorial, hospital, institutional). The JBI’s critical appraisal tools were utilized by two independent researchers to assess the trustworthiness, relevance, and results of the included studies.

Database searches yielded 14,395 studies, of which 80 full texts were reviewed. Eight studies were included in the data analysis and four methodological guidelines were additionally included from the manual search. The risk of bias in the studies was considered non-critical for the results of this systematic review. A total of ten models/frameworks for assessing the implementation of CPGs were found. The level of use was mainly policy, the most common type of health service was institutional, and the major target group was professionals directly involved in clinical practice. The evaluated domains differed between the models and there were also differences in their conceptualization. All the models addressed the domain "Context", especially at the micro level (8/12), followed by the multilevel (7/12). The domains "Outcome" (9/12), "Intervention" (8/12), "Strategies" (7/12), and "Process" (5/12) were frequently addressed, while "Sustainability" was found only in one study, and "Fidelity/Adaptation" was not observed.

Conclusions

The use of models and frameworks for assessing the implementation of CPGs is still incipient. This systematic review may help stakeholders choose or adapt the most appropriate model or framework to assess CPGs implementation based on their specific health context.

Trial registration

PROSPERO (International Prospective Register of Systematic Reviews) registration number: CRD42022335884. Registered on June 7, 2022.

Peer Review reports

Contributions to the literature

Although the number of theoretical approaches has grown in recent years, there are still important gaps to be explored in the use of models and frameworks to assess the implementation of clinical practice guidelines (CPGs). This systematic review aims to contribute knowledge to overcome these gaps.

Despite the great advances in implementation science, evaluating the implementation of CPGs remains a challenge, and models and frameworks could support improvements in this field.

This study demonstrates that the available models and frameworks do not cover all characteristics and domains necessary for a complete evaluation of CPGs implementation.

The presented findings contribute to the field of implementation science, encouraging debate on choices and adaptations of models and frameworks for implementation research and evaluation.

Substantial investments have been made in clinical research and development in recent decades, increasing the medical knowledge base and the availability of health technologies [ 1 ]. The use of clinical practice guidelines (CPGs) has increased worldwide to guide best health practices and to maximize healthcare investments. A CPG can be defined as "any formal statements systematically developed to assist practitioner and patient decisions about appropriate health care for specific clinical circumstances" [ 2 ] and has the potential to improve patient care by promoting interventions of proven benefit and discouraging ineffective interventions. Furthermore, they can promote efficiency in resource allocation and provide support for managers and health professionals in decision-making [ 3 , 4 ].

However, having a quality CPG does not guarantee that the expected health benefits will be obtained. In fact, putting these devices to use still presents a challenge for most health services across distinct levels of government. In addition to the development of guidelines with high methodological rigor, those recommendations need to be available to their users; these recommendations involve the diffusion and dissemination stages, and they need to be used in clinical practice (implemented), which usually requires behavioral changes and appropriate resources and infrastructure. All these stages involve an iterative and complex process called implementation, which is defined as the process of putting new practices within a setting into use [ 5 , 6 ].

Implementation is a cyclical process, and the evaluation is one of its key stages, which allows continuous improvement of CPGs development and implementation strategies. It consists of verifying whether clinical practice is being performed as recommended (process evaluation or formative evaluation) and whether the expected results and impact are being reached (summative evaluation) [ 7 , 8 , 9 ]. Although the importance of the implementation evaluation stage has been recognized, research on how these guidelines are implemented is scarce [ 10 ]. This paper focused on the process of assessing CPGs implementation.

To understand and improve this complex process, implementation science provides a systematic set of principles and methods to integrate research findings and other evidence-based practices into routine practice and improve the quality and effectiveness of health services and care [ 11 ]. The field of implementation science uses theoretical approaches that have varying degrees of specificity based on the current state of knowledge and are structured based on theories, models, and frameworks [ 5 , 12 , 13 ]. A "Model" is defined as "a simplified depiction of a more complex world with relatively precise assumptions about cause and effect", and a "framework" is defined as "a broad set of constructs that organize concepts and data descriptively without specifying causal relationships" [ 9 ]. Although these concepts are distinct, in this paper, their use will be interchangeable, as they are typically like checklists of factors relevant to various aspects of implementation.

There are a variety of theoretical approaches available in implementation science [ 5 , 14 ], which can make choosing the most appropriate challenging [ 5 ]. Some models and frameworks have been categorized as "evaluation models" by providing a structure for evaluating implementation endeavors [ 15 ], even though theoretical approaches from other categories can also be applied for evaluation purposes because they specify concepts and constructs that may be operationalized and measured [ 13 ]. Two frameworks that can specify implementation aspects that should be evaluated as part of intervention studies are RE-AIM (Reach, Effectiveness, Adoption, Implementation, Maintenance) [ 16 ] and PRECEDE-PROCEED (Predisposing, Reinforcing and Enabling Constructs in Educational Diagnosis and Evaluation-Policy, Regulatory, and Organizational Constructs in Educational and Environmental Development) [ 17 ]. Although the number of theoretical approaches has grown in recent years, the use of models and frameworks to evaluate the implementation of guidelines still seems to be a challenge.

This article aims to provide a complete map of the models and frameworks applied to assess the implementation of CPGs. The aim is also to subside debate and choices on models and frameworks for the research and evaluation of the implementation processes of CPGs and thus to facilitate the continued development of the field of implementation as well as to contribute to healthcare policy and practice.

A systematic review was conducted following the Cochrane methodology [ 18 ], with adaptations to the "selection process" due to the unique nature of this review (details can be found in the respective section). The review protocol was registered in PROSPERO (registration number: CRD42022335884) on June 7, 2022. This report adhered to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines [ 19 ] and a completed checklist is provided in Additional File 1.

Eligibility criteria

The SDMO approach (Types of Studies, Types of Data, Types of Methods, Outcomes) [ 20 ] was utilized in this systematic review, outlined as follows:

Types of studies

All types of studies were considered for inclusion, as the assessment of CPG implementation can benefit from a diverse range of study designs, including randomized clinical trials/experimental studies, scale/tool development, systematic reviews, opinion pieces, qualitative studies, peer-reviewed articles, books, reports, and unpublished theses.

Studies were categorized based on their methodological designs, which guided the synthesis, risk of bias assessment, and presentation of results.

Study protocols and conference abstracts were excluded due to insufficient information for this review.

Types of data

Studies that evaluated the implementation of CPGs either independently or as part of a multifaceted intervention.

Guidelines for evaluating CPG implementation.

Inclusion of CPGs related to any context, clinical area, intervention, and patient characteristics.

No restrictions were placed on publication date or language.

Exclusion criteria

General guidelines were excluded, as this review focused on 'models for evaluating clinical practice guidelines implementation' rather than the guidelines themselves.

Studies that focused solely on implementation determinants as barriers and enablers were excluded, as this review aimed to explore comprehensive models/frameworks.

Studies evaluating programs and policies were excluded.

Studies that only assessed implementation strategies (isolated actions) rather than the implementation process itself were excluded.

Studies that focused solely on the impact or results of implementation (summative evaluation) were excluded.

Types of methods

Not applicable.

All potential models or frameworks for assessing the implementation of CPG (evaluation models/frameworks), as well as their characteristics: name; specific objectives; levels of use (clinical, organizational, and policy); health system (public, private, or both); type of health service (community, ambulatorial, hospital, institutional, homecare); domains or outcomes evaluated; type of recommendation evaluated; context; limitations of the model.

Model was defined as "a deliberated simplification of a phenomenon on a specific aspect" [ 21 ].

Framework was defined as "structure, overview outline, system, or plan consisting of various descriptive categories" [ 21 ].

Models or frameworks used solely for the CPG development, dissemination, or implementation phase.

Models/frameworks used solely for assessment processes other than implementation, such as for the development or dissemination phase.

Data sources and literature search

The systematic search was conducted on July 31, 2022 (and updated on May 15, 2023) in the following electronic databases: MEDLINE/PubMed, Centre for Reviews and Dissemination (CRD), the Cochrane Library, Cumulative Index to Nursing and Allied Health Literature (CINAHL), EMBASE, Epistemonikos, Global Health, Health Systems Evidence, PDQ-Evidence, PsycINFO, Rx for Change (Canadian Agency for Drugs and Technologies in Health, CADTH), Scopus, Web of Science and Virtual Health Library (VHL). The Google Scholar database was used for the manual selection of studies (first 10 pages).

Additionally, hand searches were performed on the lists of references included in the systematic reviews and citations of the included studies, as well as on the websites of institutions working on CPGs development and implementation: Guidelines International Networks (GIN), National Institute for Health and Care Excellence (NICE; United Kingdom), World Health Organization (WHO), Centers for Disease Control and Prevention (CDC; USA), Institute of Medicine (IOM; USA), Australian Department of Health and Aged Care (ADH), Healthcare Improvement Scotland (SIGN), National Health and Medical Research Council (NHMRC; Australia), Queensland Health, The Joanna Briggs Institute (JBI), Ministry of Health and Social Policy of Spain, Ministry of Health of Brazil and Capes Theses and Dissertations Catalog.

