Etymology

photosynthesis (n.)

by 1895, loan-translation of German Photosynthese , from photo- "light" (see photo- ) + synthese "synthesis" (see synthesis ). Related: Photosynthetic . Another early word for it was photosyntax .

[T]he body of the work has been rendered into English with fidelity, the only change of moment being the substitution of the word "photosynthesis" for that of "assimilation." This change follows from a suggestion by Dr. Barnes, made a year ago before the American Association at Madison, who clearly pointed out the need of a distinctive term for the synthetical process in plants, brought about by protoplasm in the presence of chlorophyll and light. He proposed the word "photosyntax," which met with favor. In the discussion Professor MacMillan suggested the word "photosynthesis," as etymologically more satisfactory and accurate, a claim which Dr. Barnes showed could not be maintained. The suggestion of Dr. Barnes not only received tacit acceptance by the botanists of the association, but was practically approved by the Madison Congress in the course of a discussion upon this point. [The Botanical Gazette, vol. xix, 1894]

Entries linking to photosynthesis

1610s, "deductive reasoning," from Latin synthesis "collection, set or service of plate, suit of clothes, composition (of a medication)," from Greek synthesis "composition, a putting together," also used of syllables and words, from syntithenai "put together, combine," from syn- "together" (see syn- ) + tithenai "to put, to place" (from PIE root *dhe- "to set, put").

The notion in the senses is "a combining of separate thoughts or conceptions into a whole." It is attested in English by 1733 in the sense of "a combination of parts into a whole," and later in specialized senses in grammar, chemistry, surgery, acoustics. It was earlier borrowed in Middle English as sintecis (mid-15c.). The classical plural is syntheses .

"create by photosynthesis; carry out photosynthesis," 1910, from photosynthesis + -ize . Related: Photosynthesized ; photosynthesizing .

  • See all related words ( 4 ) >

Trends of photosynthesis

More to explore, share photosynthesis.

updated on October 10, 2020

Dictionary entries near photosynthesis

photoperiodism

photophobia

photosphere

photosynthesis

photosynthesize

phototropism

photovoltaic

  • English (English)
  • 简体中文 (Chinese)
  • Deutsch (German)
  • Español (Spanish)
  • Français (French)
  • Italiano (Italian)
  • 日本語 (Japanese)
  • 한국어 (Korean)
  • Português (Portuguese)
  • 繁體中文 (Chinese)
  • More from M-W
  • To save this word, you'll need to log in. Log In

photosynthesis

Definition of photosynthesis

Did you know.

Photosynthesis Has Greek Roots

The Greek roots of photosynthesis combine to produce the basic meaning "to put together with the help of light". Photosynthesis is what first produced oxygen in the atmosphere billions of years ago, and it's still what keeps it there. Sunlight splits the water molecules (made of hydrogen and oxygen) held in a plant's leaves and releases the oxygen in them into the air. The leftover hydrogen combines with carbon dioxide to produce carbohydrates, which the plant uses as food—as do any animals or humans who might eat the plant.

Examples of photosynthesis in a Sentence

These examples are programmatically compiled from various online sources to illustrate current usage of the word 'photosynthesis.' Any opinions expressed in the examples do not represent those of Merriam-Webster or its editors. Send us feedback about these examples.

Word History

1898, in the meaning defined above

Dictionary Entries Near photosynthesis

photosynthate

photosynthetic ratio

Cite this Entry

“Photosynthesis.” Merriam-Webster.com Dictionary , Merriam-Webster, https://www.merriam-webster.com/dictionary/photosynthesis. Accessed 31 Aug. 2024.

Kids Definition

Kids definition of photosynthesis, medical definition, medical definition of photosynthesis, more from merriam-webster on photosynthesis.

Nglish: Translation of photosynthesis for Spanish Speakers

Britannica.com: Encyclopedia article about photosynthesis

Subscribe to America's largest dictionary and get thousands more definitions and advanced search—ad free!

Play Quordle: Guess all four words in a limited number of tries.  Each of your guesses must be a real 5-letter word.

Can you solve 4 words at once?

Word of the day.

See Definitions and Examples »

Get Word of the Day daily email!

Popular in Grammar & Usage

Plural and possessive names: a guide, 31 useful rhetorical devices, more commonly misspelled words, why does english have so many silent letters, your vs. you're: how to use them correctly, popular in wordplay, 8 words for lesser-known musical instruments, it's a scorcher words for the summer heat, 7 shakespearean insults to make life more interesting, birds say the darndest things, 10 words from taylor swift songs (merriam's version), games & quizzes.

Play Blossom: Solve today's spelling word game by finding as many words as you can using just 7 letters. Longer words score more points.

Photosynthesis

Photosynthesis n., plural: photosyntheses [ˌfŏʊ.ɾoʊ.ˈsɪn̪.θə.sɪs] Definition: the conversion of light energy into chemical energy by photolithorophs

Table of Contents

Photosynthesis is a physio-chemical process carried out by photo-auto-lithotrophs by converting light energy into chemical energy . Among the endless diversity of living organisms in the world, producers are a unique breed.

Unlike consumers ( herbivores , carnivores , omnivores , or decomposers ) that rely upon other living organisms for their nutritional requirements and nourishment, producers have been distinguished by their ability to synthesize their own food. This is the reason that we call producers “autotrophic or self-reliable” in nature while consumers of all the different categories are called “heterotrophic or dependent” in nature.

Now among producers, there are different categories of producers, i.e. different mechanisms via which they produce their own food.

  • Photo-auto-litho-trophs: Since these organisms tend to derive their nutrition by channeling the sun’s light energy, they are termed phototrophic in nature. Also, since they utilize inorganic carbon and translate it into organic carbon atoms, i.e. their means of deriving food becomes autotrophic. Additionally, since the source of electrons (electron donors) here are inorganic compounds, they are specified as lithotrophic . In totality, they can be called photo-auto-litho-trophic in nature. Example : Green plants are nature’s brilliant entities that come under this category. They carry out a photosynthesis cycle by taking in carbon dioxide and fixing it into carbohydrates (energy storage molecule). Some of them also give out oxygen gas that’s vital for the other life forms to survive in the earth’s atmosphere.
  • Chemo-auto-lithotrophs: Many of us might be unaware of the fact that there are some autotrophs that don’t utilize sunlight. Rather they derive their energy stored from a different energy source like oxidation of inorganic compounds.

The scope of today’s discussion is limited to photosynthesis and photoautotrophs. So, let’s get started and get to know the answers to these common questions: what is the photosynthesis process, what are the 3 stages of photosynthesis, what does photosynthesis produce, what is a byproduct of photosynthesis, what is the purpose of photosynthesis, is photosynthesis a chemical change, the various inputs and outputs of photosynthesis, which organisms perform photosynthesis , and many other more questions!!!

What is Photosynthesis?

Photosynthesis definition: Photosynthesis is a physio-chemical process carried out by photo-auto-lithotrophs . In simpler language, photosynthesis is the process by which green plants convert light energy into ‘chemical energy’.

This energy transformation is only possible due to the presence of the miraculous pigment molecule chlorophyll in photosynthesis. The chemical energy as referred to before is the fixed carbon molecules generated during photosynthesis.

Green plants and algae have the ability to utilize carbon dioxide molecules and water and produce food (carbohydrates) for all life forms on Earth. There’s no doubt in the fact that life is impossible and unimaginable without green plants that photosynthesize and sustain the cycles of life.

Let’s give you a brief outline of the topic before we head forward.

  • Etymology: The photosynthesis process finds its origin in 2 Greek words, firsts one being “phōs (φῶς)” meaning ‘light’ and the second one being “sunthesis (σύνθεσις)” meaning ‘putting together’ . The process of photosynthesis aids the conversion of light energy to chemical energy in varied forms of carbohydrate molecules like sugar molecules and starches.
  • Organisms that perform photosynthesis: The organisms are called photo-auto-litho-trophs or simply photoautotrophs.
  • Atmospheric gas consumed: Photosynthesizing organisms utilize carbon dioxide in photosynthesis (CO 2 ).
  • Atmospheric gas released by “some” photosynthetic organisms (MIND IT-Not all): Some photosynthesizing organisms convert carbon dioxide and aid the process of producing oxygen gas (O2).
  • Examples of photosynthesizing organisms: Green plants, cyanobacteria (earlier termed as blue-green algae), and different types of algae that essentially carry out phytoplankton photosynthesis.
  • Why is photosynthesis important? The important function of photosynthesis: Food supply for the organisms on Earth, Oxygen supply for the survival of all organisms.
  • Site of photosynthesis: Leaves and green tissues. (So when asked where photosynthesis takes place, we can tell that it is this site.)
  • What are the reactants of photosynthesis: Carbon dioxide molecules + Water molecules + Light energy
  • Products of photosynthesis: Fixed carbon (carbohydrates) + Oxygen (some cases) + Water

Watch this vid about photosynthesis:

Biology Definition: Photosynthesis is the synthesis of complex organic material using carbon dioxide , water , inorganic salts , and light energy (from sunlight) captured by light-absorbing pigments , such as chlorophyll and other accessory pigments . Photosynthesis may basically be simplified via this equation: 6CO 2 +12H 2 O+energy=C 6 H 12 O 6 +6O 2 +6H 2 O, wherein carbon dioxide (CO 2 ), water (H 2 O), and light energy are utilized to synthesize an energy-rich carbohydrate like glucose (C 6 H 12 O 6 ). Other products are water and oxygen .

  • Photosynthesis occurs in plastids (e.g. chloroplasts ), which are membrane-bounded organelles containing photosynthetic pigments (e.g. chlorophyll ), within the cells of plants and algae .
  • In photosynthetic bacteria ( cyanobacteria ) that do not have membrane-bounded organelles, photosynthesis occurs in the thylakoid membranes in the cytoplasm .

Etymology: from the Greek photo-, “light”, and synthesis, “putting together” Related forms: photosynthetic (adjective) Compare: chemosynthesis See also: photoautotroph

Types of Photosynthesis

Plant photosynthesis and photosynthetic organisms can be classified under different categories on the basis of some characteristic features. They are:

  • Types of organisms that carry out photosynthesis on the basis of “cellular structure” Both prokaryotic and eukaryotic organisms carry out photosynthesis.
  • Photosynthetic prokaryotes: for example, cyanobacteria
  • Eukaryotic: for example, protists ( diatoms , dinoflagellates , Euglena) and green plants. In particular, algae photosynthesis can be observed in green algae , red algae , brown algae , & land plants, like bryophytes , pteridophytes, gymnosperms , and angiosperms .
  • Prokaryotic ONLY (anoxygenic photosynthetic bacteria, green sulfur bacteria and purple bacteria)

Photosynthesis: a two-stage process

Photosynthesis is an example of a metabolic process with 2 stages. Both the stages need light (direct or indirect sunlight). Hence, the long-claimed notion of the 2 processes being ‘absolute LIGHT and DARK reactions’ isn’t apt.

Scientific studies have pointed out that even the 2nd stage of photosynthesis requires indirect sunlight. Therefore, rather than classifying the stages as light and dark photosynthesis reactions, we’ll like to classify the 2 stages as follows:

  • Photochemical Reaction Process: Light energy is converted to ATP ; photophosphorylation process (light-dependent reactions)
  • Through Calvin cycle: In oxygenic photosynthesis as well as anoxygenic photosynthesis
  • Through Non-Calvin cycle: Only is some anoxygenic photosynthesis

Evolution of Photosynthesis Process

It is postulated that the very first photosynthetic beings and photosynthesis evolved quite early down the evolutionary timescale of life.

It is also believed that the first photosynthetic beings would have initially resorted to other available reducing agents like hydrogen ions or hydrogen sulfide in contrast to the modern-day photosynthetic organisms that utilize water as the “prime and only sources of electrons”.

It is believed that cyanobacteria would have appeared on the surface of Earth much later than the first photosynthetic beings. Once appeared they must have saturated the Earth’s atmosphere with oxygen gas and led to its oxygenation. Only after the Earth was oxygenated, the more complex forms of life would have later evolved.

When we compare photosynthesis to other metabolic processes like respiration, we can clearly notice that these two processes are almost opposite to each other. But another point to note is that both the processes in synchrony sustain life on Earth.

