SEP home page

  • Table of Contents
  • Random Entry
  • Chronological
  • Editorial Information
  • About the SEP
  • Editorial Board
  • How to Cite the SEP
  • Special Characters
  • Advanced Tools
  • Support the SEP
  • PDFs for SEP Friends
  • Make a Donation
  • SEPIA for Libraries
  • Entry Contents

Bibliography

Academic tools.

  • Friends PDF Preview
  • Author and Citation Info
  • Back to Top

Critical Thinking

Critical thinking is a widely accepted educational goal. Its definition is contested, but the competing definitions can be understood as differing conceptions of the same basic concept: careful thinking directed to a goal. Conceptions differ with respect to the scope of such thinking, the type of goal, the criteria and norms for thinking carefully, and the thinking components on which they focus. Its adoption as an educational goal has been recommended on the basis of respect for students’ autonomy and preparing students for success in life and for democratic citizenship. “Critical thinkers” have the dispositions and abilities that lead them to think critically when appropriate. The abilities can be identified directly; the dispositions indirectly, by considering what factors contribute to or impede exercise of the abilities. Standardized tests have been developed to assess the degree to which a person possesses such dispositions and abilities. Educational intervention has been shown experimentally to improve them, particularly when it includes dialogue, anchored instruction, and mentoring. Controversies have arisen over the generalizability of critical thinking across domains, over alleged bias in critical thinking theories and instruction, and over the relationship of critical thinking to other types of thinking.

2.1 Dewey’s Three Main Examples

2.2 dewey’s other examples, 2.3 further examples, 2.4 non-examples, 3. the definition of critical thinking, 4. its value, 5. the process of thinking critically, 6. components of the process, 7. contributory dispositions and abilities, 8.1 initiating dispositions, 8.2 internal dispositions, 9. critical thinking abilities, 10. required knowledge, 11. educational methods, 12.1 the generalizability of critical thinking, 12.2 bias in critical thinking theory and pedagogy, 12.3 relationship of critical thinking to other types of thinking, other internet resources, related entries.

Use of the term ‘critical thinking’ to describe an educational goal goes back to the American philosopher John Dewey (1910), who more commonly called it ‘reflective thinking’. He defined it as

active, persistent and careful consideration of any belief or supposed form of knowledge in the light of the grounds that support it, and the further conclusions to which it tends. (Dewey 1910: 6; 1933: 9)

and identified a habit of such consideration with a scientific attitude of mind. His lengthy quotations of Francis Bacon, John Locke, and John Stuart Mill indicate that he was not the first person to propose development of a scientific attitude of mind as an educational goal.

In the 1930s, many of the schools that participated in the Eight-Year Study of the Progressive Education Association (Aikin 1942) adopted critical thinking as an educational goal, for whose achievement the study’s Evaluation Staff developed tests (Smith, Tyler, & Evaluation Staff 1942). Glaser (1941) showed experimentally that it was possible to improve the critical thinking of high school students. Bloom’s influential taxonomy of cognitive educational objectives (Bloom et al. 1956) incorporated critical thinking abilities. Ennis (1962) proposed 12 aspects of critical thinking as a basis for research on the teaching and evaluation of critical thinking ability.

Since 1980, an annual international conference in California on critical thinking and educational reform has attracted tens of thousands of educators from all levels of education and from many parts of the world. Also since 1980, the state university system in California has required all undergraduate students to take a critical thinking course. Since 1983, the Association for Informal Logic and Critical Thinking has sponsored sessions in conjunction with the divisional meetings of the American Philosophical Association (APA). In 1987, the APA’s Committee on Pre-College Philosophy commissioned a consensus statement on critical thinking for purposes of educational assessment and instruction (Facione 1990a). Researchers have developed standardized tests of critical thinking abilities and dispositions; for details, see the Supplement on Assessment . Educational jurisdictions around the world now include critical thinking in guidelines for curriculum and assessment.

For details on this history, see the Supplement on History .

2. Examples and Non-Examples

Before considering the definition of critical thinking, it will be helpful to have in mind some examples of critical thinking, as well as some examples of kinds of thinking that would apparently not count as critical thinking.

Dewey (1910: 68–71; 1933: 91–94) takes as paradigms of reflective thinking three class papers of students in which they describe their thinking. The examples range from the everyday to the scientific.

Transit : “The other day, when I was down town on 16th Street, a clock caught my eye. I saw that the hands pointed to 12:20. This suggested that I had an engagement at 124th Street, at one o’clock. I reasoned that as it had taken me an hour to come down on a surface car, I should probably be twenty minutes late if I returned the same way. I might save twenty minutes by a subway express. But was there a station near? If not, I might lose more than twenty minutes in looking for one. Then I thought of the elevated, and I saw there was such a line within two blocks. But where was the station? If it were several blocks above or below the street I was on, I should lose time instead of gaining it. My mind went back to the subway express as quicker than the elevated; furthermore, I remembered that it went nearer than the elevated to the part of 124th Street I wished to reach, so that time would be saved at the end of the journey. I concluded in favor of the subway, and reached my destination by one o’clock.” (Dewey 1910: 68–69; 1933: 91–92)

Ferryboat : “Projecting nearly horizontally from the upper deck of the ferryboat on which I daily cross the river is a long white pole, having a gilded ball at its tip. It suggested a flagpole when I first saw it; its color, shape, and gilded ball agreed with this idea, and these reasons seemed to justify me in this belief. But soon difficulties presented themselves. The pole was nearly horizontal, an unusual position for a flagpole; in the next place, there was no pulley, ring, or cord by which to attach a flag; finally, there were elsewhere on the boat two vertical staffs from which flags were occasionally flown. It seemed probable that the pole was not there for flag-flying.

“I then tried to imagine all possible purposes of the pole, and to consider for which of these it was best suited: (a) Possibly it was an ornament. But as all the ferryboats and even the tugboats carried poles, this hypothesis was rejected. (b) Possibly it was the terminal of a wireless telegraph. But the same considerations made this improbable. Besides, the more natural place for such a terminal would be the highest part of the boat, on top of the pilot house. (c) Its purpose might be to point out the direction in which the boat is moving.

“In support of this conclusion, I discovered that the pole was lower than the pilot house, so that the steersman could easily see it. Moreover, the tip was enough higher than the base, so that, from the pilot’s position, it must appear to project far out in front of the boat. Moreover, the pilot being near the front of the boat, he would need some such guide as to its direction. Tugboats would also need poles for such a purpose. This hypothesis was so much more probable than the others that I accepted it. I formed the conclusion that the pole was set up for the purpose of showing the pilot the direction in which the boat pointed, to enable him to steer correctly.” (Dewey 1910: 69–70; 1933: 92–93)

Bubbles : “In washing tumblers in hot soapsuds and placing them mouth downward on a plate, bubbles appeared on the outside of the mouth of the tumblers and then went inside. Why? The presence of bubbles suggests air, which I note must come from inside the tumbler. I see that the soapy water on the plate prevents escape of the air save as it may be caught in bubbles. But why should air leave the tumbler? There was no substance entering to force it out. It must have expanded. It expands by increase of heat, or by decrease of pressure, or both. Could the air have become heated after the tumbler was taken from the hot suds? Clearly not the air that was already entangled in the water. If heated air was the cause, cold air must have entered in transferring the tumblers from the suds to the plate. I test to see if this supposition is true by taking several more tumblers out. Some I shake so as to make sure of entrapping cold air in them. Some I take out holding mouth downward in order to prevent cold air from entering. Bubbles appear on the outside of every one of the former and on none of the latter. I must be right in my inference. Air from the outside must have been expanded by the heat of the tumbler, which explains the appearance of the bubbles on the outside. But why do they then go inside? Cold contracts. The tumbler cooled and also the air inside it. Tension was removed, and hence bubbles appeared inside. To be sure of this, I test by placing a cup of ice on the tumbler while the bubbles are still forming outside. They soon reverse” (Dewey 1910: 70–71; 1933: 93–94).

Dewey (1910, 1933) sprinkles his book with other examples of critical thinking. We will refer to the following.