The search strategy combined terms related to "clinical practice guidelines" (practice guidelines, practice guidelines as topic, clinical protocols), "implementation", "assessment" (assessment, evaluation), and "models, framework". The free term "monitoring" was not used because it was regularly related to clinical monitoring and not to implementation monitoring. The search strategies adapted for the electronic databases are presented in an additional file (see Additional file 2).

Study selection process

The results of the literature search from scientific databases, excluding the CRD database, were imported into Mendeley Reference Management software to remove duplicates. They were then transferred to the Rayyan platform ( https://rayyan.qcri.org ) [ 22 ] for the screening process. Initially, studies related to the "assessment of implementation of the CPG" were selected. The titles were first screened independently by two pairs of reviewers (first selection: four reviewers, NM, JB, SS, and JG; update: a pair of reviewers, NM and DG). The title screening was broad, including all potentially relevant studies on CPG and the implementation process. Following that, the abstracts were independently screened by the same group of reviewers. The abstract screening was more focused, specifically selecting studies that addressed CPG and the evaluation of the implementation process. In the next step, full-text articles were reviewed independently by a pair of reviewers (NM, DG) to identify those that explicitly presented "models" or "frameworks" for assessing the implementation of the CPG. Disagreements regarding the eligibility of studies were resolved through discussion and consensus, and by a third reviewer (JB) when necessary. One reviewer (NM) conducted manual searches, and the inclusion of documents was discussed with the other reviewers.

Risk of bias assessment of studies

The selected studies were independently classified and evaluated according to their methodological designs by two investigators (NM and JG). This review employed JBI’s critical appraisal tools to assess the trustworthiness, relevance and results of the included studies [ 23 ] and these tools are presented in additional files (see Additional file 3 and Additional file 4). Disagreements were resolved by consensus or consultation with the other reviewers. Methodological guidelines and noncomparative and before–after studies were not evaluated because JBI does not have specific tools for assessing these types of documents. Although the studies were assessed for quality, they were not excluded on this basis.

Data extraction

The data was independently extracted by two reviewers (NM, DG) using a Microsoft Excel spreadsheet. Discrepancies were discussed and resolved by consensus. The following information was extracted:

Document characteristics : author; year of publication; title; study design; instrument of evaluation; country; guideline context;

Usage context of the models : specific objectives; level of use (clinical, organizational, and policy); type of health service (community, ambulatorial, hospital, institutional); target group (guideline developers, clinicians; health professionals; health-policy decision-makers; health-care organizations; service managers);

Model and framework characteristics : name, domain evaluated, and model limitations.

The set of information to be extracted, shown in the systematic review protocol, was adjusted to improve the organization of the analysis.

The "level of use" refers to the scope of the model used. "Clinical" was considered when the evaluation focused on individual practices, "organizational" when practices were within a health service institution, and "policy" when the evaluation was more systemic and covered different health services or institutions.

The "type of health service" indicated the category of health service where the model/framework was used (or can be used) to assess the implementation of the CPG, related to the complexity of healthcare. "Community" is related to primary health care; "ambulatorial" is related to secondary health care; "hospital" is related to tertiary health care; and "institutional" represented models/frameworks not specific to a particular type of health service.

The "target group" included stakeholders related to the use of the model/framework for evaluating the implementation of the CPG, such as clinicians, health professionals, guideline developers, health policy-makers, health organizations, and service managers.

The category "health system" (public, private, or both) mentioned in the systematic review protocol was not found in the literature obtained and was removed as an extraction variable. Similarly, the variables "type of recommendation evaluated" and "context" were grouped because the same information was included in the "guideline context" section of the study.

Some selected documents presented models or frameworks recognized by the scientific field, including some that were validated. However, some studies adapted the model to this context. Therefore, the domain analysis covered all models or frameworks domains evaluated by (or suggested for evaluation by) the document analyzed.

Data analysis and synthesis

The results were tabulated using narrative synthesis with an aggregative approach, without meta-analysis, aiming to summarize the documents descriptively for the organization, description, interpretation and explanation of the study findings [ 24 , 25 ].

The model/framework domains evaluated in each document were studied according to Nilsen et al.’s constructs: "strategies", "context", "outcomes", "fidelity", "adaptation" and "sustainability". For this study, "strategies" were described as structured and planned initiatives used to enhance the implementation of clinical practice [ 26 ].

The definition of "context" varies in the literature. Despite that, this review considered it as the set of circumstances or factors surrounding a particular implementation effort, such as organizational support, financial resources, social relations and support, leadership, and organizational culture [ 26 , 27 ]. The domain "context" was subdivided according to the level of health care into "micro" (individual perspective), "meso" (organizational perspective), "macro" (systemic perspective), and "multiple" (when there is an issue involving more than one level of health care).

The "outcomes" domain was related to the results of the implementation process (unlike clinical outcomes) and was stratified according to the following constructs: acceptability, appropriateness, feasibility, adoption, cost, and penetration. All these concepts align with the definitions of Proctor et al. (2011), although we decided to separate "fidelity" and "sustainability" as independent domains similar to Nilsen [ 26 , 28 ].

"Fidelity" and "adaptation" were considered the same domain, as they are complementary pieces of the same issue. In this study, implementation fidelity refers to how closely guidelines are followed as intended by their developers or designers. On the other hand, adaptation involves making changes to the content or delivery of a guideline to better fit the needs of a specific context. The "sustainability" domain was defined as evaluations about the continuation or permanence over time of the CPG implementation.

Additionally, the domain "process" was utilized to address issues related to the implementation process itself, rather than focusing solely on the outcomes of the implementation process, as done by Wang et al. [ 14 ]. Furthermore, the "intervention" domain was introduced to distinguish aspects related to the CPG characteristics that can impact its implementation, such as the complexity of the recommendation.

A subgroup analysis was performed with models and frameworks categorized based on their levels of use (clinical, organizational, and policy) and the type of health service (community, ambulatorial, hospital, institutional) associated with the CPG. The goal is to assist stakeholders (politicians, clinicians, researchers, or others) in selecting the most suitable model for evaluating CPG implementation based on their specific health context.

Search results

Database searches yielded 26,011 studies, of which 107 full texts were reviewed. During the full-text review, 99 articles were excluded: 41 studies did not mention a model or framework for assessing the implementation of the CPG, 31 studies evaluated only implementation strategies (isolated actions) rather than the implementation process itself, and 27 articles were not related to the implementation assessment. Therefore, eight studies were included in the data analysis. The updated search did not reveal additional relevant studies. The main reason for study exclusion was that they did not use models or frameworks to assess CPG implementation. Additionally, four methodological guidelines were included from the manual search (Fig.  1 ).

figure 1

PRISMA diagram. Acronyms: ADH—Australian Department of Health, CINAHL—Cumulative Index to Nursing and Allied Health Literature, CDC—Centers for Disease Control and Prevention, CRD—Centre for Reviews and Dissemination, GIN—Guidelines International Networks, HSE—Health Systems Evidence, IOM—Institute of Medicine, JBI—The Joanna Briggs Institute, MHB—Ministry of Health of Brazil, NICE—National Institute for Health and Care Excellence, NHMRC—National Health and Medical Research Council, MSPS – Ministerio de Sanidad Y Política Social (Spain), SIGN—Scottish Intercollegiate Guidelines Network, VHL – Virtual Health Library, WHO—World Health Organization. Legend: Reason A –The study evaluated only implementation strategies (isolated actions) rather than the implementation process itself. Reason B – The study did not mention a model or framework for assessing the implementation of the intervention. Reason C – The study was not related to the implementation assessment. Adapted from Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ 2021;372:n71. https://doi.org/10.1136/bmj.n71 . For more information, visit:

According to the JBI’s critical appraisal tools, the overall assessment of the studies indicates their acceptance for the systematic review.

The cross-sectional studies lacked clear information regarding "confounding factors" or "strategies to address confounding factors". This was understandable given the nature of the study, where such details are not typically included. However, the reviewers did not find this lack of information to be critical, allowing the studies to be included in the review. The results of this methodological quality assessment can be found in an additional file (see Additional file 5).

In the qualitative studies, there was some ambiguity regarding the questions: "Is there a statement locating the researcher culturally or theoretically?" and "Is the influence of the researcher on the research, and vice versa, addressed?". However, the reviewers decided to include the studies and deemed the methodological quality sufficient for the analysis in this article, based on the other information analyzed. The results of this methodological quality assessment can be found in an additional file (see Additional file 6).

Documents characteristics (Table  1 )

The documents were directed to several continents: Australia/Oceania (4/12) [ 31 , 33 , 36 , 37 ], North America (4/12 [ 30 , 32 , 38 , 39 ], Europe (2/12 [ 29 , 35 ] and Asia (2/12) [ 34 , 40 ]. The types of documents were classified as cross-sectional studies (4/12) [ 29 , 32 , 34 , 38 ], methodological guidelines (4/12) [ 33 , 35 , 36 , 37 ], mixed methods studies (3/12) [ 30 , 31 , 39 ] or noncomparative studies (1/12) [ 40 ]. In terms of the instrument of evaluation, most of the documents used a survey/questionnaire (6/12) [ 29 , 30 , 31 , 32 , 34 , 38 ], while three (3/12) used qualitative instruments (interviews, group discussions) [ 30 , 31 , 39 ], one used a checklist [ 37 ], one used an audit [ 33 ] and three (3/12) did not define a specific instrument to measure [ 35 , 36 , 40 ].