You cannot separate respiration from photosynthesis or photosynthesis from respiration and expect life to run normally. It is not possible that way. Let’s try to compare and list some characteristic features of photosynthesis and cellular respiration processes.

Photosynthesis vs. Respiration

  • Photosynthesis: Anabolic process
  • Cellular respiration: Catabolic process By anabolic, we mean the photosynthesis process “utilizes energy to build biomolecules” like carbohydrates, starch, and sugars. These biomolecules are further utilized by both the plants and the organisms dependent on plants for their nutritional needs. On the other hand, respiration is a catabolic process. This energy is utilized to break down complex molecules to derive nutrition out of them.
  • Photosynthesis: In the chloroplasts of the eukaryotic phototrophic cells.
  • Respiration: Primarily in the mitochondria of the cell.
  • Photosynthesis: Carbon dioxide molecules + Water molecules + Light energy
  • Respiration: Glucose + Oxygen
  • Photosynthesis: Fixed carbon (carbohydrates) + Oxygen (some cases) + Water
  • Respiration: Carbon dioxide + Water +energy (ATP)
  • Photosynthesis: Endergonic and endothermic
  • Respiration: Exergonic and exothermic Just note that these terms endergonic and endothermic both convey the same meaning of “absorbing heat”. And the terms exergonic and exothermic also convey the same meaning of “releasing heat”. The only difference is that –gonics relates to “the relative change in the free energy of the system” while –thermic relates to “the relative change in enthalpy of the system”.
  • Photosynthesis: 6CO 2 + 6H 2 O → C6H 12 O 6 + 6O 2
  • Respiration: C 6 H 12 O 6 6 + 6O 2 → 6CO 2 + 6H 2 O

Photosynthetic Membranes and Organelles

When we begin the discussion on this topic, it’s important that we know that no photosynthesis is possible without the pigment molecules that absorb light. The absorption of sunlight is the most vital step of photosynthesis.

We should also note that the energy of photons is different for every light of different wavelengths. And the energy needed for the photosynthesis to be conducted is of “a very specific wavelength range”.

For the absorption of lights of desired wavelengths, phototrophs organize their pigment molecules in the form of reaction center proteins . These proteins are located in the membranes of the organisms. Let’s learn how these pigment molecules reside inside the organism and how they make the membranes photosynthetic in nature.

  • Prokaryotic photosynthetic organisms: These organisms have their pigment systems or photosystems located in the cell membranes or the thylakoid membranes in the cytosol itself. There are no special organelles called chloroplasts in the prokaryotes.
  • Eukaryotic photosynthetic organisms (like green plants): These organisms have their pigment systems or photosystems located in the thylakoids of the chloroplast membranes. Eukaryotes have specialized organelles called chloroplasts (chlorophyll-containing plastids) in their cells.

Photosynthetic Pigments

There are 2 types of photosynthetic pigments in the oxygenic photosynthesizing organisms . They are as follows:

  • Porphyrin-derivatives (Chlorophyll in plants and Phycobilin)

Carotenoids

Chlorophyll.

Chlorophyll is the green-colored pigment essential for photosynthesis. Let’s try to list its major characteristic features and roles of it.

  • Nature: Lipid
  • Location: Embedded in the thylakoid membrane
  • Types: 9 types as identified by Arnoff and Allen in 1966 (chlorophyll-a, b, c, d, e, bacteriochlorophyll a, b, chlorobium chlorophyll-650,666). Bacteriochlorophylls are present in the anoxygenic photosynthetic organisms.
  • Primary photosynthetic pigment: Chlorophyll-a
  • Presence: In all oxygenic photosynthetic organisms
  • Absorption range: Visible (blue and red) and IR (Infra-red)
  • Ion important for its biological functioning: Magnesium ion (Mg 2+ )
  • Structure: Chlorophyll-a, b, and d are “ chlorin ” derivatives; c is a “ porphyrin ” derivative.
  • Chlorophyll Tail: Oxygenic photosynthetic organisms have a “ phytol ” tail in their chlorophyll; anoxygenic photosynthetic organisms have a “ geranyl ” tail in their bacteriochlorophylls.
  • Main pigment for capturing and storing solar energy
  • Photochemical reaction (chlorophyll-a is present in the photochemical reaction center i.e. PCRC. Chlorophyll a, b, c, and d play a role in resonance energy transfer.)

Carotenoid is the photosynthetic pigment essential for working in conjunction with chlorophyll. Let’s try to list its major characteristic features and roles of it.

  • Nature: Lipid-soluble
  • Types: More than 150
  • Absorption range: 400-500nm
  • Forms: Carotene (simple hydrocarbon, for example, beta carotene) and xanthophyll (oxygenated hydrocarbon, for example, lutein)
  • In excitation and resonance energy transfer
  • Photo-protection (work as a free-radical scavenger as well as a quencher)

Phycobilins

Phycobilins aren’t present in all the oxygenic photosynthetic organisms. They have a tetrapyrrole structure (no need for magnesium ion).

  • Types: Phycoerythrobilin, Phycocyanobilins, Allophycocyanobilins When these pigment molecules combine with a water-soluble protein, they form the pigment-protein complex (phycobiliproteins, like phycoerythrin and phycocyanin).
  • Location: Since these phycobiliproteins are water-soluble, they can’t exist in the membranes like chlorophyll and carotenoids. Therefore, phycobilin pigments as their pigment-protein complex aggregate into clusters and adhere to the membrane. These clusters are called phycobilisomes .
  • Exceptional Note: These are the only pigments that are associated with protein molecules.
  • Role: Resonance energy transfer

Organelle for Photosynthesis

What is chloroplast? In eukaryotes, photosynthesis occurs in chloroplasts as they are the designated organelles for the photosynthesis process. There are nearly 10-100 chloroplasts in a typical plant cell .

Inside chloroplasts are the thylakoids; the very specific site for the light capturing. The structure of this very unique part of the chloroplasts is briefly discussed here.

Thylakoid is a membrane-bound compartment in the chloroplasts of eukaryotic organisms. They are also present as such in the cytosol of cyanobacteria (cyanobacteria don’t have chloroplasts but they have simply thylakoids).

These thylakoids are the “primary site of the 1st stage of photosynthesis. i.e. “photochemical reaction” or popularly called “light-dependent reactions of photosynthesis”. The main components of the thylakoid are membrane, lumen, and lamellae. The chlorophyll molecules are present inside these thylakoid membranes.

Light-dependent Reactions

The first stage of photosynthesis is popularly called “light-dependent reactions” . We choose to call this stage the “1st stage: PHOTOCHEMICAL REACTION STAGE”. It is also called the “thylakoid reaction stage” or “hill’s reaction” .

This stage is marked by 3 essential steps of photosynthesis: Oxidation of water , reduction of NADP + , and ATP formation . The site where these reactions occur is the lamellar part of the chloroplast. The units of light-dependent reactions are quantosomes .

Let’s discuss this stage under some subheadings:

Wavelengths of light involved and their absorption

The white light that reaches Earth has subparts of different wavelengths together constituting the visible spectrum (390-760nm). But the photosynthetic organisms specifically use a subpart called PAR ( P hotosynthetically A ctive R adiation).

PAR ranges from 400-760nm. Blue light is 470-500nm while red light is 660-760nm). The green light (500-580nm) is reflected back by the plants and this is the reason that plants appear green in color. Blue-green light is not used, only blue light is used.

Absorption spectrum and action spectrum

  • Absorption Spectrum: This is a pigment-specific entity or terminology. To find the absorption spectrum of a pigment, you need to plot “the amount of absorption of different wavelengths of light by that particular pigment” . The graph has the “wavelengths of light (in nanometers/nm)” on the X-axis and the “percentage of light absorption” on the Y-axis.
  • Action Spectrum: To find the action spectrum of a pigment, you need to plot the “effectiveness of the different wavelengths of light in stimulating photosynthesis process” . The graph has the “wavelengths of light (in nanometers/nm)” on the X-axis and the “rate of photosynthesis (measured as oxygen released)” on the Y-axis. When you superimpose the action spectrum of photosynthesis with the absorption spectrum of the specific pigment, you can find the contribution of each different wavelength in the photosynthesis rate, photosynthetic efficiency, and photosynthetic productivity.

IMPORTANT NOTE: The absorption spectrum is calculated for any of the many pigments involved in photosynthesis. Contrastingly, the action spectrum is calculated only for the photochemical reaction performing pigment i.e. chlorophyll-a present at the reaction center. We identify the progress of photochemical reactions as the “evolution of oxygen gas” that primarily happens at the reaction center where only chlorophyll-a is present. Since the action is directly correlated to the specific excitation of chlorophyll-a molecule, the action spectrum is scientifically calculated only for this chlorophyll-a.

  • Absorption spectrum of chlorophyll- a : 430 nm (blue), 660nm (red) {more absorbance at 660 nm)
  • Absorption spectrum of chlorophyll-b: 430 nm (blue), 660nm (red) {more absorbance at 430 nm)

What actually happens in the Light-dependent reaction

Let’s briefly describe what actually happens here.

  • 1 photon is absorbed by 1 molecule of the chlorophyll (P680) and simultaneously 1 electron is lost here.
  • The electron flow of the photochemical reaction begins here.
  • The electron is transferred to D1/D2 protein, then to a modified form of chlorophyll and “pheophytin”.
  • After that, it’s transferred to plastoquinone A and then B.
  • Initiates an electron flow down an electron transport chain.
  • Ultimately aids the NADP reduction to NADPH.
  • Creation of a proton gradient across the chloroplast membrane.
  • Further on this proton gradient is exploited by the ATP synthase for the generation of ATP molecules.

Water photolysis

Now, if you are wondering how the first electron lost by the 1st chlorophyll is replenished to keep this cycle going, read on. The answer to this query is “photolysis of water molecules” . The chlorophyll molecule regains the lost electron when the “oxygen-evolving complex” in the thylakoid membrane carries out the photolysis of water. The chlorophyll molecule ultimately regains the electron it lost when a water molecule is split in a process called photolysis, which releases oxygen.

Many scientists had a doubt about the source of oxygen in photosynthesis. Some speculated the oxygen atom of the CO 2 gas is the source of oxygen post-photosynthesis. But it was the collective contribution of some 4 scientists that gave clarity on this topic.

C.B. Van Niel worked on purple photosynthetic bacteria ( Chromatium vinosum ) and found out that the source of oxygen is the oxidation of water molecules (‘indirect evidence’). While Ruben, Hassid, and Kamen carried out an isotopic study that gave ‘direct evidence’ of oxygen-evolving from H 2 O molecules and not CO 2 molecules.

Hydrolysis of 2 molecules of water leads to the evolution of 1 molecule of oxygen gas. The photosynthesis equation for light-dependent reactions (non-cyclic electron flow) or the chemical formula for photosynthesis:

2 H 2 O + 2 NADP+ + 3 ADP + 3 Pi + light → 2 NADPH + 2 H+ + 3 ATP + O 2

The photochemical reaction (or the light-dependent reactions) can be classified as:

  • Cyclic reaction: Only 1 photosystem ( PS1 ) is involved. (Photon excites P700 in PS1, electron reaches Fe-S, then Ferredoxin, then Plastoquinone and then Cyt b6f complex and then Plastocyanin). Since in the solo involvement of PS1 here, the electron flow becomes cyclic. And this phosphorylation process is called cyclic phosphorylation. It happens in the stroma lamellae when light beyond 680nm is available.
  • Non-cyclic reaction: Both photosystems (PS1 and PS2 ) are involved. (Photon excites P680 in PS2, the electron is lost and transferred to pheophytin, then sent on a roller coaster (Z-scheme). Within the z-scheme, the final redox reaction enables the reduction of NADP+ to NADPH. And the chemiosmotic potential generation via proton pumping proton across the membrane and into the thylakoid lumen ensures ATP synthesis.
Photochemical Reactions: Cyclic vs. Non-cyclic phosphorylation
FeatureCyclic phosphorylationNon-cyclic phosphorylation
Oxidation of waterNoYes
Generation of oxygen gasNoYes
Reduction of NADPNoYes
Need for final electron donor/acceptorNoYes (Donor=H2O, Acceptor=NADP+)
ATP productionYesYes
Photosystems involvedOnly PS1Both PS1 and PS2

Data Source: Akanksha Saxena of Biology Online

Light-Independent Reactions (Carbon-fixation Reaction)

Also called the carbon fixation process, the “light-independent reactions” is a misnomer as Science has now already proved that the second stage of photosynthesis isn’t really light-independent reactions. Though it doesn’t need direct light, indirect light is involved even in this process. We choose to label this stage of photosynthesis as the “2nd stage: CARBON-FIXATION REACTION STAGE ”, which is also called:

  • Calvin Cycle or “stromal reaction” as it manifests in the stroma part of the chloroplast
  • “C3 Cycle” or the “reductive pentose phosphate cycle”

Calvin cycle

The inputs for the Calvin cycle  in most plants come from the previously occurred photochemical reaction. In this cycle, the carbon dioxide produced is fixed to a glucose molecule. To be very specific, the Calvin cycle directly doesn’t produce glucose, rather it produces glyceraldehydes-5-phosphate (G-3-P). Glucose is formed after these G-3-P molecules move into the cytosol from the chloroplast .