Weather : A man on a walk notices that it has suddenly become cool, thinks that it is probably going to rain, looks up and sees a dark cloud obscuring the sun, and quickens his steps (1910: 6–10; 1933: 9–13).

Disorder : A man finds his rooms on his return to them in disorder with his belongings thrown about, thinks at first of burglary as an explanation, then thinks of mischievous children as being an alternative explanation, then looks to see whether valuables are missing, and discovers that they are (1910: 82–83; 1933: 166–168).

Typhoid : A physician diagnosing a patient whose conspicuous symptoms suggest typhoid avoids drawing a conclusion until more data are gathered by questioning the patient and by making tests (1910: 85–86; 1933: 170).

Blur : A moving blur catches our eye in the distance, we ask ourselves whether it is a cloud of whirling dust or a tree moving its branches or a man signaling to us, we think of other traits that should be found on each of those possibilities, and we look and see if those traits are found (1910: 102, 108; 1933: 121, 133).

Suction pump : In thinking about the suction pump, the scientist first notes that it will draw water only to a maximum height of 33 feet at sea level and to a lesser maximum height at higher elevations, selects for attention the differing atmospheric pressure at these elevations, sets up experiments in which the air is removed from a vessel containing water (when suction no longer works) and in which the weight of air at various levels is calculated, compares the results of reasoning about the height to which a given weight of air will allow a suction pump to raise water with the observed maximum height at different elevations, and finally assimilates the suction pump to such apparently different phenomena as the siphon and the rising of a balloon (1910: 150–153; 1933: 195–198).

Diamond : A passenger in a car driving in a diamond lane reserved for vehicles with at least one passenger notices that the diamond marks on the pavement are far apart in some places and close together in others. Why? The driver suggests that the reason may be that the diamond marks are not needed where there is a solid double line separating the diamond lane from the adjoining lane, but are needed when there is a dotted single line permitting crossing into the diamond lane. Further observation confirms that the diamonds are close together when a dotted line separates the diamond lane from its neighbour, but otherwise far apart.

Rash : A woman suddenly develops a very itchy red rash on her throat and upper chest. She recently noticed a mark on the back of her right hand, but was not sure whether the mark was a rash or a scrape. She lies down in bed and thinks about what might be causing the rash and what to do about it. About two weeks before, she began taking blood pressure medication that contained a sulfa drug, and the pharmacist had warned her, in view of a previous allergic reaction to a medication containing a sulfa drug, to be on the alert for an allergic reaction; however, she had been taking the medication for two weeks with no such effect. The day before, she began using a new cream on her neck and upper chest; against the new cream as the cause was mark on the back of her hand, which had not been exposed to the cream. She began taking probiotics about a month before. She also recently started new eye drops, but she supposed that manufacturers of eye drops would be careful not to include allergy-causing components in the medication. The rash might be a heat rash, since she recently was sweating profusely from her upper body. Since she is about to go away on a short vacation, where she would not have access to her usual physician, she decides to keep taking the probiotics and using the new eye drops but to discontinue the blood pressure medication and to switch back to the old cream for her neck and upper chest. She forms a plan to consult her regular physician on her return about the blood pressure medication.

Candidate : Although Dewey included no examples of thinking directed at appraising the arguments of others, such thinking has come to be considered a kind of critical thinking. We find an example of such thinking in the performance task on the Collegiate Learning Assessment (CLA+), which its sponsoring organization describes as

a performance-based assessment that provides a measure of an institution’s contribution to the development of critical-thinking and written communication skills of its students. (Council for Aid to Education 2017)

A sample task posted on its website requires the test-taker to write a report for public distribution evaluating a fictional candidate’s policy proposals and their supporting arguments, using supplied background documents, with a recommendation on whether to endorse the candidate.

Immediate acceptance of an idea that suggests itself as a solution to a problem (e.g., a possible explanation of an event or phenomenon, an action that seems likely to produce a desired result) is “uncritical thinking, the minimum of reflection” (Dewey 1910: 13). On-going suspension of judgment in the light of doubt about a possible solution is not critical thinking (Dewey 1910: 108). Critique driven by a dogmatically held political or religious ideology is not critical thinking; thus Paulo Freire (1968 [1970]) is using the term (e.g., at 1970: 71, 81, 100, 146) in a more politically freighted sense that includes not only reflection but also revolutionary action against oppression. Derivation of a conclusion from given data using an algorithm is not critical thinking.

What is critical thinking? There are many definitions. Ennis (2016) lists 14 philosophically oriented scholarly definitions and three dictionary definitions. Following Rawls (1971), who distinguished his conception of justice from a utilitarian conception but regarded them as rival conceptions of the same concept, Ennis maintains that the 17 definitions are different conceptions of the same concept. Rawls articulated the shared concept of justice as

a characteristic set of principles for assigning basic rights and duties and for determining… the proper distribution of the benefits and burdens of social cooperation. (Rawls 1971: 5)

Bailin et al. (1999b) claim that, if one considers what sorts of thinking an educator would take not to be critical thinking and what sorts to be critical thinking, one can conclude that educators typically understand critical thinking to have at least three features.

  • It is done for the purpose of making up one’s mind about what to believe or do.
  • The person engaging in the thinking is trying to fulfill standards of adequacy and accuracy appropriate to the thinking.
  • The thinking fulfills the relevant standards to some threshold level.

One could sum up the core concept that involves these three features by saying that critical thinking is careful goal-directed thinking. This core concept seems to apply to all the examples of critical thinking described in the previous section. As for the non-examples, their exclusion depends on construing careful thinking as excluding jumping immediately to conclusions, suspending judgment no matter how strong the evidence, reasoning from an unquestioned ideological or religious perspective, and routinely using an algorithm to answer a question.

If the core of critical thinking is careful goal-directed thinking, conceptions of it can vary according to its presumed scope, its presumed goal, one’s criteria and threshold for being careful, and the thinking component on which one focuses. As to its scope, some conceptions (e.g., Dewey 1910, 1933) restrict it to constructive thinking on the basis of one’s own observations and experiments, others (e.g., Ennis 1962; Fisher & Scriven 1997; Johnson 1992) to appraisal of the products of such thinking. Ennis (1991) and Bailin et al. (1999b) take it to cover both construction and appraisal. As to its goal, some conceptions restrict it to forming a judgment (Dewey 1910, 1933; Lipman 1987; Facione 1990a). Others allow for actions as well as beliefs as the end point of a process of critical thinking (Ennis 1991; Bailin et al. 1999b). As to the criteria and threshold for being careful, definitions vary in the term used to indicate that critical thinking satisfies certain norms: “intellectually disciplined” (Scriven & Paul 1987), “reasonable” (Ennis 1991), “skillful” (Lipman 1987), “skilled” (Fisher & Scriven 1997), “careful” (Bailin & Battersby 2009). Some definitions specify these norms, referring variously to “consideration of any belief or supposed form of knowledge in the light of the grounds that support it and the further conclusions to which it tends” (Dewey 1910, 1933); “the methods of logical inquiry and reasoning” (Glaser 1941); “conceptualizing, applying, analyzing, synthesizing, and/or evaluating information gathered from, or generated by, observation, experience, reflection, reasoning, or communication” (Scriven & Paul 1987); the requirement that “it is sensitive to context, relies on criteria, and is self-correcting” (Lipman 1987); “evidential, conceptual, methodological, criteriological, or contextual considerations” (Facione 1990a); and “plus-minus considerations of the product in terms of appropriate standards (or criteria)” (Johnson 1992). Stanovich and Stanovich (2010) propose to ground the concept of critical thinking in the concept of rationality, which they understand as combining epistemic rationality (fitting one’s beliefs to the world) and instrumental rationality (optimizing goal fulfillment); a critical thinker, in their view, is someone with “a propensity to override suboptimal responses from the autonomous mind” (2010: 227). These variant specifications of norms for critical thinking are not necessarily incompatible with one another, and in any case presuppose the core notion of thinking carefully. As to the thinking component singled out, some definitions focus on suspension of judgment during the thinking (Dewey 1910; McPeck 1981), others on inquiry while judgment is suspended (Bailin & Battersby 2009, 2021), others on the resulting judgment (Facione 1990a), and still others on responsiveness to reasons (Siegel 1988). Kuhn (2019) takes critical thinking to be more a dialogic practice of advancing and responding to arguments than an individual ability.