Considering the clinical areas covered, most studies evaluated the implementation of nonspecific (general) clinical areas [ 29 , 33 , 35 , 36 , 37 , 40 ]. However, some studies focused on specific clinical contexts, such as mental health [ 32 , 38 ], oncology [ 39 ], fall prevention [ 31 ], spinal cord injury [ 30 ], and sexually transmitted infections [ 34 ].

Usage context of the models (Table  1 )

Specific objectives.

All the studies highlighted the purpose of guiding the process of evaluating the implementation of CPGs, even if they evaluated CPGs from generic or different clinical areas.

Levels of use

The most common level of use of the models/frameworks identified to assess the implementation of CPGs was policy (6/12) [ 33 , 35 , 36 , 37 , 39 , 40 ]. In this level, the model is used in a systematic way to evaluate all the processes involved in CPGs implementation and is primarily related to methodological guidelines. This was followed by the organizational level of use (5/12) [ 30 , 31 , 32 , 38 , 39 ], where the model is used to evaluate the implementation of CPGs in a specific institution, considering its specific environment. Finally, the clinical level of use (2/12) [ 29 , 34 ] focuses on individual practice and the factors that can influence the implementation of CPGs by professionals.

Type of health service

Institutional services were predominant (5/12) [ 33 , 35 , 36 , 37 , 40 ] and included methodological guidelines and a study of model development and validation. Hospitals were the second most common type of health service (4/12) [ 29 , 30 , 31 , 34 ], followed by ambulatorial (2/12) [ 32 , 34 ] and community health services (1/12) [ 32 ]. Two studies did not specify which type of health service the assessment addressed [ 38 , 39 ].

Target group

The focus of the target group was professionals directly involved in clinical practice (6/12) [ 29 , 31 , 32 , 34 , 38 , 40 ], namely, health professionals and clinicians. Other less related stakeholders included guideline developers (2/12) [ 39 , 40 ], health policy decision makers (1/12) [ 39 ], and healthcare organizations (1/12) [ 39 ]. The target group was not defined in the methodological guidelines, although all the mentioned stakeholders could be related to these documents.

Model and framework characteristics

Models and frameworks for assessing the implementation of cpgs.

The Consolidated Framework for Implementation Research (CFIR) [ 31 , 38 ] and the Promoting Action on Research Implementation in Health Systems (PARiHS) framework [ 29 , 30 ] were the most commonly employed frameworks within the selected documents. The other models mentioned were: Goal commitment and implementation of practice guidelines framework [ 32 ]; Guideline to identify key indicators [ 35 ]; Guideline implementation checklist [ 37 ]; Guideline implementation evaluation tool [ 40 ]; JBI Implementation Framework [ 33 ]; Reach, effectiveness, adoption, implementation and maintenance (RE-AIM) framework [ 34 ]; The Guideline Implementability Framework [ 39 ] and an unnamed model [ 36 ].

Domains evaluated

The number of domains evaluated (or suggested for evaluation) by the documents varied between three and five, with the majority focusing on three domains. All the models addressed the domain "context", with a particular emphasis on the micro level of the health care context (8/12) [ 29 , 31 , 34 , 35 , 36 , 37 , 38 , 39 ], followed by the multilevel (7/12) [ 29 , 31 , 32 , 33 , 38 , 39 , 40 ], meso level (4/12) [ 30 , 35 , 39 , 40 ] and macro level (2/12) [ 37 , 39 ]. The "Outcome" domain was evaluated in nine models. Within this domain, the most frequently evaluated subdomain was "adoption" (6/12) [ 29 , 32 , 34 , 35 , 36 , 37 ], followed by "acceptability" (4/12) [ 30 , 32 , 35 , 39 ], "appropriateness" (3/12) [ 32 , 34 , 36 ], "feasibility" (3/12) [ 29 , 32 , 36 ], "cost" (1/12) [ 35 ] and "penetration" (1/12) [ 34 ]. Regarding the other domains, "Intervention" (8/12) [ 29 , 31 , 34 , 35 , 36 , 38 , 39 , 40 ], "Strategies" (7/12) [ 29 , 30 , 33 , 35 , 36 , 37 , 40 ] and "Process" (5/12) [ 29 , 31 , 32 , 33 , 38 ] were frequently addressed in the models, while "Sustainability" (1/12) [ 34 ] was only found in one model, and "Fidelity/Adaptation" was not observed. The domains presented by the models and frameworks and evaluated in the documents are shown in Table  2 .

Limitations of the models

Only two documents mentioned limitations in the use of the model or frameworks. These two studies reported limitations in the use of CFIR: "is complex and cumbersome and requires tailoring of the key variables to the specific context", and "this framework should be supplemented with other important factors and local features to achieve a sound basis for the planning and realization of an ongoing project" [ 31 , 38 ]. Limitations in the use of other models or frameworks are not reported.

Subgroup analysis

Following the subgroup analysis (Table  3 ), five different models/frameworks were utilized at the policy level by institutional health services. These included the Guideline Implementation Evaluation Tool [ 40 ], the NHMRC tool (model name not defined) [ 36 ], the JBI Implementation Framework + GRiP [ 33 ], Guideline to identify key indicators [ 35 ], and the Guideline implementation checklist [ 37 ]. Additionally, the "Guideline Implementability Framework" [ 39 ] was implemented at the policy level without restrictions based on the type of health service. Regarding the organizational level, the models used varied depending on the type of service. The "Goal commitment and implementation of practice guidelines framework" [ 32 ] was applied in community and ambulatory health services, while "PARiHS" [ 29 , 30 ] and "CFIR" [ 31 , 38 ] were utilized in hospitals. In contexts where the type of health service was not defined, "CFIR" [ 31 , 38 ] and "The Guideline Implementability Framework" [ 39 ] were employed. Lastly, at the clinical level, "RE-AIM" [ 34 ] was utilized in ambulatory and hospital services, and PARiHS [ 29 , 30 ] was specifically used in hospital services.

Key findings

This systematic review identified 10 models/ frameworks used to assess the implementation of CPGs in various health system contexts. These documents shared similar objectives in utilizing models and frameworks for assessment. The primary level of use was policy, the most common type of health service was institutional, and the main target group of the documents was professionals directly involved in clinical practice. The models and frameworks presented varied analytical domains, with sometimes divergent concepts used in these domains. This study is innovative in its emphasis on the evaluation stage of CPG implementation and in summarizing aspects and domains aimed at the practical application of these models.

The small number of documents contrasts with studies that present an extensive range of models and frameworks available in implementation science. The findings suggest that the use of models and frameworks to evaluate the implementation of CPGs is still in its early stages. Among the selected documents, there was a predominance of cross-sectional studies and methodological guidelines, which strongly influenced how the implementation evaluation was conducted. This was primarily done through surveys/questionnaires, qualitative methods (interviews, group discussions), and non-specific measurement instruments. Regarding the subject areas evaluated, most studies focused on a general clinical area, while others explored different clinical areas. This suggests that the evaluation of CPG implementation has been carried out in various contexts.

The models were chosen independently of the categories proposed in the literature, with their usage categorized for purposes other than implementation evaluation, as is the case with CFIR and PARiHS. This practice was described by Nilsen et al. who suggested that models and frameworks from other categories can also be applied for evaluation purposes because they specify concepts and constructs that may be operationalized and measured [ 14 , 15 , 42 , 43 ].

The results highlight the increased use of models and frameworks in evaluation processes at the policy level and institutional environments, followed by the organizational level in hospital settings. This finding contradicts a review that reported the policy level as an area that was not as well studied [ 44 ]. The use of different models at the institutional level is also emphasized in the subgroup analysis. This may suggest that the greater the impact (social, financial/economic, and organizational) of implementing CPGs, the greater the interest and need to establish well-defined and robust processes. In this context, the evaluation stage stands out as crucial, and the investment of resources and efforts to structure this stage becomes even more advantageous [ 10 , 45 ]. Two studies (16,7%) evaluated the implementation of CPGs at the individual level (clinical level). These studies stand out for their potential to analyze variations in clinical practice in greater depth.

In contrast to the level of use and type of health service most strongly indicated in the documents, with systemic approaches, the target group most observed was professionals directly involved in clinical practice. This suggests an emphasis on evaluating individual behaviors. This same emphasis is observed in the analysis of the models, in which there is a predominance of evaluating the micro level of the health context and the "adoption" subdomain, in contrast with the sub-use of domains such as "cost" and "process". Cassetti et al. observed the same phenomenon in their review, in which studies evaluating the implementation of CPGs mainly adopted a behavioral change approach to tackle those issues, without considering the influence of wider social determinants of health [ 10 ]. However, the literature widely reiterates that multiple factors impact the implementation of CPGs, and different actions are required to make them effective [ 6 , 46 , 47 ]. As a result, there is enormous potential for the development and adaptation of models and frameworks aimed at more systemic evaluation processes that consider institutional and organizational aspects.