It consists of primarily 3 steps as follows:

  • Carboxylation: Acceptance of CO 2 by RuBP which is a 5-carbon compound and the CO2-acceptor). 2 molecules of 3-phosphoglycerate are generated as the result of the carboxylation process.
  • Reduction: Generation of 3C/4C/5C/6C/7C molecules.
  • Regeneration of RUBP: 3 molecules of RuBP are regenerated.

In totality, 3 molecules of CO 2 produce 1 molecule of G-3-P. This uses 9 ATPs and 6 NADPHs. And, 6 molecules of CO 2 produce 2 molecules of G-3-P which further produce 1 molecule of glucose. This uses 18ATPs and 12 NADPHs.

The main enzyme is RuBisCo . It’s a multi-enzyme complex with 8 large and 8 small subunits. The substrates for this enzyme are CO 2 , O 2 , and RuBP. An essential ion for the biological functioning of this enzyme: Mg 2+ . The role of RuBisCo is that it captures carbon dioxide gas from the atmosphere and utilizes the NADPH from the 1st stage (photochemical reaction/light-dependent reaction stage) to fix the CO 2 .

The equation of dark reaction of photosynthesis/light-independent reaction stage/2nd stage is: 3 CO 2 + 9 ATP + 6 NADPH + 6 H + → C 3 H 6 O 3 -phosphate + 9 ADP + 8 Pi + 6 NADP+ + 3 H 2 O

The simple carbon sugars formed via the C3 cycle are utilized by the biological systems to form complex organic compounds like cellulose, precursors for amino acids synthesis and thereby proteins, precursors for lipids, and the source of fuel for respiration.

Important Point To Note: It happens in all the photosynthetic organisms as the basic carbon-fixation step.

Carbon concentrating mechanisms

There are many carbon concentrating mechanisms to increase the carbon dioxide levels and the carbon fixation process like C4, CAM, etc.

  • Doesn’t happen in all photosynthetic organisms. Rather it happens in conjunction with the C3 cycle in some 4% of angiosperm families.
  • Most commonly angiosperm families that witness C4 cycle: Poaceae, Cyperaceae.
  • First explained by: Hatch and Slack (hence also called the Hatch and Slack cycle). They worked on the maize plant.
  • Role: Endow the ability to efficiently conduct photosynthesis in plants of the semi-arid regions by making them well adapted.
  • Mechanism: By separation of photosynthesis stages in 2 types of cells (mesophyll cells and bundle sheath cells). The light reaction is restricted to the mesophyll cells and the CO 2 fixation happens in the bundle sheath cells. This phenomenon is also termed as “chloroplast dimorphism” in C4 plants. The Kranz anatomy is visible here.
  • Why does the need arise in the first place? – In semi-arid regions or regions with very hot and dry environmental conditions, plants are forced to close their stomata in order to limit water loss. Under such harsh conditions, the intake of CO 2 decreases during the day as the stomata are forced closed. This might lead to no CO 2 intake and hence no CO 2 fixation (2nd stage of photosynthesis). But the 1st stage of photosynthesis keeps running as it doesn’t depend on stomata opening or closure. This means that a continuous oxygen evolution happens which can lead to oxygen saturation. As we know that RuBisCo enzymes use O 2 gas as substrate too, and this can lead to an increased rate of photorespiration by the oxygenase activity of RuBisCo. This further decreases the carbon fixation. This is a very big issue if not resolved. Hence, for situations like these, carbon concentrating mechanisms have evolved in some families of plants to concentrate and enrich the CO 2 concentration in the leaves of these plants under such conditions.
  • Important enzyme for CO 2 concentration: PEP carboxylase
  • CO 2 is first added to a three-carbon compound called phosphoenolpyruvate (PEP) in this cycle. This leads to the formation of a four-carbon (4C)  molecule called oxaloacetic acid or malate. This step happens in the mesophyll cells of the leaves.
  • After that, these 4C compounds are transferred to the bundle sheath cells where the normal C3 cycle fixes them into glucose molecules.
  • This CO 2 concentrating mechanism works on the “principle of separating the RuBisCo enzyme from the O 2 -generating photochemical reactions” in order to reduce the rates of photorespiration and simultaneously increase the rates of CO 2 fixation.
  • This increases the photosynthetic capacity of the leaf/leaf photosynthesis.
  • When the high light and high-temperature conditions are dominant, C4 plants prove more photosynthetically efficient than C3 plants as they produce more sugar molecules in such conditions.
  • Examples of C4 plants: Many crop plants like wheat, maize, rice, sorghum, millet, and sugarcane.
  • Number of ATPs required: 12 (for C-enrichment) + 18 (for C-fixation)= 30 ATPS for 1 glucose production
  • Number of NADPH required: 18 NADPH for 1 glucose production
  • Some plants resort to another mechanism called the CAM cycle in conjunction with the C3 cycle to fix carbon dioxide.
  • Examples: xerophytes like cactus photosynthesis, and most succulents.
  • Around 16,000 species of plants utilize the CAM mechanism
  • Mechanism: Utilize PEP carboxylase to capture carbon dioxide. In contrast to the C4 cycle where there is a “spatial separation of the 2 processes of CO 2 reduction to PEP and PEP fixation to glucose”, CAM plants display a “temporal separation of the 2 listed processes”.

Land plants display different types of photosynthesis based on their requirements and environmental constraints. They are C3, C4 +C3, and CAM+ C3 types of photosynthesis.

Aquatic plants and algae display some extra features in the photosynthetic machinery. These features further refine and define the smooth functioning and efficiency of photosynthesis.

Example: Cyanobacteria photosynthesis – cyanobacteria have carboxysomes  that help in enriching the concentration of carbon dioxide around the RuBisCO enzyme. This directly increases the photosynthetic rates. The distinguished and specially enabled enzyme in the carboxysomes is called “carbonic anhydrase”. The carbonic anhydrase possesses the ability to evolve and release CO 2 from the dissolved hydrocarbonate ions (HCO-). As soon as the CO 2 is released, RuBisCo takes care that it doesn’t go to waste.

Order and Kinetics

There are innumerable reactions and processes involved in the biological mechanism of photosynthesis. Besides the normal flow of photosynthesis, there are some plant-specific and condition-specific additional steps that further complicate the mechanism.

Since every biological mechanism has a lot of enzymes, factors, cofactors, substrates, and entities involved, photosynthesis is no different.

Let’s try to list some kinetics-specific pointers that may help.

As discussed in the overview and starting of this article, the early photosynthetic organisms must have been primarily “anoxygenic” in nature. These bacteria used some other source than water molecules as their primary electron donors. Even the geological evidence aligns with this fact as the early atmosphere of Earth was highly reducing in nature. Some speculated organisms of the early evolutionary phase are :

  • Green sulfur bacteria (Electron donor= hydrogen and sulfur)
  • Purple sulfur bacteria (Electron donor= hydrogen and sulfur)
  • Green nonsulfur bacteria (Electron donor= various amino and other organic acids)
  • Purple nonsulfur bacteria (Electron donor= variety of nonspecific organic molecules)

After this, some filamentous photosynthetic organisms are expected to have evolved. This is scaled to be an occurrence of some 3.4 billion years old timeline. It is around 2 million years ago that oxygenic photosynthesis is believed to have evolved.

The modern and more commonly known photosynthesis in plants and most of the photosynthetic prokaryotes= Oxygenic (Electron donor= Water molecules)

Symbiosis and the origin of chloroplasts

There are some animal groups that have the ability to form and establish symbiotic relationships with photosynthetic organisms. By establishing such a relationship, these organisms can directly rely upon their photosynthetic partner for energy and food requirements. Some examples of such animal groups are:

  • Sea anemones
  • Marine mollusks (example: Elysia viridis & Elysia chlorotica )
  • Fungi photosynthesis (Lichens)

When such symbiotic relationships are established, it’s sometimes observed that some genes of the plant cell’s nucleus get transferred to the animal cell . (Observed in some slugs).

Origin of Chloroplasts

Such symbiosis is popularly claimed to be the source of chloroplast evolution. As we notice many similarities between the photosynthetic bacteria and chloroplasts, the evolution of chloroplasts is often hinted to have occurred from these bacteria. Some of the common features between the 2 are:

  • Circular chromosome
  • Prokaryotic-type ribosome
  • A similar set of proteins in the photosynthetic reaction center

It is for all these commonalities the “ endosymbiotic theory ” had been proposed for the evolution of chloroplasts and mitochondria in the eukaryotic cells. According to the endosymbiotic theory, the early eukaryotic cells are believed to have acquired the photosynthetic bacteria by the process of endocytosis). Those early eukaryotic cells after acquiring the photosynthetic bacteria transformed to be self-sustainable and became the “first plant cells”. (Mitochondria photosynthesis is true, they are associated with respiration!)

Photosynthetic eukaryotic lineages

Photosynthetic eukaryotic lineages include:

  • Glaucophytes
  • Chlorophytes
  • Rhodophytes
  • Cryptophytes (some clades)
  • Haptophytes (some clades)
  • Dinoflagellates & chromerids
  • Euglenids—clade Excavata (unicellular)

Cyanobacteria and the evolution of photosynthesis

Almost all the prokaryotes carry out anoxygenic photosynthesis in contrast to cyanobacteria, which perform oxygenic photosynthesis. This ability to carry out oxygenic photosynthesis is speculated to have evolved at least 2450–2320 million years ago. The first photosynthetic cyanobacteria might not have been oxygenic as Earth’s atmosphere had no oxygen then.

This topic still requires more scientific study to bring out conclusive results. From the paleontological evidence, it is claimed that the 1st cyanobacteria evolved around 2000 Ma.

For the initial years of the Earth’s oxygen-rich environment (after the oxygen-evolving mechanism evolved), cyanobacteria are claimed to be the “principal primary producers of oxygen”. Even to date, cyanobacteria have been proven vital for marine ecosystems. They’re the primary producers of oxygen in oceans.

Cyanobacteria also fix nitrogen electrons fixation and play a role in biological nitrogen cycles.

Experimental History

We will list the long experimental history in deciphering the extensive photosynthesis process through the ages.