In educational contexts, a definition of critical thinking is a “programmatic definition” (Scheffler 1960: 19). It expresses a practical program for achieving an educational goal. For this purpose, a one-sentence formulaic definition is much less useful than articulation of a critical thinking process, with criteria and standards for the kinds of thinking that the process may involve. The real educational goal is recognition, adoption and implementation by students of those criteria and standards. That adoption and implementation in turn consists in acquiring the knowledge, abilities and dispositions of a critical thinker.

Conceptions of critical thinking generally do not include moral integrity as part of the concept. Dewey, for example, took critical thinking to be the ultimate intellectual goal of education, but distinguished it from the development of social cooperation among school children, which he took to be the central moral goal. Ennis (1996, 2011) added to his previous list of critical thinking dispositions a group of dispositions to care about the dignity and worth of every person, which he described as a “correlative” (1996) disposition without which critical thinking would be less valuable and perhaps harmful. An educational program that aimed at developing critical thinking but not the correlative disposition to care about the dignity and worth of every person, he asserted, “would be deficient and perhaps dangerous” (Ennis 1996: 172).

Dewey thought that education for reflective thinking would be of value to both the individual and society; recognition in educational practice of the kinship to the scientific attitude of children’s native curiosity, fertile imagination and love of experimental inquiry “would make for individual happiness and the reduction of social waste” (Dewey 1910: iii). Schools participating in the Eight-Year Study took development of the habit of reflective thinking and skill in solving problems as a means to leading young people to understand, appreciate and live the democratic way of life characteristic of the United States (Aikin 1942: 17–18, 81). Harvey Siegel (1988: 55–61) has offered four considerations in support of adopting critical thinking as an educational ideal. (1) Respect for persons requires that schools and teachers honour students’ demands for reasons and explanations, deal with students honestly, and recognize the need to confront students’ independent judgment; these requirements concern the manner in which teachers treat students. (2) Education has the task of preparing children to be successful adults, a task that requires development of their self-sufficiency. (3) Education should initiate children into the rational traditions in such fields as history, science and mathematics. (4) Education should prepare children to become democratic citizens, which requires reasoned procedures and critical talents and attitudes. To supplement these considerations, Siegel (1988: 62–90) responds to two objections: the ideology objection that adoption of any educational ideal requires a prior ideological commitment and the indoctrination objection that cultivation of critical thinking cannot escape being a form of indoctrination.

Despite the diversity of our 11 examples, one can recognize a common pattern. Dewey analyzed it as consisting of five phases:

  • suggestions , in which the mind leaps forward to a possible solution;
  • an intellectualization of the difficulty or perplexity into a problem to be solved, a question for which the answer must be sought;
  • the use of one suggestion after another as a leading idea, or hypothesis , to initiate and guide observation and other operations in collection of factual material;
  • the mental elaboration of the idea or supposition as an idea or supposition ( reasoning , in the sense on which reasoning is a part, not the whole, of inference); and
  • testing the hypothesis by overt or imaginative action. (Dewey 1933: 106–107; italics in original)

The process of reflective thinking consisting of these phases would be preceded by a perplexed, troubled or confused situation and followed by a cleared-up, unified, resolved situation (Dewey 1933: 106). The term ‘phases’ replaced the term ‘steps’ (Dewey 1910: 72), thus removing the earlier suggestion of an invariant sequence. Variants of the above analysis appeared in (Dewey 1916: 177) and (Dewey 1938: 101–119).

The variant formulations indicate the difficulty of giving a single logical analysis of such a varied process. The process of critical thinking may have a spiral pattern, with the problem being redefined in the light of obstacles to solving it as originally formulated. For example, the person in Transit might have concluded that getting to the appointment at the scheduled time was impossible and have reformulated the problem as that of rescheduling the appointment for a mutually convenient time. Further, defining a problem does not always follow after or lead immediately to an idea of a suggested solution. Nor should it do so, as Dewey himself recognized in describing the physician in Typhoid as avoiding any strong preference for this or that conclusion before getting further information (Dewey 1910: 85; 1933: 170). People with a hypothesis in mind, even one to which they have a very weak commitment, have a so-called “confirmation bias” (Nickerson 1998): they are likely to pay attention to evidence that confirms the hypothesis and to ignore evidence that counts against it or for some competing hypothesis. Detectives, intelligence agencies, and investigators of airplane accidents are well advised to gather relevant evidence systematically and to postpone even tentative adoption of an explanatory hypothesis until the collected evidence rules out with the appropriate degree of certainty all but one explanation. Dewey’s analysis of the critical thinking process can be faulted as well for requiring acceptance or rejection of a possible solution to a defined problem, with no allowance for deciding in the light of the available evidence to suspend judgment. Further, given the great variety of kinds of problems for which reflection is appropriate, there is likely to be variation in its component events. Perhaps the best way to conceptualize the critical thinking process is as a checklist whose component events can occur in a variety of orders, selectively, and more than once. These component events might include (1) noticing a difficulty, (2) defining the problem, (3) dividing the problem into manageable sub-problems, (4) formulating a variety of possible solutions to the problem or sub-problem, (5) determining what evidence is relevant to deciding among possible solutions to the problem or sub-problem, (6) devising a plan of systematic observation or experiment that will uncover the relevant evidence, (7) carrying out the plan of systematic observation or experimentation, (8) noting the results of the systematic observation or experiment, (9) gathering relevant testimony and information from others, (10) judging the credibility of testimony and information gathered from others, (11) drawing conclusions from gathered evidence and accepted testimony, and (12) accepting a solution that the evidence adequately supports (cf. Hitchcock 2017: 485).

Checklist conceptions of the process of critical thinking are open to the objection that they are too mechanical and procedural to fit the multi-dimensional and emotionally charged issues for which critical thinking is urgently needed (Paul 1984). For such issues, a more dialectical process is advocated, in which competing relevant world views are identified, their implications explored, and some sort of creative synthesis attempted.

If one considers the critical thinking process illustrated by the 11 examples, one can identify distinct kinds of mental acts and mental states that form part of it. To distinguish, label and briefly characterize these components is a useful preliminary to identifying abilities, skills, dispositions, attitudes, habits and the like that contribute causally to thinking critically. Identifying such abilities and habits is in turn a useful preliminary to setting educational goals. Setting the goals is in its turn a useful preliminary to designing strategies for helping learners to achieve the goals and to designing ways of measuring the extent to which learners have done so. Such measures provide both feedback to learners on their achievement and a basis for experimental research on the effectiveness of various strategies for educating people to think critically. Let us begin, then, by distinguishing the kinds of mental acts and mental events that can occur in a critical thinking process.