In analyzing the model domains, most models focused on evaluating only some aspects of implementation (three domains). All models evaluated the "context", highlighting its significant influence on implementation [ 9 , 26 ]. Context is an essential effect modifier for providing research evidence to guide decisions on implementation strategies [ 48 ]. Contextualizing a guideline involves integrating research or other evidence into a specific circumstance [ 49 ]. The analysis of this domain was adjusted to include all possible contextual aspects, even if they were initially allocated to other domains. Some contextual aspects presented by the models vary in comprehensiveness, such as the assessment of the "timing and nature of stakeholder engagement" [ 39 ], which includes individual engagement by healthcare professionals and organizational involvement in CPG implementation. While the importance of context is universally recognized, its conceptualization and interpretation differ across studies and models. This divergence is also evident in other domains, consistent with existing literature [ 14 ]. Efforts to address this conceptual divergence in implementation science are ongoing, but further research and development are needed in this field [ 26 ].

The main subdomain evaluated was "adoption" within the outcome domain. This may be attributed to the ease of accessing information on the adoption of the CPG, whether through computerized system records, patient records, or self-reports from healthcare professionals or patients themselves. The "acceptability" subdomain pertains to the perception among implementation stakeholders that a particular CPG is agreeable, palatable or satisfactory. On the other hand, "appropriateness" encompasses the perceived fit, relevance or compatibility of the CPG for a specific practice setting, provider, or consumer, or its perceived fit to address a particular issue or problem [ 26 ]. Both subdomains are subjective and rely on stakeholders' interpretations and perceptions of the issue being analyzed, making them susceptible to reporting biases. Moreover, obtaining this information requires direct consultation with stakeholders, which can be challenging for some evaluation processes, particularly in institutional contexts.

The evaluation of the subdomains "feasibility" (the extent to which a CPG can be successfully used or carried out within a given agency or setting), "cost" (the cost impact of an implementation effort), and "penetration" (the extent to which an intervention or treatment is integrated within a service setting and its subsystems) [ 26 ] was rarely observed in the documents. This may be related to the greater complexity of obtaining information on these aspects, as they involve cross-cutting and multifactorial issues. In other words, it would be difficult to gather this information during evaluations with health practitioners as the target group. This highlights the need for evaluation processes of CPGs implementation involving multiple stakeholders, even if the evaluation is adjusted for each of these groups.

Although the models do not establish the "intervention" domain, we thought it pertinent in this study to delimit the issues that are intrinsic to CPGs, such as methodological quality or clarity in establishing recommendations. These issues were quite common in the models evaluated but were considered in other domains (e.g., in "context"). Studies have reported the importance of evaluating these issues intrinsic to CPGs [ 47 , 50 ] and their influence on the implementation process [ 51 ].

The models explicitly present the "strategies" domain, and its evaluation was usually included in the assessments. This is likely due to the expansion of scientific and practical studies in implementation science that involve theoretical approaches to the development and application of interventions to improve the implementation of evidence-based practices. However, these interventions themselves are not guaranteed to be effective, as reported in a previous review that showed unclear results indicating that the strategies had affected successful implementation [ 52 ]. Furthermore, model domains end up not covering all the complexity surrounding the strategies and their development and implementation process. For example, the ‘Guideline implementation evaluation tool’ evaluates whether guideline developers have designed and provided auxiliary tools to promote the implementation of guidelines [ 40 ], but this does not mean that these tools would work as expected.

The "process" domain was identified in the CFIR [ 31 , 38 ], JBI/GRiP [ 33 ], and PARiHS [ 29 ] frameworks. While it may be included in other domains of analysis, its distinct separation is crucial for defining operational issues when assessing the implementation process, such as determining if and how the use of the mentioned CPG was evaluated [ 3 ]. Despite its presence in multiple models, there is still limited detail in the evaluation guidelines, which makes it difficult to operationalize the concept. Further research is needed to better define the "process" domain and its connections and boundaries with other domains.

The domain of "sustainability" was only observed in the RE-AIM framework, which is categorized as an evaluation framework [ 34 ]. In its acronym, the letter M stands for "maintenance" and corresponds to the assessment of whether the user maintains use, typically longer than 6 months. The presence of this domain highlights the need for continuous evaluation of CPGs implementation in the short, medium, and long term. Although the RE-AIM framework includes this domain, it was not used in the questionnaire developed in the study. One probable reason is that the evaluation of CPGs implementation is still conducted on a one-off basis and not as a continuous improvement process. Considering that changes in clinical practices are inherent over time, evaluating and monitoring changes throughout the duration of the CPG could be an important strategy for ensuring its implementation. This is an emerging field that requires additional investment and research.

The "Fidelity/Adaptation" domain was not observed in the models. These emerging concepts involve the extent to which a CPG is being conducted exactly as planned or whether it is undergoing adjustments and adaptations. Whether or not there is fidelity or adaptation in the implementation of CPGs does not presuppose greater or lesser effectiveness; after all, some adaptations may be necessary to implement general CPGs in specific contexts. The absence of this domain in all the models and frameworks may suggest that they are not relevant aspects for evaluating implementation or that there is a lack of knowledge of these complex concepts. This may suggest difficulty in expressing concepts in specific evaluative questions. However, further studies are warranted to determine the comprehensiveness of these concepts.

It is important to note the customization of the domains of analysis, with some domains presented in the models not being evaluated in the studies, while others were complementarily included. This can be seen in Jeong et al. [ 34 ], where the "intervention" domain in the evaluation with the RE-AIM framework reinforced the aim of theoretical approaches such as guiding the process and not determining norms. Despite this, few limitations were reported for the models, suggesting that the use of models in these studies reflects the application of these models to defined contexts without a deep critical analysis of their domains.

Limitations

This review has several limitations. First, only a few studies and methodological guidelines that explicitly present models and frameworks for assessing the implementation of CPGs have been found. This means that few alternative models could be analyzed and presented in this review. Second, this review adopted multiple analytical categories (e.g., level of use, health service, target group, and domains evaluated), whose terminology has varied enormously in the studies and documents selected, especially for the "domains evaluated" category. This difficulty in harmonizing the taxonomy used in the area has already been reported [ 26 ] and has significant potential to confuse. For this reason, studies and initiatives are needed to align understandings between concepts and, as far as possible, standardize them. Third, in some studies/documents, the information extracted was not clear about the analytical category. This required an in-depth interpretative process of the studies, which was conducted in pairs to avoid inappropriate interpretations.

Implications

This study contributes to the literature and clinical practice management by describing models and frameworks specifically used to assess the implementation of CPGs based on their level of use, type of health service, target group related to the CPG, and the evaluated domains. While there are existing reviews on the theories, frameworks, and models used in implementation science, this review addresses aspects not previously covered in the literature. This valuable information can assist stakeholders (such as politicians, clinicians, researchers, etc.) in selecting or adapting the most appropriate model to assess CPG implementation based on their health context. Furthermore, this study is expected to guide future research on developing or adapting models to assess the implementation of CPGs in various contexts.

The use of models and frameworks to evaluate the implementation remains a challenge. Studies should clearly state the level of model use, the type of health service evaluated, and the target group. The domains evaluated in these models may need adaptation to specific contexts. Nevertheless, utilizing models to assess CPGs implementation is crucial as they can guide a more thorough and systematic evaluation process, aiding in the continuous improvement of CPGs implementation. The findings of this systematic review offer valuable insights for stakeholders in selecting or adjusting models and frameworks for CPGs evaluation, supporting future theoretical advancements and research.

Availability of data and materials

Abbreviations.

Australian Department of Health and Aged Care

Canadian Agency for Drugs and Technologies in Health

Centers for Disease Control and

Consolidated Framework for Implementation Research

Cumulative Index to Nursing and Allied Health Literature

Clinical practice guideline

Centre for Reviews and Dissemination

Guidelines International Networks

Getting Research into Practice

Health Systems Evidence

Institute of Medicine

The Joanna Briggs Institute

Ministry of Health of Brazil

Ministerio de Sanidad y Política Social

National Health and Medical Research Council

National Institute for Health and Care Excellence

Promoting action on research implementation in health systems framework

Predisposing, Reinforcing and Enabling Constructs in Educational Diagnosis and Evaluation-Policy, Regulatory, and Organizational Constructs in Educational and Environmental Development

Preferred Reporting Items for Systematic Reviews and Meta-Analyses

International Prospective Register of Systematic Reviews

Reach, effectiveness, adoption, implementation, and maintenance framework

Healthcare Improvement Scotland

United States of America

Virtual Health Library

World Health Organization

Medicine I of. Crossing the Quality Chasm: A New Health System for the 21st Century. 2001. Available from: http://www.nap.edu/catalog/10027 . Cited 2022 Sep 29.

Field MJ, Lohr KN. Clinical Practice Guidelines: Directions for a New Program. Washington DC: National Academy Press. 1990. Available from: https://www.nap.edu/read/1626/chapter/8 Cited 2020 Sep 2.

Dawson A, Henriksen B, Cortvriend P. Guideline Implementation in Standardized Office Workflows and Exam Types. J Prim Care Community Heal. 2019;10. Available from: https://pubmed.ncbi.nlm.nih.gov/30900500/ . Cited 2020 Jul 15.

Unverzagt S, Oemler M, Braun K, Klement A. Strategies for guideline implementation in primary care focusing on patients with cardiovascular disease: a systematic review. Fam Pract. 2014;31(3):247–66. Available from: https://academic.oup.com/fampra/article/31/3/247/608680 . Cited 2020 Nov 5.