Discovery, Refinements, and Development of the concept

Find out the discovery, refinements, and development of photosynthesis as summarized in the table below:

Experimental History – Photosynthesis
No.ScientistContribution
1Stephen HalesRole of air and light in building a plant body.
2Joseph PriestleyRole of air in the growth of green plants.
3Jan IngenhouszRole of sunlight in the plant’s functioning of releasing oxygen.
4Jene SenebierThe fact that plants utilize CO .
5N.T. de SaussureThe volume of CO consumed by plants=Volume of O liberated by plants.
6Pelletier and CaventouCoined the term “chlorophyll”.
7F.F. BlackmanPhotosynthesis= 2-step process (Light and Dark Reaction Concept), Gave the “Law of limiting factors”.
8WarburgFlashing experiments in Chlorella.
9Emerson and ArnoldDetermined that the 1st stage of photochemical/light reactions has 2 distinct photochemical processes. (led to the elucidation of 2 different pigment systems)
10Robert HillProved that oxygen evolution doesn’t require the presence of CO2. The presence of sunlight, water, and a suitable hydrogen acceptor is enough chloroplasts to release oxygen. The light reaction (1st stage) is often called Hill’s reaction in his memory and honor.
11Van NielProved that the source of oxygen is H O and not CO2. Also proved that the hydrogen released from oxidizable compounds reduced carbon dioxide
to carbohydrates.
12Ruben, Hassid, KamenProved that the source of oxygen is H O (by doing radioactive studies).
13Julius von SachsPhotosynthesis site in plants= Green parts where chlorophyll is present.
14T.W. EngelmannDescribed the importance of the red and blue wavelengths of light. Also described the 1st action spectrum of photosynthesis
15Melvin CalvinDescribed the reactions that convert the CO into sugars. C3 or Calvin cycle is named in his honor.
16M.D. Hatch and C.R. SlackDescribed the C4 cycle and hence the C4 cycle is also called Hatch and Slack cycle.
17Hill and BendallProposed scheme of light reaction.
18Huber et al.Studied 3-D structure of reaction center.
19Charles Reid BarnesCoined the terms: Photosyntax and photosynthesis.

C3 : C4 photosynthesis research

Several studies were conducted using isotopes of radioactive elements to identify the various aspects of the photosynthetic process. A number of organisms like Chlorella , Stellaria media, Cladophora, Spirogyra, Rhodopseudomonas , sulfur bacteria, green plants like maize, etc have been used to understand the photosynthesis process over the years. Gas exchange studies, isotopic studies, light spectrum studies, radioactive studies, plant anatomical and physiological studies, studies involving roles of carbon dioxide and water, etc have all together opened the gates for our deeper understanding of this topic.

The 3 main factors that directly affect the photosynthesis process are:

  • Light irradiance and wavelength
  • Carbon dioxide concentration

Temperature

Although there are many more corollary factors, these 3 are the most important ones.

Light intensity (irradiance), wavelength, and temperature

Light is an essential factor for photosynthesis. It directly affects the rate of it. There are 3 different parameters that we should look into:

  • Sciophytes : Grow under “diffuse” light. Example: Oxalis
  • Heliophytes: Grow under “direct: light. Example: Dalbergia
  • Light quality: PAR as previously discussed is the quality or the fraction of light energy that is ‘photosynthetically active’ in nature. It ranges from 400-700nm in wavelength.
  • Duration of light: This parameter doesn’t affect the rate of photosynthesis but affects the total photosynthetic output.

Carbon dioxide levels and photorespiration

Carbon dioxide concentration is the major factor in determining the rate of photosynthesis. There is no carbon-dioxide enriching system in C3 plants like the C4 plants. So, if you increase the concentration of CO 2 in the system, the photosynthetic rate of C3 plants will increase as the CO 2 concentration increases. On the other hand, the photosynthetic yield of the C4 plant won’t increase in such a scenario.

  • CO 2 Compensation Point: A stage in CO 2 concentration when there’s no absorption of CO 2 by the illuminated plant part.

Featuring… “The curious case of RuBisCO and PEP Carboxylase”

Imagine an equal concentration (50-50%) of the two isotopes of carbon, C-12 and C-13, in the form of 12CO 2 and 13CO 2 , made available to both C3 and C4 plants. Now, can you tell which isotope of the carbon will be fixed more or less by the two types of photosynthetic organisms? Can you guess if there would be a “preferable” isotope between the two? Do you think C3 plants will fix the 12CO 2 and 13CO 2 equally or unequally? Or do you think the 12CO 2 and 13CO 2 incorporation would have a biased ratio in any of the two (C3/C4 plants)????

The answer to this lies in the major carbon fixing enzyme involved.

  • C3 plants: Major C-fixing enzyme is RuBisCo and RuBisCo has a “discriminatory ability” to preferably fix 12CO 2 and not 13CO2. Hence, you will find more 12CO 2 fixed than 13CO 2 in the C3 plants.
  • C4 plants: Major C-fixing enzyme is not RuBisCo but PEP Carboxylase . PEP Carboxylase has “no discriminatory ability”. So, you’ll find an almost equal proportion of 12CO 2 and 13CO 2 getting fixed in C4 plants. So, in comparison to C3 plants, the chances of getting 13CO 2 fixed are more in C4 plants.

Choose the best answer. 

Send Your Results (Optional)

  • Rutherford, A.W., Faller, P. (Jan 2003). “Photosystem II: evolutionary perspectives”. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences. 358 (1429): 245–253. doi:10.1098/rstb.2002.1186. PMC 1693113. PMID 12594932.
  • Arnon, D.I., Whatley, F.R., Allen, M.B. (1954). “Photosynthesis by isolated chloroplasts. II. Photophosphorylation, the conversion of light into phosphate bond energy”. Journal of the American Chemical Society. 76 (24): 6324–6329. doi:10.1021/ja01653a025.
  • Ehrenberg, R. (2017-12-15). “The photosynthesis fix”. Knowable Magazine. Annual Reviews. doi:10.1146/knowable-121917-115502. Retrieved 2018-04-03.
  • El-Sharkawy, M.A., Hesketh, J.D. (1965). “Photosynthesis among species in relation to characteristics of leaf anatomy and CO 2 diffusion resistances”. Crop Sci. 5 (6): 517–521. doi:10.2135/cropsci1965.0011183x000500060010x.
  • Earl, H., Said Ennahli, S. (2004). “Estimating photosynthetic electron transport via chlorophyll fluorometry without Photosystem II light saturation”. Photosynthesis Research. 82 (2): 177–186. doi:10.1007/s11120-004-1454-3. PMID 16151873. S2CID 291238.

©BiologyOnline.com. Content provided and moderated by Biology Online Editors.

Last updated on July 15th, 2022

You will also like...

Photosynthesis – photolysis and carbon fixation, plant metabolism, lights’ effect on growth, freshwater communities & lentic waters, plant water regulation, related articles....

Macrophytes

Unusual Plants

Words and phrases

Personal account.

  • Access or purchase personal subscriptions
  • Get our newsletter
  • Save searches
  • Set display preferences

Institutional access

Sign in with library card

Sign in with username / password

Recommend to your librarian

Institutional account management

Sign in as administrator on Oxford Academic

photosynthesis noun

  • Hide all quotations

What does the noun photosynthesis mean?

There are two meanings listed in OED's entry for the noun photosynthesis . See ‘Meaning & use’ for definitions, usage, and quotation evidence.

photosynthesis has developed meanings and uses in subjects including

How common is the noun photosynthesis ?

How is the noun photosynthesis pronounced?

British english, u.s. english, where does the noun photosynthesis come from.

Earliest known use

The earliest known use of the noun photosynthesis is in the 1890s.

OED's earliest evidence for photosynthesis is from 1893, in the writing of C. R. Barnes.

photosynthesis is formed within English, by compounding.

Etymons: photo- comb. form , synthesis n.

Nearby entries

  • photostimulating, adj. & n. 1967–
  • photostimulation, n. 1914–
  • photostimulator, n. 1961–
  • photostimulatory, adj. 1975–
  • photo-story, n. 1913–
  • photosurface, n. 1864–
  • photo-survey, n. 1891–
  • photo-surveying, n. 1902–
  • photosyntax, n. 1893–
  • photosynthate, n. 1906–
  • photosynthesis, n. 1893–
  • photosynthesize, v. 1908–
  • photosynthesizer, n. 1957–
  • photosynthetic, adj. 1897–
  • photosynthetic quotient, n. 1926–
  • photosynthetic ratio, n. 1931–
  • photosystem, n. 1914–
  • phototachometer, n. 1884–
  • phototachometric, adj. 1895–
  • phototachometrical, adj. 1890–
  • phototachometry, n. 1890–

Thank you for visiting Oxford English Dictionary

To continue reading, please sign in below or purchase a subscription. After purchasing, please sign in below to access the content.

Meaning & use

Pronunciation, compounds & derived words, entry history for photosynthesis, n..

photosynthesis, n. was revised in March 2006.

photosynthesis, n. was last modified in July 2023.

oed.com is a living text, updated every three months. Modifications may include:

  • further revisions to definitions, pronunciation, etymology, headwords, variant spellings, quotations, and dates;
  • new senses, phrases, and quotations.

Revisions and additions of this kind were last incorporated into photosynthesis, n. in July 2023.

Earlier versions of this entry were published in:

A Supplement to the New English Dictionary (1933)

  • Find out more

OED Second Edition (1989)

  • View photosynthesis in OED Second Edition

Please submit your feedback for photosynthesis, n.

Please include your email address if you are happy to be contacted about your feedback. OUP will not use this email address for any other purpose.

Citation details

Factsheet for photosynthesis, n., browse entry.

  • COVID-19 Tracker
  • Biochemistry
  • Anatomy & Physiology
  • Microbiology
  • Neuroscience
  • Animal Kingdom
  • NGSS High School
  • Latest News
  • Editors’ Picks
  • Weekly Digest
  • Quotes about Biology

Biology Dictionary

Photosynthesis

BD Editors

Reviewed by: BD Editors

Photosynthesis Definition

Photosynthesis is the biochemical pathway which converts the energy of light into the bonds of glucose molecules. The process of photosynthesis occurs in two steps. In the first step, energy from light is stored in the bonds of adenosine triphosphate (ATP), and nicotinamide adenine dinucleotide phosphate (NADPH). These two energy-storing cofactors are then used in the second step of photosynthesis to produce organic molecules by combining carbon molecules derived from carbon dioxide (CO 2 ). The second step of photosynthesis is known as the Calvin Cycle. These organic molecules can then be used by mitochondria to produce ATP, or they can be combined to form glucose, sucrose, and other carbohydrates. The chemical equation for the entire process can be seen below.

Photosynthesis Equation

Above is the overall reaction for photosynthesis. Using the energy from light and the hydrogens and electrons from water, the plant combines the carbons found in carbon dioxide into more complex molecules. While a 3-carbon molecule is the direct result of photosynthesis, glucose is simply two of these molecules combined and is often represented as the direct result of photosynthesis due to glucose being a foundational molecule in many cellular systems. You will also notice that 6 gaseous oxygen molecules are produced, as a by-produce. The plant can use this oxygen in its mitochondria during oxidative phosphorylation . While some of the oxygen is used for this purpose, a large portion is expelled into the atmosphere and allows us to breathe and undergo our own oxidative phosphorylation, on sugar molecules derived from plants. You will also notice that this equation shows water on both sides. That is because 12 water molecules are split during the light reactions, while 6 new molecules are produced during and after the Calvin cycle. While this is the general equation for the entire process, there are many individual reactions which contribute to this pathway.

Stages of Photosynthesis

The light reactions.

The light reactions happen in the thylakoid membranes of the chloroplasts of plant cells. The thylakoids have densely packed protein and enzyme clusters known as photosystems . There are two of these systems, which work in conjunction with each other to remove electrons and hydrogens from water and transfer them to the cofactors ADP and NADP + . These photosystems were named in the order of which they were discovered, which is opposite of how electrons flow through them. As seen in the image below, electrons excited by light energy flow first through photosystem II (PSII), and then through photosystem I (PSI) as they create NADPH. ATP is created by the protein ATP synthase , which uses the build-up of hydrogen atoms to drive the addition of phosphate groups to ADP.

Thylakoid membrane

The entire system works as follows. A photosystem is comprised of various proteins that surround and connect a series of pigment molecules . Pigments are molecules that absorb various photons, allowing their electrons to become excited. Chlorophyll a is the main pigment used in these systems, and collects the final energy transfer before releasing an electron. Photosystem II starts this process of electrons by using the light energy to split a water molecule, which releases the hydrogen while siphoning off the electrons. The electrons are then passed through plastoquinone, an enzyme complex that releases more hydrogens into the thylakoid space . The electrons then flow through a cytochrome complex and plastocyanin to reach photosystem I. These three complexes form an electron transport chain , much like the one seen in mitochondria. Photosystem I then uses these electrons to drive the reduction of NADP + to NADPH. The additional ATP made during the light reactions comes from ATP synthase, which uses the large gradient of hydrogen molecules to drive the formation of ATP.