  • Observing : One notices something in one’s immediate environment (sudden cooling of temperature in Weather , bubbles forming outside a glass and then going inside in Bubbles , a moving blur in the distance in Blur , a rash in Rash ). Or one notes the results of an experiment or systematic observation (valuables missing in Disorder , no suction without air pressure in Suction pump )
  • Feeling : One feels puzzled or uncertain about something (how to get to an appointment on time in Transit , why the diamonds vary in spacing in Diamond ). One wants to resolve this perplexity. One feels satisfaction once one has worked out an answer (to take the subway express in Transit , diamonds closer when needed as a warning in Diamond ).
  • Wondering : One formulates a question to be addressed (why bubbles form outside a tumbler taken from hot water in Bubbles , how suction pumps work in Suction pump , what caused the rash in Rash ).
  • Imagining : One thinks of possible answers (bus or subway or elevated in Transit , flagpole or ornament or wireless communication aid or direction indicator in Ferryboat , allergic reaction or heat rash in Rash ).
  • Inferring : One works out what would be the case if a possible answer were assumed (valuables missing if there has been a burglary in Disorder , earlier start to the rash if it is an allergic reaction to a sulfa drug in Rash ). Or one draws a conclusion once sufficient relevant evidence is gathered (take the subway in Transit , burglary in Disorder , discontinue blood pressure medication and new cream in Rash ).
  • Knowledge : One uses stored knowledge of the subject-matter to generate possible answers or to infer what would be expected on the assumption of a particular answer (knowledge of a city’s public transit system in Transit , of the requirements for a flagpole in Ferryboat , of Boyle’s law in Bubbles , of allergic reactions in Rash ).
  • Experimenting : One designs and carries out an experiment or a systematic observation to find out whether the results deduced from a possible answer will occur (looking at the location of the flagpole in relation to the pilot’s position in Ferryboat , putting an ice cube on top of a tumbler taken from hot water in Bubbles , measuring the height to which a suction pump will draw water at different elevations in Suction pump , noticing the spacing of diamonds when movement to or from a diamond lane is allowed in Diamond ).
  • Consulting : One finds a source of information, gets the information from the source, and makes a judgment on whether to accept it. None of our 11 examples include searching for sources of information. In this respect they are unrepresentative, since most people nowadays have almost instant access to information relevant to answering any question, including many of those illustrated by the examples. However, Candidate includes the activities of extracting information from sources and evaluating its credibility.
  • Identifying and analyzing arguments : One notices an argument and works out its structure and content as a preliminary to evaluating its strength. This activity is central to Candidate . It is an important part of a critical thinking process in which one surveys arguments for various positions on an issue.
  • Judging : One makes a judgment on the basis of accumulated evidence and reasoning, such as the judgment in Ferryboat that the purpose of the pole is to provide direction to the pilot.
  • Deciding : One makes a decision on what to do or on what policy to adopt, as in the decision in Transit to take the subway.

By definition, a person who does something voluntarily is both willing and able to do that thing at that time. Both the willingness and the ability contribute causally to the person’s action, in the sense that the voluntary action would not occur if either (or both) of these were lacking. For example, suppose that one is standing with one’s arms at one’s sides and one voluntarily lifts one’s right arm to an extended horizontal position. One would not do so if one were unable to lift one’s arm, if for example one’s right side was paralyzed as the result of a stroke. Nor would one do so if one were unwilling to lift one’s arm, if for example one were participating in a street demonstration at which a white supremacist was urging the crowd to lift their right arm in a Nazi salute and one were unwilling to express support in this way for the racist Nazi ideology. The same analysis applies to a voluntary mental process of thinking critically. It requires both willingness and ability to think critically, including willingness and ability to perform each of the mental acts that compose the process and to coordinate those acts in a sequence that is directed at resolving the initiating perplexity.

Consider willingness first. We can identify causal contributors to willingness to think critically by considering factors that would cause a person who was able to think critically about an issue nevertheless not to do so (Hamby 2014). For each factor, the opposite condition thus contributes causally to willingness to think critically on a particular occasion. For example, people who habitually jump to conclusions without considering alternatives will not think critically about issues that arise, even if they have the required abilities. The contrary condition of willingness to suspend judgment is thus a causal contributor to thinking critically.

Now consider ability. In contrast to the ability to move one’s arm, which can be completely absent because a stroke has left the arm paralyzed, the ability to think critically is a developed ability, whose absence is not a complete absence of ability to think but absence of ability to think well. We can identify the ability to think well directly, in terms of the norms and standards for good thinking. In general, to be able do well the thinking activities that can be components of a critical thinking process, one needs to know the concepts and principles that characterize their good performance, to recognize in particular cases that the concepts and principles apply, and to apply them. The knowledge, recognition and application may be procedural rather than declarative. It may be domain-specific rather than widely applicable, and in either case may need subject-matter knowledge, sometimes of a deep kind.

Reflections of the sort illustrated by the previous two paragraphs have led scholars to identify the knowledge, abilities and dispositions of a “critical thinker”, i.e., someone who thinks critically whenever it is appropriate to do so. We turn now to these three types of causal contributors to thinking critically. We start with dispositions, since arguably these are the most powerful contributors to being a critical thinker, can be fostered at an early stage of a child’s development, and are susceptible to general improvement (Glaser 1941: 175)

8. Critical Thinking Dispositions

Educational researchers use the term ‘dispositions’ broadly for the habits of mind and attitudes that contribute causally to being a critical thinker. Some writers (e.g., Paul & Elder 2006; Hamby 2014; Bailin & Battersby 2016a) propose to use the term ‘virtues’ for this dimension of a critical thinker. The virtues in question, although they are virtues of character, concern the person’s ways of thinking rather than the person’s ways of behaving towards others. They are not moral virtues but intellectual virtues, of the sort articulated by Zagzebski (1996) and discussed by Turri, Alfano, and Greco (2017).

On a realistic conception, thinking dispositions or intellectual virtues are real properties of thinkers. They are general tendencies, propensities, or inclinations to think in particular ways in particular circumstances, and can be genuinely explanatory (Siegel 1999). Sceptics argue that there is no evidence for a specific mental basis for the habits of mind that contribute to thinking critically, and that it is pedagogically misleading to posit such a basis (Bailin et al. 1999a). Whatever their status, critical thinking dispositions need motivation for their initial formation in a child—motivation that may be external or internal. As children develop, the force of habit will gradually become important in sustaining the disposition (Nieto & Valenzuela 2012). Mere force of habit, however, is unlikely to sustain critical thinking dispositions. Critical thinkers must value and enjoy using their knowledge and abilities to think things through for themselves. They must be committed to, and lovers of, inquiry.

A person may have a critical thinking disposition with respect to only some kinds of issues. For example, one could be open-minded about scientific issues but not about religious issues. Similarly, one could be confident in one’s ability to reason about the theological implications of the existence of evil in the world but not in one’s ability to reason about the best design for a guided ballistic missile.

Facione (1990a: 25) divides “affective dispositions” of critical thinking into approaches to life and living in general and approaches to specific issues, questions or problems. Adapting this distinction, one can usefully divide critical thinking dispositions into initiating dispositions (those that contribute causally to starting to think critically about an issue) and internal dispositions (those that contribute causally to doing a good job of thinking critically once one has started). The two categories are not mutually exclusive. For example, open-mindedness, in the sense of willingness to consider alternative points of view to one’s own, is both an initiating and an internal disposition.

Using the strategy of considering factors that would block people with the ability to think critically from doing so, we can identify as initiating dispositions for thinking critically attentiveness, a habit of inquiry, self-confidence, courage, open-mindedness, willingness to suspend judgment, trust in reason, wanting evidence for one’s beliefs, and seeking the truth. We consider briefly what each of these dispositions amounts to, in each case citing sources that acknowledge them.