Article   PubMed   Google Scholar  

Nilsen P. Making sense of implementation theories, models and frameworks. Implement Sci. 2015;10(1):1–13. Available from: https://implementationscience.biomedcentral.com/articles/10.1186/s13012-015-0242-0 . Cited 2022 May 1.

Article   Google Scholar  

Mangana F, Massaquoi LD, Moudachirou R, Harrison R, Kaluangila T, Mucinya G, et al. Impact of the implementation of new guidelines on the management of patients with HIV infection at an advanced HIV clinic in Kinshasa, Democratic Republic of Congo (DRC). BMC Infect Dis. 2020;20(1):N.PAG-N.PAG. Available from: https://search.ebscohost.com/login.aspx?direct=true&db=c8h&AN=146325052&amp .

Browman GP, Levine MN, Mohide EA, Hayward RSA, Pritchard KI, Gafni A, et al. The practice guidelines development cycle: a conceptual tool for practice guidelines development and implementation. 2016;13(2):502–12. https://doi.org/10.1200/JCO.1995.13.2.502 .

Killeen SL, Donnellan N, O’Reilly SL, Hanson MA, Rosser ML, Medina VP, et al. Using FIGO Nutrition Checklist counselling in pregnancy: A review to support healthcare professionals. Int J Gynecol Obstet. 2023;160(S1):10–21. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85146194829&doi=10.1002%2Fijgo.14539&partnerID=40&md5=d0f14e1f6d77d53e719986e6f434498f .

Bauer MS, Damschroder L, Hagedorn H, Smith J, Kilbourne AM. An introduction to implementation science for the non-specialist. BMC Psychol. 2015;3(1):1–12. Available from: https://bmcpsychology.biomedcentral.com/articles/10.1186/s40359-015-0089-9 . Cited 2020 Nov 5.

Cassetti V, M VLR, Pola-Garcia M, AM G, J JPC, L APDT, et al. An integrative review of the implementation of public health guidelines. Prev Med reports. 2022;29:101867. Available from: http://www.epistemonikos.org/documents/7ad499d8f0eecb964fc1e2c86b11450cbe792a39 .

Eccles MP, Mittman BS. Welcome to implementation science. Implementation Science BioMed Central. 2006. Available from: https://implementationscience.biomedcentral.com/articles/10.1186/1748-5908-1-1 .

Damschroder LJ. Clarity out of chaos: Use of theory in implementation research. Psychiatry Res. 2020;1(283):112461.

Handley MA, Gorukanti A, Cattamanchi A. Strategies for implementing implementation science: a methodological overview. Emerg Med J. 2016;33(9):660–4. Available from: https://pubmed.ncbi.nlm.nih.gov/26893401/ . Cited 2022 Mar 7.

Wang Y, Wong ELY, Nilsen P, Chung VC ho, Tian Y, Yeoh EK. A scoping review of implementation science theories, models, and frameworks — an appraisal of purpose, characteristics, usability, applicability, and testability. Implement Sci. 2023;18(1):1–15. Available from: https://implementationscience.biomedcentral.com/articles/10.1186/s13012-023-01296-x . Cited 2024 Jan 22.

Moullin JC, Dickson KS, Stadnick NA, Albers B, Nilsen P, Broder-Fingert S, et al. Ten recommendations for using implementation frameworks in research and practice. Implement Sci Commun. 2020;1(1):1–12. Available from: https://implementationsciencecomms.biomedcentral.com/articles/10.1186/s43058-020-00023-7 . Cited 2022 May 20.

Glasgow RE, Vogt TM, Boles SM. *Evaluating the public health impact of health promotion interventions: the RE-AIM framework. Am J Public Health. 1999;89(9):1322. Available from: /pmc/articles/PMC1508772/?report=abstract. Cited 2022 May 22.

Article   CAS   PubMed   PubMed Central   Google Scholar  

Asada Y, Lin S, Siegel L, Kong A. Facilitators and Barriers to Implementation and Sustainability of Nutrition and Physical Activity Interventions in Early Childcare Settings: a Systematic Review. Prev Sci. 2023;24(1):64–83. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85139519721&doi=10.1007%2Fs11121-022-01436-7&partnerID=40&md5=b3c395fdd2b8235182eee518542ebf2b .

Higgins JPT, Thomas J, Chandler J, Cumpston M, Li T, Page MJ, et al., editors. Cochrane Handbook for Systematic Reviews of Interventions. version 6. Cochrane; 2022. Available from: https://training.cochrane.org/handbook. Cited 2022 May 23.

Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ. 2021;372. Available from: https://www.bmj.com/content/372/bmj.n71 . Cited 2021 Nov 18.

M C, AD O, E P, JP H, S G. Appendix A: Guide to the contents of a Cochrane Methodology protocol and review. Higgins JP, Green S, eds Cochrane Handb Syst Rev Interv. 2011;Version 5.

Kislov R, Pope C, Martin GP, Wilson PM. Harnessing the power of theorising in implementation science. Implement Sci. 2019;14(1):1–8. Available from: https://implementationscience.biomedcentral.com/articles/10.1186/s13012-019-0957-4 . Cited 2024 Jan 22.

Ouzzani M, Hammady H, Fedorowicz Z, Elmagarmid A. Rayyan-a web and mobile app for systematic reviews. Syst Rev. 2016;5(1):1–10. Available from: https://systematicreviewsjournal.biomedcentral.com/articles/10.1186/s13643-016-0384-4 . Cited 2022 May 20.

JBI. JBI’s Tools Assess Trust, Relevance & Results of Published Papers: Enhancing Evidence Synthesis. Available from: https://jbi.global/critical-appraisal-tools . Cited 2023 Jun 13.

Drisko JW. Qualitative research synthesis: An appreciative and critical introduction. Qual Soc Work. 2020;19(4):736–53.

Pope C, Mays N, Popay J. Synthesising qualitative and quantitative health evidence: A guide to methods. 2007. Available from: https://books.google.com.br/books?hl=pt-PT&lr=&id=L3fbE6oio8kC&oi=fnd&pg=PR6&dq=synthesizing+qualitative+and+quantitative+health+evidence&ots=sfELNUoZGq&sig=bQt5wt7sPKkf7hwKUvxq2Ek-p2Q#v=onepage&q=synthesizing=qualitative=and=quantitative=health=evidence& . Cited 2022 May 22.

Nilsen P, Birken SA, Edward Elgar Publishing. Handbook on implementation science. 542. Available from: https://www.e-elgar.com/shop/gbp/handbook-on-implementation-science-9781788975988.html . Cited 2023 Apr 15.

Damschroder LJ, Aron DC, Keith RE, Kirsh SR, Alexander JA, Lowery JC. Fostering implementation of health services research findings into practice: A consolidated framework for advancing implementation science. Implement Sci. 2009;4(1):1–15. Available from: https://implementationscience.biomedcentral.com/articles/10.1186/1748-5908-4-50 . Cited 2023 Jun 13.

Proctor E, Silmere H, Raghavan R, Hovmand P, Aarons G, Bunger A, et al. Outcomes for implementation research: conceptual distinctions, measurement challenges, and research agenda. Adm Policy Ment Health. 2011;38(2):65–76. Available from: https://pubmed.ncbi.nlm.nih.gov/20957426/ . Cited 2023 Jun 11.

Bahtsevani C, Willman A, Khalaf A, Östman M, Ostman M. Developing an instrument for evaluating implementation of clinical practice guidelines: a test-retest study. J Eval Clin Pract. 2008;14(5):839–46. Available from: https://search.ebscohost.com/login.aspx?direct=true&db=c8h&AN=105569473&amp . Cited 2023 Jan 18.

Balbale SN, Hill JN, Guihan M, Hogan TP, Cameron KA, Goldstein B, et al. Evaluating implementation of methicillin-resistant Staphylococcus aureus (MRSA) prevention guidelines in spinal cord injury centers using the PARIHS framework: a mixed methods study. Implement Sci. 2015;10(1):130. Available from: https://pubmed.ncbi.nlm.nih.gov/26353798/ . Cited 2023 Apr 3.

Article   PubMed   PubMed Central   Google Scholar  

Breimaier HE, Heckemann B, Halfens RJGG, Lohrmann C. The Consolidated Framework for Implementation Research (CFIR): a useful theoretical framework for guiding and evaluating a guideline implementation process in a hospital-based nursing practice. BMC Nurs. 2015;14(1):43. Available from: https://search.ebscohost.com/login.aspx?direct=true&db=c8h&AN=109221169&amp . Cited 2023 Apr 3.

Chou AF, Vaughn TE, McCoy KD, Doebbeling BN. Implementation of evidence-based practices: Applying a goal commitment framework. Health Care Manage Rev. 2011;36(1):4–17. Available from: https://pubmed.ncbi.nlm.nih.gov/21157225/ . Cited 2023 Apr 30.

Porritt K, McArthur A, Lockwood C, Munn Z. JBI Manual for Evidence Implementation. JBI Handbook for Evidence Implementation. JBI; 2020. Available from: https://jbi-global-wiki.refined.site/space/JHEI . Cited 2023 Apr 3.