The Calvin Cycle

With its electron carriers NADPH and ATP all loaded up with electrons, the plant is now ready to create storable energy. This happens during the Calvin Cycle , which is very similar to the citric acid cycle seen in mitochondria. However, the citric acid cycle creates ATP other electron carriers from 3-carbon molecules, while the Calvin cycle produces these products with the use of NADPH and ATP. The cycle has 3 phases, as seen in the graphic below.

Calvin cycle

During the first phase, a carbon is added to a 5-carbon sugar, creating an unstable 6-carbon sugar. In phase two, this sugar is reduced into two stable 3-carbon sugar molecules. Some of these molecules can be used in other metabolic pathways, and are exported. The rest remain to continue cycling through the Calvin cycle. During the third phase, the five-carbon sugar is regenerated to start the process over again. The Calvin cycle occurs in the stroma of a chloroplast. While not considered part of the Calvin cycle, these products can be used to create a variety of sugars and structural molecules.

Products of Photosynthesis

The direct products of the light reactions and the Calvin cycle are 3-phosphoglycerate and G3P, two different forms of a 3-carbon sugar molecule. Two of these molecules combined equals one glucose molecule, the product seen in the photosynthesis equation. While this is the main food source for plants and animals, these 3-carbon skeletons can be combined into many different forms. A structural form worth note is cellulose , and extremely strong fibrous material made essentially of strings of glucose. Besides sugars and sugar-based molecules, oxygen is the other main product of photosynthesis. Oxygen created from photosynthesis fuels every respiring organism on the planet.

Lodish, H., Berk, A., Kaiser, C. A., Krieger, M., Scott, M. P., Bretscher, A., . . . Matsudaira, P. (2008). Molecular Cell Biology 6th. ed . New York: W.H. Freeman and Company. Nelson, D. L., & Cox, M. M. (2008). Principles of Biochemistry . New York: W.H. Freeman and Company.

Cite This Article

Subscribe to our newsletter, privacy policy, terms of service, scholarship, latest posts, white blood cell, t cell immunity, satellite cells, embryonic stem cells, popular topics, endocrine system, water cycle, cellular respiration, adenosine triphosphate (atp), hydrochloric acid.

ENCYCLOPEDIC ENTRY

Photosynthesis.

Photosynthesis is the process by which plants use sunlight, water, and carbon dioxide to create oxygen and energy in the form of sugar.

Loading ...

Learning materials, instructional links.

  • Photosynthesis (Google doc)

Most life on Earth depends on photosynthesis .The process is carried out by plants, algae, and some types of bacteria, which capture energy from sunlight to produce oxygen (O 2 ) and chemical energy stored in glucose (a sugar). Herbivores then obtain this energy by eating plants, and carnivores obtain it by eating herbivores.

The process

During photosynthesis, plants take in carbon dioxide (CO 2 ) and water (H 2 O) from the air and soil. Within the plant cell, the water is oxidized, meaning it loses electrons, while the carbon dioxide is reduced, meaning it gains electrons. This transforms the water into oxygen and the carbon dioxide into glucose. The plant then releases the oxygen back into the air, and stores energy within the glucose molecules.

Chlorophyll

Inside the plant cell are small organelles called chloroplasts , which store the energy of sunlight. Within the thylakoid membranes of the chloroplast is a light-absorbing pigment called chlorophyll , which is responsible for giving the plant its green color. During photosynthesis , chlorophyll absorbs energy from blue- and red-light waves, and reflects green-light waves, making the plant appear green.

Light-dependent Reactions vs. Light-independent Reactions

While there are many steps behind the process of photosynthesis, it can be broken down into two major stages: light-dependent reactions and light-independent reactions. The light-dependent reaction takes place within the thylakoid membrane and requires a steady stream of sunlight, hence the name light- dependent reaction. The chlorophyll absorbs energy from the light waves, which is converted into chemical energy in the form of the molecules ATP and NADPH . The light-independent stage, also known as the Calvin cycle , takes place in the stroma , the space between the thylakoid membranes and the chloroplast membranes, and does not require light, hence the name light- independent reaction. During this stage, energy from the ATP and NADPH molecules is used to assemble carbohydrate molecules, like glucose, from carbon dioxide.

C3 and C4 Photosynthesis

Not all forms of photosynthesis are created equal, however. There are different types of photosynthesis, including C3 photosynthesis and C4 photosynthesis. C3 photosynthesis is used by the majority of plants. It involves producing a three-carbon compound called 3-phosphoglyceric acid during the Calvin Cycle, which goes on to become glucose. C4 photosynthesis, on the other hand, produces a four-carbon intermediate compound, which splits into carbon dioxide and a three-carbon compound during the Calvin Cycle. A benefit of C4 photosynthesis is that by producing higher levels of carbon, it allows plants to thrive in environments without much light or water. The National Geographic Society is making this content available under a Creative Commons CC-BY-NC-SA license . The License excludes the National Geographic Logo (meaning the words National Geographic + the Yellow Border Logo) and any images that are included as part of each content piece. For clarity the Logo and images may not be removed, altered, or changed in any way.

Media Credits

The audio, illustrations, photos, and videos are credited beneath the media asset, except for promotional images, which generally link to another page that contains the media credit. The Rights Holder for media is the person or group credited.

Production Managers

Program specialists, last updated.

June 21, 2024

User Permissions

For information on user permissions, please read our Terms of Service. If you have questions about how to cite anything on our website in your project or classroom presentation, please contact your teacher. They will best know the preferred format. When you reach out to them, you will need the page title, URL, and the date you accessed the resource.

If a media asset is downloadable, a download button appears in the corner of the media viewer. If no button appears, you cannot download or save the media.

Text on this page is printable and can be used according to our Terms of Service .

Interactives

Any interactives on this page can only be played while you are visiting our website. You cannot download interactives.

Related Resources

Encyclopedia Britannica

  • History & Society
  • Science & Tech
  • Biographies
  • Animals & Nature
  • Geography & Travel
  • Arts & Culture
  • Games & Quizzes
  • On This Day
  • One Good Fact
  • New Articles
  • Lifestyles & Social Issues
  • Philosophy & Religion
  • Politics, Law & Government
  • World History
  • Health & Medicine
  • Browse Biographies
  • Birds, Reptiles & Other Vertebrates
  • Bugs, Mollusks & Other Invertebrates
  • Environment
  • Fossils & Geologic Time
  • Entertainment & Pop Culture
  • Sports & Recreation
  • Visual Arts
  • Demystified
  • Image Galleries
  • Infographics
  • Top Questions
  • Britannica Kids
  • Saving Earth
  • Space Next 50
  • Student Center
  • Introduction & Top Questions

Development of the idea

Overall reaction of photosynthesis.

  • Basic products of photosynthesis
  • Evolution of the process
  • Light intensity and temperature
  • Carbon dioxide
  • Internal factors
  • Energy efficiency of photosynthesis
  • Structural features
  • Light absorption and energy transfer
  • The pathway of electrons
  • Evidence of two light reactions
  • Photosystems I and II
  • Quantum requirements
  • The process of photosynthesis: the conversion of light energy to ATP
  • Elucidation of the carbon pathway
  • Carboxylation
  • Isomerization/condensation/dismutation
  • Phosphorylation
  • Regulation of the cycle
  • Products of carbon reduction
  • Photorespiration
  • Carbon fixation in C 4 plants
  • Carbon fixation via crassulacean acid metabolism (CAM)
  • Differences in carbon fixation pathways
  • The molecular biology of photosynthesis

Photosynthesis

Why is photosynthesis important?

What is the basic formula for photosynthesis, which organisms can photosynthesize.

Sunlight shining on leaves. Photosynthesis

photosynthesis

Our editors will review what you’ve submitted and determine whether to revise the article.

  • Khan Academy - Photosynthesis
  • Biology LibreTexts - Photosynthesis
  • University of Florida - Institute of Food and Agricultural Sciences - Photosynthesis
  • Milne Library - Inanimate Life - Photosynthesis
  • National Center for Biotechnology Information - Chloroplasts and Photosynthesis
  • Roger Williams University Pressbooks - Introduction to Molecular and Cell Biology - Photosynthesis
  • BCcampus Open Publishing - Concepts of Biology – 1st Canadian Edition - Overview of Photosynthesis
  • photosynthesis - Children's Encyclopedia (Ages 8-11)
  • photosynthesis - Student Encyclopedia (Ages 11 and up)
  • Table Of Contents

Photosynthesis

Photosynthesis is critical for the existence of the vast majority of life on Earth. It is the way in which virtually all energy in the biosphere becomes available to living things. As primary producers, photosynthetic organisms form the base of Earth’s food webs and are consumed directly or indirectly by all higher life-forms. Additionally, almost all the oxygen in the atmosphere is due to the process of photosynthesis. If photosynthesis ceased, there would soon be little food or other organic matter on Earth, most organisms would disappear, and Earth’s atmosphere would eventually become nearly devoid of gaseous oxygen.

The process of photosynthesis is commonly written as: 6CO 2 + 6H 2 O → C 6 H 12 O 6 + 6O 2 . This means that the reactants, six carbon dioxide molecules and six water molecules, are converted by light energy captured by chlorophyll (implied by the arrow) into a sugar molecule and six oxygen molecules, the products. The sugar is used by the organism, and the oxygen is released as a by-product.

The ability to photosynthesize is found in both eukaryotic and prokaryotic organisms. The most well-known examples are plants, as all but a very few parasitic or mycoheterotrophic species contain chlorophyll and produce their own food. Algae are the other dominant group of eukaryotic photosynthetic organisms. All algae, which include massive kelps and microscopic diatoms , are important primary producers.  Cyanobacteria and certain sulfur bacteria are photosynthetic prokaryotes, in whom photosynthesis evolved. No animals are thought to be independently capable of photosynthesis, though the emerald green sea slug can temporarily incorporate algae chloroplasts in its body for food production.

Recent News

photosynthesis , the process by which green plants and certain other organisms transform light energy into chemical energy . During photosynthesis in green plants, light energy is captured and used to convert water , carbon dioxide , and minerals into oxygen and energy-rich organic compounds .

It would be impossible to overestimate the importance of photosynthesis in the maintenance of life on Earth . If photosynthesis ceased, there would soon be little food or other organic matter on Earth. Most organisms would disappear, and in time Earth’s atmosphere would become nearly devoid of gaseous oxygen. The only organisms able to exist under such conditions would be the chemosynthetic bacteria , which can utilize the chemical energy of certain inorganic compounds and thus are not dependent on the conversion of light energy.

How are plant cells different from animal cells?

Energy produced by photosynthesis carried out by plants millions of years ago is responsible for the fossil fuels (i.e., coal , oil , and gas ) that power industrial society . In past ages, green plants and small organisms that fed on plants increased faster than they were consumed, and their remains were deposited in Earth’s crust by sedimentation and other geological processes. There, protected from oxidation , these organic remains were slowly converted to fossil fuels. These fuels not only provide much of the energy used in factories, homes, and transportation but also serve as the raw material for plastics and other synthetic products. Unfortunately, modern civilization is using up in a few centuries the excess of photosynthetic production accumulated over millions of years. Consequently, the carbon dioxide that has been removed from the air to make carbohydrates in photosynthesis over millions of years is being returned at an incredibly rapid rate. The carbon dioxide concentration in Earth’s atmosphere is rising the fastest it ever has in Earth’s history, and this phenomenon is expected to have major implications on Earth’s climate .

Requirements for food, materials, and energy in a world where human population is rapidly growing have created a need to increase both the amount of photosynthesis and the efficiency of converting photosynthetic output into products useful to people. One response to those needs—the so-called Green Revolution , begun in the mid-20th century—achieved enormous improvements in agricultural yield through the use of chemical fertilizers , pest and plant- disease control, plant breeding , and mechanized tilling, harvesting, and crop processing. This effort limited severe famines to a few areas of the world despite rapid population growth , but it did not eliminate widespread malnutrition . Moreover, beginning in the early 1990s, the rate at which yields of major crops increased began to decline. This was especially true for rice in Asia. Rising costs associated with sustaining high rates of agricultural production, which required ever-increasing inputs of fertilizers and pesticides and constant development of new plant varieties, also became problematic for farmers in many countries.