  • Attentiveness : One will not think critically if one fails to recognize an issue that needs to be thought through. For example, the pedestrian in Weather would not have looked up if he had not noticed that the air was suddenly cooler. To be a critical thinker, then, one needs to be habitually attentive to one’s surroundings, noticing not only what one senses but also sources of perplexity in messages received and in one’s own beliefs and attitudes (Facione 1990a: 25; Facione, Facione, & Giancarlo 2001).
  • Habit of inquiry : Inquiry is effortful, and one needs an internal push to engage in it. For example, the student in Bubbles could easily have stopped at idle wondering about the cause of the bubbles rather than reasoning to a hypothesis, then designing and executing an experiment to test it. Thus willingness to think critically needs mental energy and initiative. What can supply that energy? Love of inquiry, or perhaps just a habit of inquiry. Hamby (2015) has argued that willingness to inquire is the central critical thinking virtue, one that encompasses all the others. It is recognized as a critical thinking disposition by Dewey (1910: 29; 1933: 35), Glaser (1941: 5), Ennis (1987: 12; 1991: 8), Facione (1990a: 25), Bailin et al. (1999b: 294), Halpern (1998: 452), and Facione, Facione, & Giancarlo (2001).
  • Self-confidence : Lack of confidence in one’s abilities can block critical thinking. For example, if the woman in Rash lacked confidence in her ability to figure things out for herself, she might just have assumed that the rash on her chest was the allergic reaction to her medication against which the pharmacist had warned her. Thus willingness to think critically requires confidence in one’s ability to inquire (Facione 1990a: 25; Facione, Facione, & Giancarlo 2001).
  • Courage : Fear of thinking for oneself can stop one from doing it. Thus willingness to think critically requires intellectual courage (Paul & Elder 2006: 16).
  • Open-mindedness : A dogmatic attitude will impede thinking critically. For example, a person who adheres rigidly to a “pro-choice” position on the issue of the legal status of induced abortion is likely to be unwilling to consider seriously the issue of when in its development an unborn child acquires a moral right to life. Thus willingness to think critically requires open-mindedness, in the sense of a willingness to examine questions to which one already accepts an answer but which further evidence or reasoning might cause one to answer differently (Dewey 1933; Facione 1990a; Ennis 1991; Bailin et al. 1999b; Halpern 1998, Facione, Facione, & Giancarlo 2001). Paul (1981) emphasizes open-mindedness about alternative world-views, and recommends a dialectical approach to integrating such views as central to what he calls “strong sense” critical thinking. In three studies, Haran, Ritov, & Mellers (2013) found that actively open-minded thinking, including “the tendency to weigh new evidence against a favored belief, to spend sufficient time on a problem before giving up, and to consider carefully the opinions of others in forming one’s own”, led study participants to acquire information and thus to make accurate estimations.
  • Willingness to suspend judgment : Premature closure on an initial solution will block critical thinking. Thus willingness to think critically requires a willingness to suspend judgment while alternatives are explored (Facione 1990a; Ennis 1991; Halpern 1998).
  • Trust in reason : Since distrust in the processes of reasoned inquiry will dissuade one from engaging in it, trust in them is an initiating critical thinking disposition (Facione 1990a, 25; Bailin et al. 1999b: 294; Facione, Facione, & Giancarlo 2001; Paul & Elder 2006). In reaction to an allegedly exclusive emphasis on reason in critical thinking theory and pedagogy, Thayer-Bacon (2000) argues that intuition, imagination, and emotion have important roles to play in an adequate conception of critical thinking that she calls “constructive thinking”. From her point of view, critical thinking requires trust not only in reason but also in intuition, imagination, and emotion.
  • Seeking the truth : If one does not care about the truth but is content to stick with one’s initial bias on an issue, then one will not think critically about it. Seeking the truth is thus an initiating critical thinking disposition (Bailin et al. 1999b: 294; Facione, Facione, & Giancarlo 2001). A disposition to seek the truth is implicit in more specific critical thinking dispositions, such as trying to be well-informed, considering seriously points of view other than one’s own, looking for alternatives, suspending judgment when the evidence is insufficient, and adopting a position when the evidence supporting it is sufficient.

Some of the initiating dispositions, such as open-mindedness and willingness to suspend judgment, are also internal critical thinking dispositions, in the sense of mental habits or attitudes that contribute causally to doing a good job of critical thinking once one starts the process. But there are many other internal critical thinking dispositions. Some of them are parasitic on one’s conception of good thinking. For example, it is constitutive of good thinking about an issue to formulate the issue clearly and to maintain focus on it. For this purpose, one needs not only the corresponding ability but also the corresponding disposition. Ennis (1991: 8) describes it as the disposition “to determine and maintain focus on the conclusion or question”, Facione (1990a: 25) as “clarity in stating the question or concern”. Other internal dispositions are motivators to continue or adjust the critical thinking process, such as willingness to persist in a complex task and willingness to abandon nonproductive strategies in an attempt to self-correct (Halpern 1998: 452). For a list of identified internal critical thinking dispositions, see the Supplement on Internal Critical Thinking Dispositions .

Some theorists postulate skills, i.e., acquired abilities, as operative in critical thinking. It is not obvious, however, that a good mental act is the exercise of a generic acquired skill. Inferring an expected time of arrival, as in Transit , has some generic components but also uses non-generic subject-matter knowledge. Bailin et al. (1999a) argue against viewing critical thinking skills as generic and discrete, on the ground that skilled performance at a critical thinking task cannot be separated from knowledge of concepts and from domain-specific principles of good thinking. Talk of skills, they concede, is unproblematic if it means merely that a person with critical thinking skills is capable of intelligent performance.

Despite such scepticism, theorists of critical thinking have listed as general contributors to critical thinking what they variously call abilities (Glaser 1941; Ennis 1962, 1991), skills (Facione 1990a; Halpern 1998) or competencies (Fisher & Scriven 1997). Amalgamating these lists would produce a confusing and chaotic cornucopia of more than 50 possible educational objectives, with only partial overlap among them. It makes sense instead to try to understand the reasons for the multiplicity and diversity, and to make a selection according to one’s own reasons for singling out abilities to be developed in a critical thinking curriculum. Two reasons for diversity among lists of critical thinking abilities are the underlying conception of critical thinking and the envisaged educational level. Appraisal-only conceptions, for example, involve a different suite of abilities than constructive-only conceptions. Some lists, such as those in (Glaser 1941), are put forward as educational objectives for secondary school students, whereas others are proposed as objectives for college students (e.g., Facione 1990a).

The abilities described in the remaining paragraphs of this section emerge from reflection on the general abilities needed to do well the thinking activities identified in section 6 as components of the critical thinking process described in section 5 . The derivation of each collection of abilities is accompanied by citation of sources that list such abilities and of standardized tests that claim to test them.

Observational abilities : Careful and accurate observation sometimes requires specialist expertise and practice, as in the case of observing birds and observing accident scenes. However, there are general abilities of noticing what one’s senses are picking up from one’s environment and of being able to articulate clearly and accurately to oneself and others what one has observed. It helps in exercising them to be able to recognize and take into account factors that make one’s observation less trustworthy, such as prior framing of the situation, inadequate time, deficient senses, poor observation conditions, and the like. It helps as well to be skilled at taking steps to make one’s observation more trustworthy, such as moving closer to get a better look, measuring something three times and taking the average, and checking what one thinks one is observing with someone else who is in a good position to observe it. It also helps to be skilled at recognizing respects in which one’s report of one’s observation involves inference rather than direct observation, so that one can then consider whether the inference is justified. These abilities come into play as well when one thinks about whether and with what degree of confidence to accept an observation report, for example in the study of history or in a criminal investigation or in assessing news reports. Observational abilities show up in some lists of critical thinking abilities (Ennis 1962: 90; Facione 1990a: 16; Ennis 1991: 9). There are items testing a person’s ability to judge the credibility of observation reports in the Cornell Critical Thinking Tests, Levels X and Z (Ennis & Millman 1971; Ennis, Millman, & Tomko 1985, 2005). Norris and King (1983, 1985, 1990a, 1990b) is a test of ability to appraise observation reports.

Emotional abilities : The emotions that drive a critical thinking process are perplexity or puzzlement, a wish to resolve it, and satisfaction at achieving the desired resolution. Children experience these emotions at an early age, without being trained to do so. Education that takes critical thinking as a goal needs only to channel these emotions and to make sure not to stifle them. Collaborative critical thinking benefits from ability to recognize one’s own and others’ emotional commitments and reactions.

Questioning abilities : A critical thinking process needs transformation of an inchoate sense of perplexity into a clear question. Formulating a question well requires not building in questionable assumptions, not prejudging the issue, and using language that in context is unambiguous and precise enough (Ennis 1962: 97; 1991: 9).

Imaginative abilities : Thinking directed at finding the correct causal explanation of a general phenomenon or particular event requires an ability to imagine possible explanations. Thinking about what policy or plan of action to adopt requires generation of options and consideration of possible consequences of each option. Domain knowledge is required for such creative activity, but a general ability to imagine alternatives is helpful and can be nurtured so as to become easier, quicker, more extensive, and deeper (Dewey 1910: 34–39; 1933: 40–47). Facione (1990a) and Halpern (1998) include the ability to imagine alternatives as a critical thinking ability.