Jeong HJJ, Jo HSS, Oh MKK, Oh HWW. Applying the RE-AIM Framework to Evaluate the Dissemination and Implementation of Clinical Practice Guidelines for Sexually Transmitted Infections. J Korean Med Sci. 2015;30(7):847–52. Available from: https://pubmed.ncbi.nlm.nih.gov/26130944/ . Cited 2023 Apr 3.

GPC G de trabajo sobre implementación de. Implementación de Guías de Práctica Clínica en el Sistema Nacional de Salud. Manual Metodológico. 2009. Available from: https://portal.guiasalud.es/wp-content/uploads/2019/01/manual_implementacion.pdf . Cited 2023 Apr 3.

Australia C of. A guide to the development, implementation and evaluation of clinical practice guidelines. National Health and Medical Research Council; 1998. Available from: https://www.health.qld.gov.au/__data/assets/pdf_file/0029/143696/nhmrc_clinprgde.pdf .

Health Q. Guideline implementation checklist Translating evidence into best clinical practice. 2022.

Google Scholar  

Quittner AL, Abbott J, Hussain S, Ong T, Uluer A, Hempstead S, et al. Integration of mental health screening and treatment into cystic fibrosis clinics: Evaluation of initial implementation in 84 programs across the United States. Pediatr Pulmonol. 2020;55(11):2995–3004. Available from: https://www.embase.com/search/results?subaction=viewrecord&id=L2005630887&from=export . Cited 2023 Apr 3.

Urquhart R, Woodside H, Kendell C, Porter GA. Examining the implementation of clinical practice guidelines for the management of adult cancers: A mixed methods study. J Eval Clin Pract. 2019;25(4):656–63. Available from: https://search.ebscohost.com/login.aspx?direct=true&db=c8h&AN=137375535&amp . Cited 2023 Apr 3.

Yinghui J, Zhihui Z, Canran H, Flute Y, Yunyun W, Siyu Y, et al. Development and validation for evaluation of an evaluation tool for guideline implementation. Chinese J Evidence-Based Med. 2022;22(1):111–9. Available from: https://www.embase.com/search/results?subaction=viewrecord&id=L2016924877&from=export .

Breimaier HE, Halfens RJG, Lohrmann C. Effectiveness of multifaceted and tailored strategies to implement a fall-prevention guideline into acute care nursing practice: a before-and-after, mixed-method study using a participatory action research approach. BMC Nurs. 2015;14(1):18. Available from: https://search.ebscohost.com/login.aspx?direct=true&db=c8h&AN=103220991&amp .

Lai J, Maher L, Li C, Zhou C, Alelayan H, Fu J, et al. Translation and cross-cultural adaptation of the National Health Service Sustainability Model to the Chinese healthcare context. BMC Nurs. 2023;22(1). Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85153237164&doi=10.1186%2Fs12912-023-01293-x&partnerID=40&md5=0857c3163d25ce85e01363fc3a668654 .

Zhao J, Li X, Yan L, Yu Y, Hu J, Li SA, et al. The use of theories, frameworks, or models in knowledge translation studies in healthcare settings in China: a scoping review protocol. Syst Rev. 2021;10(1):13. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7792291 .

Tabak RG, Khoong EC, Chambers DA, Brownson RC. Bridging research and practice: models for dissemination and implementation research. Am J Prev Med. 2012;43(3):337–50. Available from: https://pubmed.ncbi.nlm.nih.gov/22898128/ . Cited 2023 Apr 4.

Phulkerd S, Lawrence M, Vandevijvere S, Sacks G, Worsley A, Tangcharoensathien V. A review of methods and tools to assess the implementation of government policies to create healthy food environments for preventing obesity and diet-related non-communicable diseases. Implement Sci. 2016;11(1):1–13. Available from: https://implementationscience.biomedcentral.com/articles/10.1186/s13012-016-0379-5 . Cited 2022 May 1.

Buss PM, Pellegrini FA. A Saúde e seus Determinantes Sociais. PHYSIS Rev Saúde Coletiva. 2007;17(1):77–93.

Pereira VC, Silva SN, Carvalho VKSS, Zanghelini F, Barreto JOMM. Strategies for the implementation of clinical practice guidelines in public health: an overview of systematic reviews. Heal Res Policy Syst. 2022;20(1):13. Available from: https://health-policy-systems.biomedcentral.com/articles/10.1186/s12961-022-00815-4 . Cited 2022 Feb 21.

Grimshaw J, Eccles M, Tetroe J. Implementing clinical guidelines: current evidence and future implications. J Contin Educ Health Prof. 2004;24 Suppl 1:S31-7. Available from: https://pubmed.ncbi.nlm.nih.gov/15712775/ . Cited 2021 Nov 9.

Lotfi T, Stevens A, Akl EA, Falavigna M, Kredo T, Mathew JL, et al. Getting trustworthy guidelines into the hands of decision-makers and supporting their consideration of contextual factors for implementation globally: recommendation mapping of COVID-19 guidelines. J Clin Epidemiol. 2021;135:182–6. Available from: https://pubmed.ncbi.nlm.nih.gov/33836255/ . Cited 2024 Jan 25.

Lenzer J. Why we can’t trust clinical guidelines. BMJ. 2013;346(7913). Available from: https://pubmed.ncbi.nlm.nih.gov/23771225/ . Cited 2024 Jan 25.

Molino C de GRC, Ribeiro E, Romano-Lieber NS, Stein AT, de Melo DO. Methodological quality and transparency of clinical practice guidelines for the pharmacological treatment of non-communicable diseases using the AGREE II instrument: A systematic review protocol. Syst Rev. 2017;6(1):1–6. Available from: https://systematicreviewsjournal.biomedcentral.com/articles/10.1186/s13643-017-0621-5 . Cited 2024 Jan 25.

Albers B, Mildon R, Lyon AR, Shlonsky A. Implementation frameworks in child, youth and family services – Results from a scoping review. Child Youth Serv Rev. 2017;1(81):101–16.

Download references

Acknowledgements

Not applicable

This study is supported by the Fundação de Apoio à Pesquisa do Distrito Federal (FAPDF). FAPDF Award Term (TOA) nº 44/2024—FAPDF/SUCTI/COOBE (SEI/GDF – Process 00193–00000404/2024–22). The content in this article is solely the responsibility of the authors and does not necessarily represent the official views of the FAPDF.

Author information

Authors and affiliations.

Department of Management and Incorporation of Health Technologies, Ministry of Health of Brazil, Brasília, Federal District, 70058-900, Brazil

Nicole Freitas de Mello & Dalila Fernandes Gomes

Postgraduate Program in Public Health, FS, University of Brasília (UnB), Brasília, Federal District, 70910-900, Brazil

Nicole Freitas de Mello, Dalila Fernandes Gomes & Jorge Otávio Maia Barreto

René Rachou Institute, Oswaldo Cruz Foundation, Belo Horizonte, Minas Gerais, 30190-002, Brazil

Sarah Nascimento Silva

Oswaldo Cruz Foundation - Brasília, Brasília, Federal District, 70904-130, Brazil

Juliana da Motta Girardi & Jorge Otávio Maia Barreto

You can also search for this author in PubMed   Google Scholar

Contributions

NFM and JOMB conceived the idea and the protocol for this study. NFM conducted the literature search. NFM, SNS, JMG and JOMB conducted the data collection with advice and consensus gathering from JOMB. The NFM and JMG assessed the quality of the studies. NFM and DFG conducted the data extraction. NFM performed the analysis and synthesis of the results with advice and consensus gathering from JOMB. NFM drafted the manuscript. JOMB critically revised the first version of the manuscript. All the authors revised and approved the submitted version.

Corresponding author

Correspondence to Nicole Freitas de Mello .

Ethics declarations

Ethics approval and consent to participate, consent for publication, competing interests.

The authors declare that they have no competing interests.

Additional information

Publisher’s note.

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

13012_2024_1389_moesm1_esm.docx.

Additional file 1: PRISMA checklist. Description of data: Completed PRISMA checklist used for reporting the results of this systematic review.

Additional file 2: Literature search. Description of data: The search strategies adapted for the electronic databases.

13012_2024_1389_moesm3_esm.doc.

Additional file 3: JBI’s critical appraisal tools for cross-sectional studies. Description of data: JBI’s critical appraisal tools to assess the trustworthiness, relevance, and results of the included studies. This is specific for cross-sectional studies.

13012_2024_1389_MOESM4_ESM.doc

Additional file 4: JBI’s critical appraisal tools for qualitative studies. Description of data: JBI’s critical appraisal tools to assess the trustworthiness, relevance, and results of the included studies. This is specific for qualitative studies.

13012_2024_1389_MOESM5_ESM.doc

Additional file 5: Methodological quality assessment results for cross-sectional studies. Description of data: Methodological quality assessment results for cross-sectional studies using JBI’s critical appraisal tools.

13012_2024_1389_MOESM6_ESM.doc

Additional file 6: Methodological quality assessment results for the qualitative studies. Description of data: Methodological quality assessment results for qualitative studies using JBI’s critical appraisal tools.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/ .

Reprints and permissions

About this article

Cite this article.