Photosynthesis diagram showing how water, light, and carbon dioxide are absorbed by a plant and that oxygen and sugars are produced. Also show a person to illustrate the oxygen/carbon dioxide cycle between plants and animals.

A second agricultural revolution , based on plant genetic engineering , was forecast to lead to increases in plant productivity and thereby partially alleviate malnutrition. Since the 1970s, molecular biologists have possessed the means to alter a plant’s genetic material (deoxyribonucleic acid, or DNA ) with the aim of achieving improvements in disease and drought resistance, product yield and quality, frost hardiness, and other desirable properties. However, such traits are inherently complex, and the process of making changes to crop plants through genetic engineering has turned out to be more complicated than anticipated. In the future such genetic engineering may result in improvements in the process of photosynthesis, but by the first decades of the 21st century, it had yet to demonstrate that it could dramatically increase crop yields.

Another intriguing area in the study of photosynthesis has been the discovery that certain animals are able to convert light energy into chemical energy. The emerald green sea slug ( Elysia chlorotica ), for example, acquires genes and chloroplasts from Vaucheria litorea , an alga it consumes, giving it a limited ability to produce chlorophyll . When enough chloroplasts are assimilated , the slug may forgo the ingestion of food. The pea aphid ( Acyrthosiphon pisum ) can harness light to manufacture the energy-rich compound adenosine triphosphate (ATP); this ability has been linked to the aphid’s manufacture of carotenoid pigments.

General characteristics

what is the etymological meaning of photosynthesis

The study of photosynthesis began in 1771 with observations made by the English clergyman and scientist Joseph Priestley . Priestley had burned a candle in a closed container until the air within the container could no longer support combustion . He then placed a sprig of mint plant in the container and discovered that after several days the mint had produced some substance (later recognized as oxygen) that enabled the confined air to again support combustion. In 1779 the Dutch physician Jan Ingenhousz expanded upon Priestley’s work, showing that the plant had to be exposed to light if the combustible substance (i.e., oxygen) was to be restored. He also demonstrated that this process required the presence of the green tissues of the plant.

In 1782 it was demonstrated that the combustion-supporting gas (oxygen) was formed at the expense of another gas, or “fixed air,” which had been identified the year before as carbon dioxide. Gas-exchange experiments in 1804 showed that the gain in weight of a plant grown in a carefully weighed pot resulted from the uptake of carbon, which came entirely from absorbed carbon dioxide, and water taken up by plant roots; the balance is oxygen, released back to the atmosphere. Almost half a century passed before the concept of chemical energy had developed sufficiently to permit the discovery (in 1845) that light energy from the sun is stored as chemical energy in products formed during photosynthesis.

Chemical equation.

This equation is merely a summary statement, for the process of photosynthesis actually involves numerous reactions catalyzed by enzymes (organic catalysts ). These reactions occur in two stages: the “light” stage, consisting of photochemical (i.e., light-capturing) reactions; and the “dark” stage, comprising chemical reactions controlled by enzymes . During the first stage, the energy of light is absorbed and used to drive a series of electron transfers, resulting in the synthesis of ATP and the electron-donor-reduced nicotine adenine dinucleotide phosphate (NADPH). During the dark stage, the ATP and NADPH formed in the light-capturing reactions are used to reduce carbon dioxide to organic carbon compounds. This assimilation of inorganic carbon into organic compounds is called carbon fixation.

Chemical equation.

Van Niel’s proposal was important because the popular (but incorrect) theory had been that oxygen was removed from carbon dioxide (rather than hydrogen from water, releasing oxygen) and that carbon then combined with water to form carbohydrate (rather than the hydrogen from water combining with CO 2 to form CH 2 O).

By 1940 chemists were using heavy isotopes to follow the reactions of photosynthesis. Water marked with an isotope of oxygen ( 18 O) was used in early experiments. Plants that photosynthesized in the presence of water containing H 2 18 O produced oxygen gas containing 18 O; those that photosynthesized in the presence of normal water produced normal oxygen gas. These results provided definitive support for van Niel’s theory that the oxygen gas produced during photosynthesis is derived from water.

  • Daily Crossword
  • Word Puzzle
  • Word Finder
  • Word of the Day
  • Synonym of the Day
  • Word of the Year
  • Language stories
  • All featured
  • Gender and sexuality
  • All pop culture
  • Writing hub
  • Grammar essentials
  • Commonly confused
  • All writing tips
  • Pop culture
  • Writing tips

Advertisement

photosynthesis

[ foh-t uh - sin -th uh -sis ]

  • the complex process by which carbon dioxide, water, and certain inorganic salts are converted into carbohydrates by green plants, algae, and certain bacteria, using energy from the sun and chlorophyll .

/ ˌfəʊtəʊsɪnˈθɛtɪk; ˌfəʊtəʊˈsɪnθɪsɪs /

  • (in plants) the synthesis of organic compounds from carbon dioxide and water (with the release of oxygen) using light energy absorbed by chlorophyll
  • the corresponding process in certain bacteria

/ fō′tō-sĭn ′ thĭ-sĭs /

  • The process by which green plants, algae, diatoms, and certain forms of bacteria make carbohydrates from carbon dioxide and water in the presence of chlorophyll, using energy captured from sunlight by chlorophyll, and releasing excess oxygen as a byproduct. In plants and algae, photosynthesis takes place in organelles called chloroplasts . Photosynthesis is usually viewed as a two-step process. First, in the light reactions , the energy-providing molecule ATP is synthesized using light energy absorbed by chlorophyll and accessory pigments such as carotenoids and phycobilins, and water is broken apart into oxygen and a hydrogen ion, with the electron of the hydrogen transferred to another energy molecule, NADPH. The ATP and NADPH molecules power the second part of photosynthesis by the transfer of electrons. In these light-independent or dark reactions , carbon is broken away from carbon dioxide and combined with hydrogen via the Calvin cycle to create carbohydrates. Some of the carbohydrates, the sugars, can then be transported around the organism for immediate use; others, the starches, can be stored for later use.
  • Compare chemosynthesis See Note at transpiration
  • Use by green plants of the energy in sunlight to carry out chemical reactions , such as the conversion of carbon dioxide into oxygen . Photosynthesis also produces the sugars that feed the plant.

Derived Forms

  • ˌphotosynˈthetically , adverb
  • photosynthetic , adjective

Other Words From

  • pho·to·syn·thet·ic [ foh-t, uh, -sin-, thet, -ik ] , adjective
  • photo·syn·theti·cal·ly adverb
  • non·photo·syn·thetic adjective

Word History and Origins

Origin of photosynthesis 1

A Closer Look

Compare meanings.

How does photosynthesis compare to similar and commonly confused words? Explore the most common comparisons:

  • chemosynthesis vs. photosynthesis
  • photosynthesis vs. cellular respiration
  • photorespiration vs. photosynthesis

Example Sentences

Specifically, he was interested in the protein-based "reaction centers" in spinach leaves that are the basic mechanism for photosynthesis—the chemical process by which plants convert carbon dioxide into oxygen and carbohydrates.

Algae and plants use photosynthesis to turn sunlight into food.

According to the Washington Post, this happens because as the days shorten and turn frigid, it’s not worth it for some trees to expend energy to conduct photosynthesis.

In a steady state, most of the energy captured by photosynthesis is used up by the furnace of respiration and metabolism burning on Earth’s surface by its infrared layer of life.

There’s no sunlight beneath half a mile of ice, so of course there’s no photosynthesis.

Nevertheless, it was required, and at least it was more fun than studying algebra or photosynthesis.

Re-solarizing the food chain should be our goal in every way—taking advantage of the everyday miracle that is photosynthesis.

As the microbes moved toward the light to carry out photosynthesis, they projected the image of the stencil.

Timiriazeff, in his Croonian Lecture, was the first to see the connexion between photosynthesis and the Lagado research.

On the other hand, their ancestors, the green or yellow mastigota, form new plasm by photosynthesis like true cells.

There the miracle of life consists merely of the chemical process of plasmodomism by photosynthesis.

Like von Baeyer's hypothesis, this assumes that formaldehyde and oxygen are the first products of photosynthesis.

In general, starch is the final product of photosynthesis in most green plants; but there are many exceptions to this.

Cambridge Dictionary

  • Cambridge Dictionary +Plus

Meaning of photosynthesis in English

Your browser doesn't support HTML5 audio

  • chasmogamous
  • cleistogamous
  • efflorescence
  • in flower idiom
  • multi-headed
  • palynological

Related word

Photosynthesis | american dictionary, examples of photosynthesis, translations of photosynthesis.

Get a quick, free translation!

{{randomImageQuizHook.quizId}}

Word of the Day

skip out on something

to avoid doing something that you should do; to leave someone when they need your help

It’s not really my thing (How to say you don’t like something)

It’s not really my thing (How to say you don’t like something)

what is the etymological meaning of photosynthesis

Learn more with +Plus

  • Recent and Recommended {{#preferredDictionaries}} {{name}} {{/preferredDictionaries}}
  • Definitions Clear explanations of natural written and spoken English English Learner’s Dictionary Essential British English Essential American English
  • Grammar and thesaurus Usage explanations of natural written and spoken English Grammar Thesaurus
  • Pronunciation British and American pronunciations with audio English Pronunciation
  • English–Chinese (Simplified) Chinese (Simplified)–English
  • English–Chinese (Traditional) Chinese (Traditional)–English
  • English–Dutch Dutch–English
  • English–French French–English
  • English–German German–English
  • English–Indonesian Indonesian–English
  • English–Italian Italian–English
  • English–Japanese Japanese–English
  • English–Norwegian Norwegian–English
  • English–Polish Polish–English
  • English–Portuguese Portuguese–English
  • English–Spanish Spanish–English
  • English–Swedish Swedish–English
  • Dictionary +Plus Word Lists
  • English    Noun
  • American    Noun
  • Translations
  • All translations

To add photosynthesis to a word list please sign up or log in.

Add photosynthesis to one of your lists below, or create a new one.

{{message}}

Something went wrong.

There was a problem sending your report.

  • Dictionaries home
  • American English
  • Collocations
  • German-English
  • Grammar home
  • Practical English Usage
  • Learn & Practise Grammar (Beta)
  • Word Lists home
  • My Word Lists
  • Recent additions
  • Resources home
  • Text Checker

Definition of photosynthesis noun from the Oxford Advanced Learner's Dictionary

photosynthesis

  • animals mate/​breed/​reproduce/​feed (on something)
  • fish/​amphibians swim/​spawn (= lay eggs)
  • birds fly/​migrate/​nest/​sing
  • insects crawl/​fly/​bite/​sting
  • insects/​bees/​locusts swarm
  • bees collect/​gather nectar/​pollen
  • spiders spin/​weave a web
  • snakes/​lizards shed their skins
  • bears/​hedgehogs/​frogs hibernate
  • insect larvae grow/​develop/​pupate
  • an egg/​a chick/​a larva hatches
  • attract/​find/​choose a mate
  • produce/​release eggs/​sperm
  • lay/​fertilize/​incubate/​hatch eggs
  • inhabit a forest/​a reef/​the coast
  • mark/​enter/​defend (a) territory
  • stalk/​hunt/​capture/​catch/​kill prey
  • trees/​plants grow/​bloom/​blossom/​flower
  • a seed germinates/​sprouts
  • leaves/​buds/​roots/​shoots appear/​develop/​form
  • flower buds swell/​open
  • a fungus grows/​spreads/​colonizes something
  • pollinate/​fertilize a flower/​plant
  • produce/​release/​spread/​disperse pollen/​seeds/​spores
  • produce/​bear fruit
  • develop/​grow/​form roots/​shoots/​leaves
  • provide/​supply/​absorb/​extract/​release nutrients
  • perform/​increase/​reduce photosynthesis
  • bacteria/​microbes/​viruses grow/​spread/​multiply
  • bacteria/​microbes live/​thrive in/​on something
  • bacteria/​microbes/​viruses evolve/​colonize something/​cause disease
  • bacteria break something down/​convert something (into something)
  • a virus enters/​invades something/​the body
  • a virus mutates/​evolves/​replicates (itself)
  • be infected with/​contaminated with/​exposed to a new strain of a virus/​drug-resistant bacteria
  • contain/​carry/​harbour bacteria/​a virus
  • kill/​destroy/​eliminate harmful/​deadly bacteria

Join our community to access the latest language learning and assessment tips from Oxford University Press!