Inferential abilities : The ability to draw conclusions from given information, and to recognize with what degree of certainty one’s own or others’ conclusions follow, is universally recognized as a general critical thinking ability. All 11 examples in section 2 of this article include inferences, some from hypotheses or options (as in Transit , Ferryboat and Disorder ), others from something observed (as in Weather and Rash ). None of these inferences is formally valid. Rather, they are licensed by general, sometimes qualified substantive rules of inference (Toulmin 1958) that rest on domain knowledge—that a bus trip takes about the same time in each direction, that the terminal of a wireless telegraph would be located on the highest possible place, that sudden cooling is often followed by rain, that an allergic reaction to a sulfa drug generally shows up soon after one starts taking it. It is a matter of controversy to what extent the specialized ability to deduce conclusions from premisses using formal rules of inference is needed for critical thinking. Dewey (1933) locates logical forms in setting out the products of reflection rather than in the process of reflection. Ennis (1981a), on the other hand, maintains that a liberally-educated person should have the following abilities: to translate natural-language statements into statements using the standard logical operators, to use appropriately the language of necessary and sufficient conditions, to deal with argument forms and arguments containing symbols, to determine whether in virtue of an argument’s form its conclusion follows necessarily from its premisses, to reason with logically complex propositions, and to apply the rules and procedures of deductive logic. Inferential abilities are recognized as critical thinking abilities by Glaser (1941: 6), Facione (1990a: 9), Ennis (1991: 9), Fisher & Scriven (1997: 99, 111), and Halpern (1998: 452). Items testing inferential abilities constitute two of the five subtests of the Watson Glaser Critical Thinking Appraisal (Watson & Glaser 1980a, 1980b, 1994), two of the four sections in the Cornell Critical Thinking Test Level X (Ennis & Millman 1971; Ennis, Millman, & Tomko 1985, 2005), three of the seven sections in the Cornell Critical Thinking Test Level Z (Ennis & Millman 1971; Ennis, Millman, & Tomko 1985, 2005), 11 of the 34 items on Forms A and B of the California Critical Thinking Skills Test (Facione 1990b, 1992), and a high but variable proportion of the 25 selected-response questions in the Collegiate Learning Assessment (Council for Aid to Education 2017).

Experimenting abilities : Knowing how to design and execute an experiment is important not just in scientific research but also in everyday life, as in Rash . Dewey devoted a whole chapter of his How We Think (1910: 145–156; 1933: 190–202) to the superiority of experimentation over observation in advancing knowledge. Experimenting abilities come into play at one remove in appraising reports of scientific studies. Skill in designing and executing experiments includes the acknowledged abilities to appraise evidence (Glaser 1941: 6), to carry out experiments and to apply appropriate statistical inference techniques (Facione 1990a: 9), to judge inductions to an explanatory hypothesis (Ennis 1991: 9), and to recognize the need for an adequately large sample size (Halpern 1998). The Cornell Critical Thinking Test Level Z (Ennis & Millman 1971; Ennis, Millman, & Tomko 1985, 2005) includes four items (out of 52) on experimental design. The Collegiate Learning Assessment (Council for Aid to Education 2017) makes room for appraisal of study design in both its performance task and its selected-response questions.

Consulting abilities : Skill at consulting sources of information comes into play when one seeks information to help resolve a problem, as in Candidate . Ability to find and appraise information includes ability to gather and marshal pertinent information (Glaser 1941: 6), to judge whether a statement made by an alleged authority is acceptable (Ennis 1962: 84), to plan a search for desired information (Facione 1990a: 9), and to judge the credibility of a source (Ennis 1991: 9). Ability to judge the credibility of statements is tested by 24 items (out of 76) in the Cornell Critical Thinking Test Level X (Ennis & Millman 1971; Ennis, Millman, & Tomko 1985, 2005) and by four items (out of 52) in the Cornell Critical Thinking Test Level Z (Ennis & Millman 1971; Ennis, Millman, & Tomko 1985, 2005). The College Learning Assessment’s performance task requires evaluation of whether information in documents is credible or unreliable (Council for Aid to Education 2017).

Argument analysis abilities : The ability to identify and analyze arguments contributes to the process of surveying arguments on an issue in order to form one’s own reasoned judgment, as in Candidate . The ability to detect and analyze arguments is recognized as a critical thinking skill by Facione (1990a: 7–8), Ennis (1991: 9) and Halpern (1998). Five items (out of 34) on the California Critical Thinking Skills Test (Facione 1990b, 1992) test skill at argument analysis. The College Learning Assessment (Council for Aid to Education 2017) incorporates argument analysis in its selected-response tests of critical reading and evaluation and of critiquing an argument.

Judging skills and deciding skills : Skill at judging and deciding is skill at recognizing what judgment or decision the available evidence and argument supports, and with what degree of confidence. It is thus a component of the inferential skills already discussed.

Lists and tests of critical thinking abilities often include two more abilities: identifying assumptions and constructing and evaluating definitions.

In addition to dispositions and abilities, critical thinking needs knowledge: of critical thinking concepts, of critical thinking principles, and of the subject-matter of the thinking.

We can derive a short list of concepts whose understanding contributes to critical thinking from the critical thinking abilities described in the preceding section. Observational abilities require an understanding of the difference between observation and inference. Questioning abilities require an understanding of the concepts of ambiguity and vagueness. Inferential abilities require an understanding of the difference between conclusive and defeasible inference (traditionally, between deduction and induction), as well as of the difference between necessary and sufficient conditions. Experimenting abilities require an understanding of the concepts of hypothesis, null hypothesis, assumption and prediction, as well as of the concept of statistical significance and of its difference from importance. They also require an understanding of the difference between an experiment and an observational study, and in particular of the difference between a randomized controlled trial, a prospective correlational study and a retrospective (case-control) study. Argument analysis abilities require an understanding of the concepts of argument, premiss, assumption, conclusion and counter-consideration. Additional critical thinking concepts are proposed by Bailin et al. (1999b: 293), Fisher & Scriven (1997: 105–106), Black (2012), and Blair (2021).

According to Glaser (1941: 25), ability to think critically requires knowledge of the methods of logical inquiry and reasoning. If we review the list of abilities in the preceding section, however, we can see that some of them can be acquired and exercised merely through practice, possibly guided in an educational setting, followed by feedback. Searching intelligently for a causal explanation of some phenomenon or event requires that one consider a full range of possible causal contributors, but it seems more important that one implements this principle in one’s practice than that one is able to articulate it. What is important is “operational knowledge” of the standards and principles of good thinking (Bailin et al. 1999b: 291–293). But the development of such critical thinking abilities as designing an experiment or constructing an operational definition can benefit from learning their underlying theory. Further, explicit knowledge of quirks of human thinking seems useful as a cautionary guide. Human memory is not just fallible about details, as people learn from their own experiences of misremembering, but is so malleable that a detailed, clear and vivid recollection of an event can be a total fabrication (Loftus 2017). People seek or interpret evidence in ways that are partial to their existing beliefs and expectations, often unconscious of their “confirmation bias” (Nickerson 1998). Not only are people subject to this and other cognitive biases (Kahneman 2011), of which they are typically unaware, but it may be counter-productive for one to make oneself aware of them and try consciously to counteract them or to counteract social biases such as racial or sexual stereotypes (Kenyon & Beaulac 2014). It is helpful to be aware of these facts and of the superior effectiveness of blocking the operation of biases—for example, by making an immediate record of one’s observations, refraining from forming a preliminary explanatory hypothesis, blind refereeing, double-blind randomized trials, and blind grading of students’ work. It is also helpful to be aware of the prevalence of “noise” (unwanted unsystematic variability of judgments), of how to detect noise (through a noise audit), and of how to reduce noise: make accuracy the goal, think statistically, break a process of arriving at a judgment into independent tasks, resist premature intuitions, in a group get independent judgments first, favour comparative judgments and scales (Kahneman, Sibony, & Sunstein 2021). It is helpful as well to be aware of the concept of “bounded rationality” in decision-making and of the related distinction between “satisficing” and optimizing (Simon 1956; Gigerenzer 2001).

Critical thinking about an issue requires substantive knowledge of the domain to which the issue belongs. Critical thinking abilities are not a magic elixir that can be applied to any issue whatever by somebody who has no knowledge of the facts relevant to exploring that issue. For example, the student in Bubbles needed to know that gases do not penetrate solid objects like a glass, that air expands when heated, that the volume of an enclosed gas varies directly with its temperature and inversely with its pressure, and that hot objects will spontaneously cool down to the ambient temperature of their surroundings unless kept hot by insulation or a source of heat. Critical thinkers thus need a rich fund of subject-matter knowledge relevant to the variety of situations they encounter. This fact is recognized in the inclusion among critical thinking dispositions of a concern to become and remain generally well informed.