Freitas de Mello, N., Nascimento Silva, S., Gomes, D.F. et al. Models and frameworks for assessing the implementation of clinical practice guidelines: a systematic review. Implementation Sci 19 , 59 (2024). https://doi.org/10.1186/s13012-024-01389-1

Download citation

Received : 06 February 2024

Accepted : 01 August 2024

Published : 07 August 2024

DOI : https://doi.org/10.1186/s13012-024-01389-1

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Implementation
  • Practice guideline
  • Evidence-Based Practice
  • Implementation science

Implementation Science

ISSN: 1748-5908

  • Submission enquiries: Access here and click Contact Us
  • General enquiries: [email protected]

background research science report

Online Master of Science in Computer Science (OMSCS)

College of computing, cs 8803 o24: intro to research, instructional team.

Buzz

Nicholas Lytle

Creator, instructor.

Thomas Trask

Thomas Trask

This course serves as a general introduction to research methods and CS research more specifically. Students will understand how to conduct, analyze, and communicate research in a variety of CS domains. Students will develop their own independent research in the form of a group written literature review and an independent research proposal.

This course is not foundational and does not count toward any specializations at present, but it can be counted as a free elective.

Course Goals

To demonstrate mastery of the goals above, students will be able to do the following:

  • Identify elements of the research lifecycle.
  • Identify common research methodologies in computer science in a variety of subfields.
  • Develop a comprehensive research proposal, outlining an original research question, a method of answering that question with appropriate data analysis methods, and able to communicate the broader societal impacts and intellectual merit of pursuing such research.
  • Identify social structures of research, including funding agencies, PhD programs, etc.
  • Demonstrate how to search for, read, and interpret academic research articles.
  • Demonstrate how to synthesize research articles into an original literature review.

Sample Syllabus

Fall 2024 syllabus (PDF)

Note: Sample syllabi are provided for informational purposes only. For the most up-to-date information, consult the official course documentation.

Before Taking This Class...

Suggested background knowledge.

Students will need to be familiar with how to write in word processers and be able to learn how to write in structured markdown document editors (LaTeX). Resources will be provided on how to write in LateX.

Technical Requirements and Software

High-speed Internet connection

Laptop or desktop computer with a minimum of a 2 GHz processor and 2 GB of RAM

Windows for PC computers OR Mac iOS for Apple computers.

Complete Microsoft Office Suite or comparable and ability to use Adobe PDF software (install, download, open, and convert)

Latest versions of Mozilla Firefox, Chrome, and/or Safari browsers

Slack installed

Academic Integrity

All Georgia Tech students are expected to uphold the Georgia Tech Academic Honor Code . This course may impose additional academic integrity stipulations; consult the official course documentation for more information.

  • Share full article

Advertisement

Supported by

A Blood Test Accurately Diagnosed Alzheimer’s 90% of the Time, Study Finds

It was much more accurate than primary care doctors using cognitive tests and CT scans. The findings could speed the quest for an affordable and accessible way to diagnose patients with memory problems.

A microscopic image in green and orange showing a nerve cell of a person’s brain, with the cytoplasm in orange and the protein tau tangled in a green swirl.

By Pam Belluck

Scientists have made another major stride toward the long-sought goal of diagnosing Alzheimer’s disease with a simple blood test . On Sunday, a team of researchers reported that a blood test was significantly more accurate than doctors’ interpretation of cognitive tests and CT scans in signaling the condition.

The study , published Sunday in the journal JAMA, found that about 90 percent of the time the blood test correctly identified whether patients with memory problems had Alzheimer’s. Dementia specialists using standard methods that did not include expensive PET scans or invasive spinal taps were accurate 73 percent of the time, while primary care doctors using those methods got it right only 61 percent of the time.

“Not too long ago measuring pathology in the brain of a living human was considered just impossible,” said Dr. Jason Karlawish, a co-director of the Penn Memory Center at the University of Pennsylvania who was not involved in the research. “This study adds to the revolution that has occurred in our ability to measure what’s going on in the brain of living humans.”

The results, presented Sunday at the Alzheimer’s Association International Conference in Philadelphia, are the latest milestone in the search for affordable and accessible ways to diagnose Alzheimer’s, a disease that afflicts nearly seven million Americans and over 32 million people worldwide. Medical experts say the findings bring the field closer to a day when people might receive routine blood tests for cognitive impairment as part of primary care checkups, similar to the way they receive cholesterol tests.

“Now, we screen people with mammograms and PSA or prostate exams and other things to look for very early signs of cancer,” said Dr. Adam Boxer, a neurologist at the University of California, San Francisco, who was not involved in the study. “And I think we’re going to be doing the same thing for Alzheimer’s disease and hopefully other forms of neurodegeneration.”

In recent years, several blood tests have been developed for Alzheimer’s. They are currently used mostly to screen participants in clinical trials and by some specialists like Dr. Boxer to help pinpoint if a patient’s dementia is caused by Alzheimer’s or another condition.

We are having trouble retrieving the article content.

Please enable JavaScript in your browser settings.

Thank you for your patience while we verify access. If you are in Reader mode please exit and  log into  your Times account, or  subscribe  for all of The Times.

Thank you for your patience while we verify access.

Already a subscriber?  Log in .

Want all of The Times?  Subscribe .

An official website of the United States government

Here's how you know

Official websites use .gov A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS. A lock ( Lock Locked padlock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Dear Colleague Letter: Research Coordination Network for a University-Community Climate Action Network (RCN-UCCAN)

August 9, 2024

Dear Colleagues:

With this Dear Colleague Letter (DCL), the U.S. National Science Foundation's Directorate for Technology, Innovation and Partnerships (TIP) and the Department of Energy's Advanced Materials and Manufacturing Technologies Office (AMMTO) within the Office of Energy Efficiency and Renewable Energy (EERE) announce their intent to together establish a strategic leadership network on climate action engagement aimed at the transition from the linear economy of today to a circular economy of tomorrow, including one that will better integrate university research and community needs. With this investment, NSF and DOE aim to organize "Climate Action Ambassadors" into an effective national network of professionals to develop evidence-based models, program concepts and recommendations that share, implement, and scale university-community partnerships in this national priority area.

The expertise of the Ambassadors will span climate action strategies across all areas of science and engineering for mitigation (including circular design and circular economy principles), resiliency, and/or adaptation, resulting in a new multi-disciplinary, multi-sector Research Coordination Network (RCN) called a U niversity- C ommunity C limate A ction N etwork (UCCAN). Ambassadors will be geographically distributed and represent the diverse range of communities (e.g., cities, towns, tribal nations) as well as U.S. Institutions of Higher Education (IHEs), referred to in this DCL as colleges and universities (e.g., Land Grant, public, private, community, technical, Minority Serving Institutions) across the nation.

NSF and DOE will invest in one RCN proposal to develop new connections and collaborations to accelerate and elevate climate action through university-community partnerships and identify untapped resources to ensure environmental justice for unserved and under-served communities. This RCN-UCCAN will provide a framework for engaging students and participating local communities to co-create and scale successful proof-of-concept projects. The RCN-UCCAN also will create the "connective tissue" to build upon existing efforts and support collaborations and communication between campuses with governments, industry, and their surrounding communities to enable fast response, replication, and scaling of climate mitigation, resilience, and/or adaptation solutions nationally.

Ambassadors will build upon the momentum and findings of an initial meeting convened by NSF together with other federal departments, agencies, and offices on March 8-9, 2023. Specifically, that forum was a first step in an inclusive effort to marshal the strengths of campuses, including the nearly 20 million students enrolled in the U.S. post-secondary education system, to help address climate mitigation, resilience, and/or adaptation, environmental sustainability, and environmental justice, and encourage and support their innovation and entrepreneurship. Students seek access to the translational knowledge and skills to address issues related to climate and environment in their communities, which this RCN-UCCAN aims to uniquely make possible.

PROPOSAL GUIDANCE AND SUBMISSION REQUIREMENTS

The RCN-UCCAN should aim to develop a national strategy connecting our colleges and universities with their communities to share knowledge and resources across a network that spans a range of institution types. Of particular interest is ensuring that everyone, regardless of location or affiliation, has the opportunity to address the goals outlined in this DCL. Researchers and practitioners across their communities are especially encouraged to communicate, collaborate and exchange information for action on climate mitigation, resilience and adaption through the RCN, including with international partners.

Proposals responding to this DCL should be prepared in accordance with the guidance contained in the RCN solicitation including the seven guidance items outlined in Section II. Program Description. When submitting the proposal, select the RCN solicitation and then direct the proposal to the Special Projects Program in the Division of Innovation and Technology Ecosystems (ITE) within the TIP directorate. Proposal titles should begin with "RCN-UCCAN:" followed by a substantive title. RCN-UCCAN proposals should be received by November 15, 2024 (due by 5 p.m. submitting organization's local time).

Proposals should include a network of named Ambassadors who will contribute a substantial portion (minimum of 20% with a greater commitment preferred) of their time to the RCN-UCCAN. For instance, coordinating sabbatical or other similar time away from normal duties is encouraged. Each Ambassador who is either a faculty or practitioner (such as a Director or Vice President of Sustainability) should form a substantive collaboration with a community Ambassador focused on climate action and facilitating interactions with students. Each named Ambassador should also enlist the help of one or more undergraduate students, graduate students, and/or post-doctoral fellows for a minimum of 10 hours per week. Additionally, to ensure co-design and co-creation of solutions, specific funding to support a community leader to serve as an Ambassador alongside the university Ambassador for a minimum of 20% of their time should be included. Further, proposals that show substantive reach and collaboration with K-12 networks in the participating communities/regions are highly encouraged.