Nearby words

History of the word photosynthesis and evolution of its definition

  • Published: July 2002
  • Volume 73 , pages 7–10, ( 2002 )

Cite this article

what is the etymological meaning of photosynthesis

  • Howard Gest 1  

1533 Accesses

34 Citations

3 Altmetric

Explore all metrics

In 1893, Charles Barnes (1858–1910) proposed that the biological process for ‘synthesis of complex carbon compounds out of carbonic acid, in the presence of chlorophyll, under the influence of light’ should be designated as either ‘photosyntax’ or ‘photosynthesis.’ He preferred the word ‘photosyntax,’ but ‘photosynthesis’ came into common usage as the term of choice. Later discovery of anoxygenic photosynthetic bacteria and photophosphorylation necessitated redefinition of the term. This essay examines the history of changes in the meaning of photosynthesis .

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save.

  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime

Price includes VAT (Russian Federation)

Instant access to the full article PDF.

Rent this article via DeepDyve

Institutional subscriptions

Similar content being viewed by others

what is the etymological meaning of photosynthesis

Photosynthesis in Nature: A New Look

what is the etymological meaning of photosynthesis

Photosynthesis

what is the etymological meaning of photosynthesis

The Evolution of Photosynthesis and Its Environmental Impact

Anonymous (1910) Charles Reid Barnes. Bot Gaz 49: 321-324

Barnes CR (1893) On the food of green plants. Bot Gaz 18: 403–411

Article   Google Scholar  

Barnes CR (1896) Photosyntax vs photosynthesis . Botanical papers at Buffalo. Bot Gaz 22: 248

Barnes CR (1898) So-called 'Assimilation'. Botan Centralblatt 76: 257–259

Google Scholar  

Blackman FF and Matthaei GLC (1905) Experimental researches in vegetable assimilation and respiration. IV. A quantitative study of carbon-dioxide assimilation and leaf-temperature in natural illumination. Proc R Soc London Ser B 76: 402–460

Article   CAS   Google Scholar  

Engelmann TW (1883) Bacterium photometricum . Ein Beitrag zur vergleichenden Physiologie des Licht-und Farbensinnes. Arch Physiol 30: 95–124

Ewart AJ (1900) The Physiology of Plants. A Treatise upon the Metabolism and Sources of Energy in Plants. [English translation of the 'Handbuch' by W. Pfeffer]. Clarendon Press, Oxford

Gest H (1988) Sun-beams, cucumbers, and purple bacteria. Photosynth Res 19: 287–308

CAS   Google Scholar  

Gest H (1993) Photosynthetic and quasi-photosynthetic bacteria. FEMS Microbiol Lett 112: 1–6

Gest H (1995) Phototaxis and other sensory phenomena in purple photosynthetic bacteria. FEMS Microbiol Rev 16: 287–294

Gest H (2001) Evolution of knowledge encapsulated in scientific definitions. Persp Biol Med 44: 556–564

Hansen XX (1898) Review of Pfeffer's Pflanzenphysiologie (revised edition, 1897). Botanische Zeitung 56:II (2: 22-24) [Note: the paper does not have the initials of the author; thus, XX has been added to indicate that fact.]

Kamen MD (1963) Primary Processes in Photosynthesis. Academic Press, New York

Lavoisier A (1790) Elements of Chemistry, trans. by R. Kerr. Creech, Edinburgh

Molisch H (1907) Die Purpurbakterien nach neuen Untersuchungen. Gustav Fischer, Jena

Oxford English Dictionary (1989) 2nd ed. Clarendon Press, Oxford

Download references

Author information

Authors and affiliations.

Department of Biology and Department of History and Philosophy of Science, Indiana University, Bloomington, IN, 47405, USA

Howard Gest

You can also search for this author in PubMed   Google Scholar

Rights and permissions

Reprints and permissions

About this article

Gest, H. History of the word photosynthesis and evolution of its definition. Photosynthesis Research 73 , 7–10 (2002). https://doi.org/10.1023/A:1020419417954

Download citation

Issue Date : July 2002

DOI : https://doi.org/10.1023/A:1020419417954

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Charles Barnes
  • definition of photosynthesis
  • Theodor Engelmann
  • Martin Kamen
  • Conway McMillan
  • Oxford English Dictionary
  • Find a journal
  • Publish with us
  • Track your research

Look up a word, learn it forever.

Photosynthesis.

Plants absorb sunlight and turn that energy into food; the process is known as photosynthesis .

This is a compound word made up of photo (which means "light") and synthesis (which means "to put together"). Think of a synthesizer, which puts together different sounds to produce music. A plant uses light to put together chemical compounds and turn them into carbohydrates: food. Although the word can be used to describe any process that uses light to connect compounds, the word is almost always used to describe a plant's method of making food.

  • noun synthesis of compounds with the aid of radiant energy (especially in plants) see more see less type of: chemical action , chemical change , chemical process (chemistry) any process determined by the atomic and molecular composition and structure of the substances involved

Vocabulary lists containing photosynthesis

Words selected by the Editors of the American Heritage® Dictionaries. Published by Houghton Mifflin Harcourt Publishing Company.

view more about the vocabulary list

Turn over a new lexical leaf and branch out with this list of arboreal vocabulary. Learning these words will really spruce up your language!

view more about the vocabulary list

Physical geography will be a breeze once you master this list of terms related to Earth's physical features. You'll review climate and weather, landforms and bodies of water, biomes and ecosystems, and the geological structure of the Earth — and that's just the tip of the iceberg!

Sign up now (it’s free!)

Whether you’re a teacher or a learner, vocabulary.com can put you or your class on the path to systematic vocabulary improvement..

U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings
  • My Bibliography
  • Collections
  • Citation manager

Save citation to file

Email citation, add to collections.

  • Create a new collection
  • Add to an existing collection

Add to My Bibliography

Your saved search, create a file for external citation management software, your rss feed.

  • Search in PubMed
  • Search in NLM Catalog
  • Add to Search

Photosynthesis: what color was its origin?

Affiliation.

  • 1 Department of Biology, Texas A&M University, College Station, TX 77843, USA. [email protected]
  • PMID: 17210067
  • PMCID: PMC1794423
  • DOI: 10.1186/gb-2006-7-12-245

Recent studies using geological and molecular phylogenetic evidence suggest several alternative evolutionary scenarios for the origin of photosynthesis. The earliest photosynthetic group is variously thought to be heliobacteria, proteobacteria or a precursor of cyanobacteria, organisms whose photosynthetic pigments make them different colors.

PubMed Disclaimer

Four representative scenarios for the…

Four representative scenarios for the early evolution of the photosynthetic process among photosynthetic…

Similar articles

  • The early evolution of eukaryotes: a geological perspective. Knoll AH. Knoll AH. Science. 1992 May 1;256(5057):622-7. doi: 10.1126/science.1585174. Science. 1992. PMID: 1585174
  • Evolution of oxygen by plants in relation to biosphere evolution. Kutyurin VM. Kutyurin VM. Orig Life. 1975 Jan-Apr;6(1-2):257-63. doi: 10.1007/BF01372413. Orig Life. 1975. PMID: 1153185
  • Geological and Geochemical Constraints on the Origin and Evolution of Life. Sleep NH. Sleep NH. Astrobiology. 2018 Sep;18(9):1199-1219. doi: 10.1089/ast.2017.1778. Epub 2018 Aug 20. Astrobiology. 2018. PMID: 30124324
  • The oldest records of photosynthesis. Awramik SM. Awramik SM. Photosynth Res. 1992;33:75-89. Photosynth Res. 1992. PMID: 11538389 Review.
  • Geological evidence of oxygenic photosynthesis and the biotic response to the 2400-2200 ma "great oxidation event". Schopf JW. Schopf JW. Biochemistry (Mosc). 2014 Mar;79(3):165-77. doi: 10.1134/S0006297914030018. Biochemistry (Mosc). 2014. PMID: 24821442 Review.
  • Microbial processes during deposition and diagenesis of Banded Iron Formations. Dreher CL, Schad M, Robbins LJ, Konhauser KO, Kappler A, Joshi P. Dreher CL, et al. Palaontol Z. 2021;95(4):593-610. doi: 10.1007/s12542-021-00598-z. Epub 2021 Dec 8. Palaontol Z. 2021. PMID: 35034981 Free PMC article. Review.
  • Metalloproteins in the Biology of Heterocysts. Pernil R, Schleiff E. Pernil R, et al. Life (Basel). 2019 Apr 3;9(2):32. doi: 10.3390/life9020032. Life (Basel). 2019. PMID: 30987221 Free PMC article. Review.
  • Constraining the timing of the Great Oxidation Event within the Rubisco phylogenetic tree. Kacar B, Hanson-Smith V, Adam ZR, Boekelheide N. Kacar B, et al. Geobiology. 2017 Sep;15(5):628-640. doi: 10.1111/gbi.12243. Epub 2017 Jul 3. Geobiology. 2017. PMID: 28670785 Free PMC article.
  • Photoferrotrophy: Remains of an Ancient Photosynthesis in Modern Environments. Camacho A, Walter XA, Picazo A, Zopfi J. Camacho A, et al. Front Microbiol. 2017 Mar 21;8:323. doi: 10.3389/fmicb.2017.00323. eCollection 2017. Front Microbiol. 2017. PMID: 28377745 Free PMC article. Review.
  • Origin of life: hypothesized roles of high-energy electrical discharges, infrared radiation, thermosynthesis and pre-photosynthesis. Trevors JT. Trevors JT. Theory Biosci. 2012 Dec;131(4):225-9. doi: 10.1007/s12064-012-0157-0. Epub 2012 Jun 21. Theory Biosci. 2012. PMID: 22718039 Review.
  • Tice MM, Lowe DR. Hydrogen-based carbon fixation in the earliest known photosynthetic organisms. Geology. 2006;34:37–40. doi: 10.1130/G22012.1. - DOI
  • Mulkidjanian AY, Koonin EV, Makarova KS, Mekhedov SL, Sorokin A, Wolf YI, Dufresne A, Partensky F, Burd H, Kaznadzey D, et al. The cyanobacterial genome core and the origin of photosynthesis. Proc Natl Acad Sci USA. 2006;103:13126–13131. doi: 10.1073/pnas.0605709103. - DOI - PMC - PubMed
  • Sadekar S, Raymond J, Blankenship RE. Conservation of distantly related membrane proteins: photosynthetic reaction centers share a common structural core. Mol Biol Evol. 2006;23:2001–2007. doi: 10.1093/molbev/msl079. - DOI - PubMed
  • Blankenship RE. Origin and early evolution of photosynthesis. Photosynth Res. 1992;33:91–111. doi: 10.1007/BF00039173. - DOI - PubMed
  • Schidlowski M. A 3800-million-year isotopic record of life from carbon in sedimentary rocks. Nature. 1988;333:313–318. doi: 10.1038/333313a0. - DOI

Publication types

  • Search in MeSH

Related information

  • PubChem Compound
  • PubChem Substance

LinkOut - more resources

Full text sources.

  • BioMed Central
  • Europe PubMed Central
  • PubMed Central

full text provider logo

  • Citation Manager

NCBI Literature Resources

MeSH PMC Bookshelf Disclaimer

The PubMed wordmark and PubMed logo are registered trademarks of the U.S. Department of Health and Human Services (HHS). Unauthorized use of these marks is strictly prohibited.

  • Biology Article
  • What is Photosynthesis

What Is Photosynthesis?

“Photosynthesis is the process used by green plants and a few organisms that use sunlight, carbon dioxide and water to prepare their food.”

The process of photosynthesis is used by plants, algae and certain bacteria that convert light energy into chemical energy. The glucose formed during the process of photosynthesis provides two important resources to organisms: energy and fixed carbon.

Read on to explore what is photosynthesis and the processes associated with it.