Experimental educational interventions, with control groups, have shown that education can improve critical thinking skills and dispositions, as measured by standardized tests. For information about these tests, see the Supplement on Assessment .

What educational methods are most effective at developing the dispositions, abilities and knowledge of a critical thinker? In a comprehensive meta-analysis of experimental and quasi-experimental studies of strategies for teaching students to think critically, Abrami et al. (2015) found that dialogue, anchored instruction, and mentoring each increased the effectiveness of the educational intervention, and that they were most effective when combined. They also found that in these studies a combination of separate instruction in critical thinking with subject-matter instruction in which students are encouraged to think critically was more effective than either by itself. However, the difference was not statistically significant; that is, it might have arisen by chance.

Most of these studies lack the longitudinal follow-up required to determine whether the observed differential improvements in critical thinking abilities or dispositions continue over time, for example until high school or college graduation. For details on studies of methods of developing critical thinking skills and dispositions, see the Supplement on Educational Methods .

12. Controversies

Scholars have denied the generalizability of critical thinking abilities across subject domains, have alleged bias in critical thinking theory and pedagogy, and have investigated the relationship of critical thinking to other kinds of thinking.

McPeck (1981) attacked the thinking skills movement of the 1970s, including the critical thinking movement. He argued that there are no general thinking skills, since thinking is always thinking about some subject-matter. It is futile, he claimed, for schools and colleges to teach thinking as if it were a separate subject. Rather, teachers should lead their pupils to become autonomous thinkers by teaching school subjects in a way that brings out their cognitive structure and that encourages and rewards discussion and argument. As some of his critics (e.g., Paul 1985; Siegel 1985) pointed out, McPeck’s central argument needs elaboration, since it has obvious counter-examples in writing and speaking, for which (up to a certain level of complexity) there are teachable general abilities even though they are always about some subject-matter. To make his argument convincing, McPeck needs to explain how thinking differs from writing and speaking in a way that does not permit useful abstraction of its components from the subject-matters with which it deals. He has not done so. Nevertheless, his position that the dispositions and abilities of a critical thinker are best developed in the context of subject-matter instruction is shared by many theorists of critical thinking, including Dewey (1910, 1933), Glaser (1941), Passmore (1980), Weinstein (1990), Bailin et al. (1999b), and Willingham (2019).

McPeck’s challenge prompted reflection on the extent to which critical thinking is subject-specific. McPeck argued for a strong subject-specificity thesis, according to which it is a conceptual truth that all critical thinking abilities are specific to a subject. (He did not however extend his subject-specificity thesis to critical thinking dispositions. In particular, he took the disposition to suspend judgment in situations of cognitive dissonance to be a general disposition.) Conceptual subject-specificity is subject to obvious counter-examples, such as the general ability to recognize confusion of necessary and sufficient conditions. A more modest thesis, also endorsed by McPeck, is epistemological subject-specificity, according to which the norms of good thinking vary from one field to another. Epistemological subject-specificity clearly holds to a certain extent; for example, the principles in accordance with which one solves a differential equation are quite different from the principles in accordance with which one determines whether a painting is a genuine Picasso. But the thesis suffers, as Ennis (1989) points out, from vagueness of the concept of a field or subject and from the obvious existence of inter-field principles, however broadly the concept of a field is construed. For example, the principles of hypothetico-deductive reasoning hold for all the varied fields in which such reasoning occurs. A third kind of subject-specificity is empirical subject-specificity, according to which as a matter of empirically observable fact a person with the abilities and dispositions of a critical thinker in one area of investigation will not necessarily have them in another area of investigation.

The thesis of empirical subject-specificity raises the general problem of transfer. If critical thinking abilities and dispositions have to be developed independently in each school subject, how are they of any use in dealing with the problems of everyday life and the political and social issues of contemporary society, most of which do not fit into the framework of a traditional school subject? Proponents of empirical subject-specificity tend to argue that transfer is more likely to occur if there is critical thinking instruction in a variety of domains, with explicit attention to dispositions and abilities that cut across domains. But evidence for this claim is scanty. There is a need for well-designed empirical studies that investigate the conditions that make transfer more likely.

It is common ground in debates about the generality or subject-specificity of critical thinking dispositions and abilities that critical thinking about any topic requires background knowledge about the topic. For example, the most sophisticated understanding of the principles of hypothetico-deductive reasoning is of no help unless accompanied by some knowledge of what might be plausible explanations of some phenomenon under investigation.

Critics have objected to bias in the theory, pedagogy and practice of critical thinking. Commentators (e.g., Alston 1995; Ennis 1998) have noted that anyone who takes a position has a bias in the neutral sense of being inclined in one direction rather than others. The critics, however, are objecting to bias in the pejorative sense of an unjustified favoring of certain ways of knowing over others, frequently alleging that the unjustly favoured ways are those of a dominant sex or culture (Bailin 1995). These ways favour:

  • reinforcement of egocentric and sociocentric biases over dialectical engagement with opposing world-views (Paul 1981, 1984; Warren 1998)
  • distancing from the object of inquiry over closeness to it (Martin 1992; Thayer-Bacon 1992)
  • indifference to the situation of others over care for them (Martin 1992)
  • orientation to thought over orientation to action (Martin 1992)
  • being reasonable over caring to understand people’s ideas (Thayer-Bacon 1993)
  • being neutral and objective over being embodied and situated (Thayer-Bacon 1995a)
  • doubting over believing (Thayer-Bacon 1995b)
  • reason over emotion, imagination and intuition (Thayer-Bacon 2000)
  • solitary thinking over collaborative thinking (Thayer-Bacon 2000)
  • written and spoken assignments over other forms of expression (Alston 2001)
  • attention to written and spoken communications over attention to human problems (Alston 2001)
  • winning debates in the public sphere over making and understanding meaning (Alston 2001)

A common thread in this smorgasbord of accusations is dissatisfaction with focusing on the logical analysis and evaluation of reasoning and arguments. While these authors acknowledge that such analysis and evaluation is part of critical thinking and should be part of its conceptualization and pedagogy, they insist that it is only a part. Paul (1981), for example, bemoans the tendency of atomistic teaching of methods of analyzing and evaluating arguments to turn students into more able sophists, adept at finding fault with positions and arguments with which they disagree but even more entrenched in the egocentric and sociocentric biases with which they began. Martin (1992) and Thayer-Bacon (1992) cite with approval the self-reported intimacy with their subject-matter of leading researchers in biology and medicine, an intimacy that conflicts with the distancing allegedly recommended in standard conceptions and pedagogy of critical thinking. Thayer-Bacon (2000) contrasts the embodied and socially embedded learning of her elementary school students in a Montessori school, who used their imagination, intuition and emotions as well as their reason, with conceptions of critical thinking as

thinking that is used to critique arguments, offer justifications, and make judgments about what are the good reasons, or the right answers. (Thayer-Bacon 2000: 127–128)

Alston (2001) reports that her students in a women’s studies class were able to see the flaws in the Cinderella myth that pervades much romantic fiction but in their own romantic relationships still acted as if all failures were the woman’s fault and still accepted the notions of love at first sight and living happily ever after. Students, she writes, should

be able to connect their intellectual critique to a more affective, somatic, and ethical account of making risky choices that have sexist, racist, classist, familial, sexual, or other consequences for themselves and those both near and far… critical thinking that reads arguments, texts, or practices merely on the surface without connections to feeling/desiring/doing or action lacks an ethical depth that should infuse the difference between mere cognitive activity and something we want to call critical thinking. (Alston 2001: 34)

Some critics portray such biases as unfair to women. Thayer-Bacon (1992), for example, has charged modern critical thinking theory with being sexist, on the ground that it separates the self from the object and causes one to lose touch with one’s inner voice, and thus stigmatizes women, who (she asserts) link self to object and listen to their inner voice. Her charge does not imply that women as a group are on average less able than men to analyze and evaluate arguments. Facione (1990c) found no difference by sex in performance on his California Critical Thinking Skills Test. Kuhn (1991: 280–281) found no difference by sex in either the disposition or the competence to engage in argumentative thinking.