For purposes of this DCL, any RCN-UCCAN proposal should address the proposer's ability to contribute to the following deliverables envisioned for the RCN-UCCAN:

  • A connected university-community climate action network bringing together multiple universities, or regional groups of universities, with their local communities to develop climate action solutions;
  • An implementation governance structure to coordinate the multi-sector effort that will create a self-sustaining effort;
  • Campus as a Living Lab/Testbed: activities would include assessing campus-generated climate solutions, piloting commercial innovations, refining models and tools through campus and community testing, and importantly, empowering student-led innovation for climate solutions. Galvanizing the innovative and problem-solving capabilities of our nation's 20 million students and supporting their entrepreneurial efforts and continued contributions to all fields of STEM through a lens of environmental sustainability will be encouraged.
  • Campus Sustainability and Resilience: activities would include decarbonizing the built campus environment, modernizing transportation, considering the campus as a functioning ecosystem and making campuses more resilient.
  • Climate Action in the Classroom: activities would include engaging in climate across the curriculum such as circular design and circular economy, programs and majors for climate action leaders, skilled workforce development and public engagement, and informal science education.
  • Providing Climate Services to Communities: with emphasis in mitigation/prevention, activities would include local transitions to clean energy and renewable technologies, development of climate-resilient agriculture and ecosystems, building capacity for community-based climate research and action, and partnerships for mitigation, resilience and adaptation.
  • New models for implementation and scaling of pilots across institutions of higher education and from those institutions to their communities and their states for the four themes.

The essential work of the Ambassadors will be to leverage existing and future climate solutions and strengthen the ties between the Universities and their respective communities as well as create a strategic network across all institutions to leverage best practices, build new collaborations, and share resources. The RCN-UCCAN thus formed will be the result of the efforts of the Ambassadors. It is further anticipated that the RCN-UCCAN network would grow each year with external funding from sources beyond NSF. Such growth can lead to a new set of Ambassadors to build upon, update, and/or execute the strategy to mitigate further climate change and build capacity for resilience and adaptation. In this way, the reach of coordination and cooperation across the US and internationally can be extended and sustained.

IMAGES

  1. FREE 10+ Scientific Research Report Templates in PDF

    background research science report

  2. FREE 5+ Science Research Report Templates in PDF

    background research science report

  3. Scientific research in flat design background Vector Image

    background research science report

  4. Writing a scientific report S1

    background research science report

  5. 13+ SAMPLE Scientific Research Report in PDF

    background research science report

  6. Free Research Poster Templates and Tutorials

    background research science report

COMMENTS

  1. Writing a Research Paper for Your Science Fair Project

    How to write a science fair project research paper. Includes key areas for research and sample papers.

  2. Science Fair Project Background Research Plan

    To make a background research plan — a roadmap of the research questions you need to answer — follow these steps: Identify the keywords in the question for your science fair project. Brainstorm additional keywords and concepts. Use a table with the "question words" (why, how, who, what, when, where) to generate research questions from your ...

  3. How to Write a Scientific Report

    Got to document an experiment but don't know how? In this post, we'll guide you step-by-step through how to write a scientific report and provide you with an example.

  4. Step 4: Background Research

    Background Research Background research should help you to educate the reader of your project about important aspects of your topic. Using multiple resources, students should learn about past results of other experiments that are similar to theirs. Students should know how and why previous experimenters arrived at their conclusions.

  5. Background of The Study

    Here are the steps to write the background of the study in a research paper: Identify the research problem: Start by identifying the research problem that your study aims to address. This can be a particular issue, a gap in the literature, or a need for further investigation. Conduct a literature review: Conduct a thorough literature review to ...

  6. Science Fair Project Resource Guide

    Learn how to do your background research using a sample project to illustrate the process. You'll learn where to go to find information and what your research is supposed to tell you.

  7. Science Fair Project Final Report

    How to prepare the final report for your science fair project. Includes required elements and sample report.

  8. What is the Background of a Study and How Should it be Written?

    The background of a study is the first section of the paper and establishes the context underlying the research. It contains the rationale, the key problem statement, and a brief overview of research questions that are addressed in the rest of the paper. The background forms the crux of the study because it introduces an unaware audience to the ...

  9. How to Write a Science Fair Project Report

    Your science fair project may require a lab report or essay. This is a general outline showing how to prepare a report to document your research.

  10. How To Write Background Information For Science Fair

    For science fair background research is important because you need to learn about your topic in order to form your hypothesis and correctly design your experiment.

  11. What is the Background of a Study and How to Write It

    Background of the study is an essential element of a research manuscript. Get insights on how to write an impactful background of the study that can promote confidence in the overall quality of your research analysis and its findings. Read the full article to know all about writing a background of the study that can create an impact!

  12. Background Research

    Background research (or pre-research) is the research that you do before you start writing your paper or working on your project. Sometimes background research happens before you've even chosen a topic. The purpose of background research is to make the research that goes into your paper or project easier and more successful.

  13. How to Write an Effective Background of the Study

    The background of the study is placed at the beginning of a research paper. It provides the context, circumstances, and history that led to your research.

  14. Scientific Reports

    Why do we write research reports? You did an experiment or study for your science class, and now you have to write it up for your teacher to review. You feel that you understood the background sufficiently, designed and completed the study effectively, obtained useful data, and can use those data to draw conclusions about a scientific process or principle. But how exactly do you write all that ...

  15. Background Information

    Learn how to find and use background information for your social sciences research paper, such as definitions, concepts, and theories.

  16. How to Write the Background of a Study

    Learn how to write a clear and engaging background of a study that summarizes the existing literature and motivates your research question.

  17. Writing an Introduction for a Scientific Paper

    This section provides guidelines on how to construct a solid introduction to a scientific paper including background information, study question, biological rationale, hypothesis, and general approach. If the Introduction is done well, there should be no question in the reader's mind why and on what basis you have posed a specific hypothesis.

  18. What Is Background in a Research Paper?

    Discover the role of background information in a research paper, shaping context and reinforcing your article with relevant studies.

  19. How To Write A Background Paper For Science Fair

    What is a background paper for science project? The purpose of the Background Research Report is for you to gain knowledge about your Science Fair Project topic.

  20. How To Write A Lab Report

    Lab reports are commonly used in science, technology, engineering, and mathematics (STEM) fields. This article focuses on how to structure and write a lab report.

  21. Background Information

    Definition Background information identifies and describes the history and nature of a well-defined research problem with reference to the existing literature. The background information should indicate the root of the problem being studied, appropriate context of the problem in relation to theory, research, and/or practice, its scope, and the extent to which previous studies have successfully ...

  22. BML Summer Students Share Their Science Through Short Films

    Students shared their research findings via a scientific talk delivered at the BML Student Research Symposium on August 1, and a final paper archived in the Cadet Hand Library at BML. Students also developed science communication skills for engaging non-scientists.

  23. Data Science Students Win American Statistical Association Award

    Data science students William Hou and Ashley Yung were recently recognized for "demonstrated ability, leadership, and professional promise" by the Orange County / Long Beach chapter of the American Statistical Association. Both graduated from UC Irvine's Donald Bren School of Information and Computer Sciences (ICS) in June of this year ...

  24. Models and frameworks for assessing the implementation of clinical

    The presented findings contribute to the field of implementation science, encouraging debate on choices and adaptations of models and frameworks for implementation research and evaluation. Background Substantial investments have been made in clinical research and development in recent decades, increasing the medical knowledge base and the ...

  25. CS 8803 O24: Intro to Research

    Identify common research methodologies in computer science in a variety of subfields. Develop a comprehensive research proposal, outlining an original research question, a method of answering that question with appropriate data analysis methods, and able to communicate the broader societal impacts and intellectual merit of pursuing such research.

  26. Ecological roles and importance of sharks in the Anthropocene ...

    Gaps remain in our understanding of the ecological importance of sharks in today's oceans, necessitating research especially on small-bodied and deepwater sharks and shark-driven nutrient transport.

  27. A Blood Test Accurately Diagnosed Alzheimer's 90% of the Time, Study

    Scientists have made another major stride toward the long-sought goal of diagnosing Alzheimer's disease with a simple blood test.On Sunday, a team of researchers reported that a blood test was ...

  28. Dear Colleague Letter: Research Coordination Network for a ...

    background The expertise of the Ambassadors will span climate action strategies across all areas of science and engineering for mitigation (including circular design and circular economy principles), resiliency, and/or adaptation, resulting in a new multi-disciplinary, multi-sector Research Coordination Network (RCN) called a U niversity- C ...

  29. PDF Science FairBackground Project Research Plan

    Background research is necessary so that you know how to design and understand your experiment. To make a background research plan—a roadmap of the research questions you need to answer—follow these steps: 1. Identify the keywords in the question for your science fair project. Brainstorm additional keywords and concepts.

  30. Background Research Plan for an Engineering Design Project

    Background research is especially important for engineering design projects, because you can learn from the experience of others rather than blunder around and repeat their mistakes. To make a background research plan — a roadmap of the research questions you need to answer -- follow these steps: Identify questions to ask about your target ...