Site of Photosynthesis

Photosynthesis takes place in special organelles known as chloroplast. This organelle has its own DNA, genes and hence can synthesize its own proteins. Chloroplasts consist of stroma, fluid, and stack of thylakoids known as grana. There are three important pigments present in the chloroplast that absorb light energy, chlorophyll a, chlorophyll b, and carotenoids.

Also Read: Photosynthesis Process

Types of Photosynthesis

There are two different types of photosynthesis:

  • Oxygenic photosynthesis
  • Anoxygenic photosynthesis

Oxygenic Photosynthesis

Oxygenic photosynthesis is more common in plants, algae and cyanobacteria. During this process, electrons are transferred from water to carbon dioxide by light energy, to produce energy. During this transfer of electrons, carbon dioxide is reduced while water is oxidized, and oxygen is produced along with carbohydrates.

During this process, plants take in carbon dioxide and expel oxygen into the atmosphere.

This process can be represented by the equation:

6CO2+ 12H2O + LIGHT ENERGY → C6H12O6 + 6O2 + 6H2O

Anoxygenic Photosynthesis

This type of photosynthesis is usually seen in certain bacteria, such as green sulphur bacteria and purple bacteria which dwell in various aquatic habitats. Oxygen is not produced during the process.

The anoxygenic photosynthesis can be represented by the equation:

CO2 + 2H2A + LIGHT ENERGY → [CH2O] + 2A + H2O

Also Read:  Difference between Photosynthesis and Respiration

Photosynthesis Apparatus

The photosynthesis apparatus includes the following essential components:

Pigments not only provide colour to the photosynthetic organisms, but are also responsible for trapping sunlight. The important pigments associated with photosynthesis include:

  • Chlorophyll: It is a green-coloured pigment that traps blue and red light. Chlorophyll is subdivided into, “chlorophyll a”, “chlorophyll b”, and “chlorophyll c”. “Chlorophyll a” is widely present in all the photosynthetic cells. A bacterial variant of chlorophyll known as bacteriochlorophyll can absorb infrared rays .
  • Carotenoids: These are yellow, orange or red-coloured pigments that absorb bluish-green light. Xanthophyll and carotenes are examples of carotenoids.
  • Phycobilins: These are present in bacteria and red algae . These are red and blue pigments that absorb wavelength of light that are not properly absorbed by carotenoids and chlorophyll.

Plastids are organelles found in the cytoplasm of eukaryotic photosynthetic organisms. They contain pigments and can also store nutrients. Plastids are of three types:

  • Leucoplast: These are colourless, non-pigmented and can store fats and starch.
  • Chromoplasts: They contain carotenoids.
  • Chloroplasts: These contain chlorophyll and are the site of photosynthesis.

Antennae is the collection of 100 to 5000 pigment molecules that capture light energy from the sun in the form of photons. The light energy is transferred to a pigment-protein complex that converts light energy to chemical energy.

Reaction Centers

The pigment-protein complex responsible for the conversion of light energy to chemical energy forms the reaction centre.

Also Read: Photosynthesis

To know more about what is photosynthesis and other topics related to it, keep visiting BYJU’S website or download BYJU’S app for further reference.

Quiz Image

Put your understanding of this concept to test by answering a few MCQs. Click ‘Start Quiz’ to begin!

Select the correct answer and click on the “Finish” button Check your score and answers at the end of the quiz

Visit BYJU’S for all Biology related queries and study materials

Your result is as below

Request OTP on Voice Call

BIOLOGY Related Links

Leave a Comment Cancel reply

Your Mobile number and Email id will not be published. Required fields are marked *

Post My Comment

what is the etymological meaning of photosynthesis

Register with BYJU'S & Download Free PDFs

Register with byju's & watch live videos.

|
| | | | | |
My Wordlists
Legacy activities
 
 
  Wordsmyth
 
 
Standard
 
Lookup History
the process in plants by which sunlight, with the help of chlorophyll, is converted to chemical energy that is used to synthesize inorganic compounds into organic ones, esp. sugars.
Subscriber feature
photosynthetic (adj.), photosynthetically (adv.)
See
 
 
Subscribe for ad-free
Wordsmyth and more

IMAGES

  1. PPT

    what is the etymological meaning of photosynthesis

  2. Photosynthesis: Definition, Reaction, Equation And Significance

    what is the etymological meaning of photosynthesis

  3. Photosynthesis in plants: What is photosynthesis and its significance

    what is the etymological meaning of photosynthesis

  4. Photosynthesis-Process, Factors, Formula, Adaptations

    what is the etymological meaning of photosynthesis

  5. Interesting Information & Facts About Photosynthesis for Children

    what is the etymological meaning of photosynthesis

  6. What is the definition of photosynthesis?

    what is the etymological meaning of photosynthesis

VIDEO

  1. ETYMOLOGICAL MEANING OF EDUCATION BG IST SEMESTER

  2. Learn the etymological meaning of words

  3. How to Pronounce photosynthesis

  4. The real meaning of Photosynthesis 🤣🤝

  5. what is photosynthesis?

  6. Meaning of Life

COMMENTS

  1. photosynthesis

    photosynthesis (n.) photosynthesis. (n.) by 1895, loan-translation of German Photosynthese, from photo- "light" (see photo-) + synthese "synthesis" (see synthesis ). Related: Photosynthetic. Another early word for it was photosyntax. [T]he body of the work has been rendered into English with fidelity, the only change of moment being the ...

  2. Photosynthesis Definition & Meaning

    The meaning of PHOTOSYNTHESIS is synthesis of chemical compounds with the aid of radiant energy and especially light; especially : formation of carbohydrates from carbon dioxide and a source of hydrogen (such as water) in the chlorophyll-containing cells (as of green plants) exposed to light. Photosynthesis Has Greek Roots

  3. Photosynthesis

    What is Photosynthesis? Photosynthesis definition: Photosynthesis is a physio-chemical process carried out by photo-auto-lithotrophs. In simpler language, photosynthesis is the process by which green plants convert light energy into 'chemical energy'. ... Etymology: The photosynthesis process finds its origin in 2 Greek words, firsts one ...

  4. photosynthesis, n. meanings, etymology and more

    What does the noun photosynthesis mean? There are two meanings listed in OED's entry for the noun photosynthesis. See 'Meaning & use' for definitions, usage, and quotation evidence. photosynthesis has developed meanings and uses in subjects including. plants (1890s) physiology (1890s) organic chemistry (1890s) chemistry (1910s)

  5. Photosynthesis

    Photosynthesis Definition. Photosynthesis is the biochemical pathway which converts the energy of light into the bonds of glucose molecules. The process of photosynthesis occurs in two steps. In the first step, energy from light is stored in the bonds of adenosine triphosphate (ATP), and nicotinamide adenine dinucleotide phosphate (NADPH).

  6. Photosynthesis

    Photosynthesis (/ ˌfoʊtəˈsɪnθəsɪs / FOH-tə-SINTH-ə-sis) [1] is a system of biological processes by which photosynthetic organisms, such as most plants, algae, and cyanobacteria, convert light energy, typically from sunlight, into the chemical energy necessary to fuel their metabolism.

  7. PDF History of the word photosynthesis and evolution of its definition

    in-ition required further sharpening, and suggested the following general definition (Gest 1993):Photosynthesis is a series of processes in which electromagnetic energy is converted to chemical energy used for biosynthesis of organic cell ma-terials; a photosynthetic organism is.

  8. History of the word photosynthesis and evolution of its definition

    In 1893, Charles Barnes (1858-1910) proposed that the biological process for 'synthesis of complex carbon compounds out of carbonic acid, in the presence of chlorophyll, under the influence of light' should be designated as either 'photosyntax' or 'photosynthesis.'. He preferred the word 'photosyntax,' but 'photosynthesis' came into common ...

  9. On the Origin of Photosynthesis

    In Science' s Origins essay this week, author Mitch Leslie describes how scientists are delving into ancient rocks and poring over DNA sequences to try to piece together how and when organisms first began to harness light's energy. Although most modern photosynthesizers make oxygen from water, the earliest solar-powered bacteria relied on ...

  10. Photosynthesis

    The process. During photosynthesis, plants take in carbon dioxide (CO 2) and water (H 2 O) from the air and soil. Within the plant cell, the water is oxidized, meaning it loses electrons, while the carbon dioxide is reduced, meaning it gains electrons. This transforms the water into oxygen and the carbon dioxide into glucose.

  11. Photosynthesis

    In chemical terms, photosynthesis is a light-energized oxidation-reduction process. (Oxidation refers to the removal of electrons from a molecule; reduction refers to the gain of electrons by a molecule.) In plant photosynthesis, the energy of light is used to drive the oxidation of water (H 2 O), producing oxygen gas (O 2), hydrogen ions (H ...

  12. PHOTOSYNTHESIS Definition & Meaning

    Photosynthesis definition: the complex process by which carbon dioxide, water, and certain inorganic salts are converted into carbohydrates by green plants, algae, and certain bacteria, using energy from the sun and chlorophyll. . See examples of PHOTOSYNTHESIS used in a sentence.

  13. Photosynthesis

    The word "photosynthesis" is derived from the Greek words phōs (pronounced: "fos") and σύνθεσις (pronounced: "synthesis")Phōs means "light" and σύνθεσις means, "combining together."This means "combining together with the help of light." Photosynthesis also applies to other organisms besides green plants. These include several prokaryotes such as ...

  14. PHOTOSYNTHESIS

    PHOTOSYNTHESIS definition: 1. the process by which a plant uses carbon dioxide from the air, water from the ground, and the…. Learn more.

  15. photosynthesis noun

    perform/ increase/ reduce photosynthesis; Bacteria and viruses. bacteria/ microbes/ viruses grow/ spread/ multiply; bacteria/ microbes live/ thrive in/ on something; bacteria/ microbes/ viruses evolve/ colonize something/ cause disease; bacteria break something down/ convert something (into something)

  16. History of the word photosynthesis and evolution of its definition

    In 1893, Charles Barnes (1858-1910) proposed that the biological process for 'synthesis of complex carbon compounds out of carbonic acid, in the presence of chlorophyll, under the influence of light' should be designated as either 'photosyntax' or 'photosynthesis.' He preferred the word 'photosyntax,' but 'photosynthesis' came into common usage as the term of choice ...

  17. PHOTOSYNTHESIS definition and meaning

    2 meanings: 1. (in plants) the synthesis of organic compounds from carbon dioxide and water (with the release of oxygen) using.... Click for more definitions.

  18. Photosynthesis

    Plants absorb sunlight and turn that energy into food; the process is known as photosynthesis.

  19. Photosynthesis: what color was its origin?

    Abstract. Recent studies using geological and molecular phylogenetic evidence suggest several alternative evolutionary scenarios for the origin of photosynthesis. The earliest photosynthetic group is variously thought to be heliobacteria, proteobacteria or a precursor of cyanobacteria, organisms whose photosynthetic pigments make them different ...

  20. What Is Photosynthesis?

    What Is Photosynthesis? "Photosynthesis is the process used by green plants and a few organisms that use sunlight, carbon dioxide and water to prepare their food.". The process of photosynthesis is used by plants, algae and certain bacteria that convert light energy into chemical energy. The glucose formed during the process of ...

  21. photosynthesis

    The meaning of photosynthesis. Definition of photosynthesis. English dictionary and integrated thesaurus for learners, writers, teachers, and students with advanced, intermediate, and beginner levels.

  22. biology ch. 4 Flashcards

    biology ch. 4. describe how the meaning of the term photosynthesis is a combination of the meanings of the prefixes photo- and syn-. Click the card to flip 👆. photo means light and syn means together. it uses light and they make sugar by working together. Click the card to flip 👆.

  23. You Are What You Eat Quick Check Flashcards

    a series of chemical reactions during cellular respiration. Study with Quizlet and memorize flashcards containing terms like What is the definition of photosynthesis?, What is the difference between glucose and ATP?, What is a function of the integumentary system? and more.

  24. Glucose

    Glucose is a sugar with the molecular formula C 6 H 12 O 6.Glucose is overall the most abundant monosaccharide, [4] a subcategory of carbohydrates.Glucose is mainly made by plants and most algae during photosynthesis from water and carbon dioxide, using energy from sunlight. Glucose is used by plants to make cellulose—the most abundant carbohydrate in the world—for use in cell walls, and ...