The critics propose a variety of remedies for the biases that they allege. In general, they do not propose to eliminate or downplay critical thinking as an educational goal. Rather, they propose to conceptualize critical thinking differently and to change its pedagogy accordingly. Their pedagogical proposals arise logically from their objections. They can be summarized as follows:

  • Focus on argument networks with dialectical exchanges reflecting contesting points of view rather than on atomic arguments, so as to develop “strong sense” critical thinking that transcends egocentric and sociocentric biases (Paul 1981, 1984).
  • Foster closeness to the subject-matter and feeling connected to others in order to inform a humane democracy (Martin 1992).
  • Develop “constructive thinking” as a social activity in a community of physically embodied and socially embedded inquirers with personal voices who value not only reason but also imagination, intuition and emotion (Thayer-Bacon 2000).
  • In developing critical thinking in school subjects, treat as important neither skills nor dispositions but opening worlds of meaning (Alston 2001).
  • Attend to the development of critical thinking dispositions as well as skills, and adopt the “critical pedagogy” practised and advocated by Freire (1968 [1970]) and hooks (1994) (Dalgleish, Girard, & Davies 2017).

A common thread in these proposals is treatment of critical thinking as a social, interactive, personally engaged activity like that of a quilting bee or a barn-raising (Thayer-Bacon 2000) rather than as an individual, solitary, distanced activity symbolized by Rodin’s The Thinker . One can get a vivid description of education with the former type of goal from the writings of bell hooks (1994, 2010). Critical thinking for her is open-minded dialectical exchange across opposing standpoints and from multiple perspectives, a conception similar to Paul’s “strong sense” critical thinking (Paul 1981). She abandons the structure of domination in the traditional classroom. In an introductory course on black women writers, for example, she assigns students to write an autobiographical paragraph about an early racial memory, then to read it aloud as the others listen, thus affirming the uniqueness and value of each voice and creating a communal awareness of the diversity of the group’s experiences (hooks 1994: 84). Her “engaged pedagogy” is thus similar to the “freedom under guidance” implemented in John Dewey’s Laboratory School of Chicago in the late 1890s and early 1900s. It incorporates the dialogue, anchored instruction, and mentoring that Abrami (2015) found to be most effective in improving critical thinking skills and dispositions.

What is the relationship of critical thinking to problem solving, decision-making, higher-order thinking, creative thinking, and other recognized types of thinking? One’s answer to this question obviously depends on how one defines the terms used in the question. If critical thinking is conceived broadly to cover any careful thinking about any topic for any purpose, then problem solving and decision making will be kinds of critical thinking, if they are done carefully. Historically, ‘critical thinking’ and ‘problem solving’ were two names for the same thing. If critical thinking is conceived more narrowly as consisting solely of appraisal of intellectual products, then it will be disjoint with problem solving and decision making, which are constructive.

Bloom’s taxonomy of educational objectives used the phrase “intellectual abilities and skills” for what had been labeled “critical thinking” by some, “reflective thinking” by Dewey and others, and “problem solving” by still others (Bloom et al. 1956: 38). Thus, the so-called “higher-order thinking skills” at the taxonomy’s top levels of analysis, synthesis and evaluation are just critical thinking skills, although they do not come with general criteria for their assessment (Ennis 1981b). The revised version of Bloom’s taxonomy (Anderson et al. 2001) likewise treats critical thinking as cutting across those types of cognitive process that involve more than remembering (Anderson et al. 2001: 269–270). For details, see the Supplement on History .

As to creative thinking, it overlaps with critical thinking (Bailin 1987, 1988). Thinking about the explanation of some phenomenon or event, as in Ferryboat , requires creative imagination in constructing plausible explanatory hypotheses. Likewise, thinking about a policy question, as in Candidate , requires creativity in coming up with options. Conversely, creativity in any field needs to be balanced by critical appraisal of the draft painting or novel or mathematical theory.

  • Abrami, Philip C., Robert M. Bernard, Eugene Borokhovski, David I. Waddington, C. Anne Wade, and Tonje Person, 2015, “Strategies for Teaching Students to Think Critically: A Meta-analysis”, Review of Educational Research , 85(2): 275–314. doi:10.3102/0034654314551063
  • Aikin, Wilford M., 1942, The Story of the Eight-year Study, with Conclusions and Recommendations , Volume I of Adventure in American Education , New York and London: Harper & Brothers. [ Aikin 1942 available online ]
  • Alston, Kal, 1995, “Begging the Question: Is Critical Thinking Biased?”, Educational Theory , 45(2): 225–233. doi:10.1111/j.1741-5446.1995.00225.x
  • –––, 2001, “Re/Thinking Critical Thinking: The Seductions of Everyday Life”, Studies in Philosophy and Education , 20(1): 27–40. doi:10.1023/A:1005247128053
  • American Educational Research Association, 2014, Standards for Educational and Psychological Testing / American Educational Research Association, American Psychological Association, National Council on Measurement in Education , Washington, DC: American Educational Research Association.
  • Anderson, Lorin W., David R. Krathwohl, Peter W. Airiasian, Kathleen A. Cruikshank, Richard E. Mayer, Paul R. Pintrich, James Raths, and Merlin C. Wittrock, 2001, A Taxonomy for Learning, Teaching and Assessing: A Revision of Bloom’s Taxonomy of Educational Objectives , New York: Longman, complete edition.
  • Bailin, Sharon, 1987, “Critical and Creative Thinking”, Informal Logic , 9(1): 23–30. [ Bailin 1987 available online ]
  • –––, 1988, Achieving Extraordinary Ends: An Essay on Creativity , Dordrecht: Kluwer. doi:10.1007/978-94-009-2780-3
  • –––, 1995, “Is Critical Thinking Biased? Clarifications and Implications”, Educational Theory , 45(2): 191–197. doi:10.1111/j.1741-5446.1995.00191.x
  • Bailin, Sharon and Mark Battersby, 2009, “Inquiry: A Dialectical Approach to Teaching Critical Thinking”, in Juho Ritola (ed.), Argument Cultures: Proceedings of OSSA 09 , CD-ROM (pp. 1–10), Windsor, ON: OSSA. [ Bailin & Battersby 2009 available online ]
  • –––, 2016a, “Fostering the Virtues of Inquiry”, Topoi , 35(2): 367–374. doi:10.1007/s11245-015-9307-6
  • –––, 2016b, Reason in the Balance: An Inquiry Approach to Critical Thinking , Indianapolis: Hackett, 2nd edition.
  • –––, 2021, “Inquiry: Teaching for Reasoned Judgment”, in Daniel Fasko, Jr. and Frank Fair (eds.), Critical Thinking and Reasoning: Theory, Development, Instruction, and Assessment , Leiden: Brill, pp. 31–46. doi: 10.1163/9789004444591_003
  • Bailin, Sharon, Roland Case, Jerrold R. Coombs, and Leroi B. Daniels, 1999a, “Common Misconceptions of Critical Thinking”, Journal of Curriculum Studies , 31(3): 269–283. doi:10.1080/002202799183124
  • –––, 1999b, “Conceptualizing Critical Thinking”, Journal of Curriculum Studies , 31(3): 285–302. doi:10.1080/002202799183133
  • Blair, J. Anthony, 2021, Studies in Critical Thinking , Windsor, ON: Windsor Studies in Argumentation, 2nd edition. [Available online at https://windsor.scholarsportal.info/omp/index.php/wsia/catalog/book/106]
  • Berman, Alan M., Seth J. Schwartz, William M. Kurtines, and Steven L. Berman, 2001, “The Process of Exploration in Identity Formation: The Role of Style and Competence”, Journal of Adolescence , 24(4): 513–528. doi:10.1006/jado.2001.0386
  • Black, Beth (ed.), 2012, An A to Z of Critical Thinking , London: Continuum International Publishing Group.
  • Bloom, Benjamin Samuel, Max D. Engelhart, Edward J. Furst, Walter H. Hill, and David R. Krathwohl, 1956, Taxonomy of Educational Objectives. Handbook I: Cognitive Domain , New York: David McKay.
  • Boardman, Frank, Nancy M. Cavender, and Howard Kahane, 2018, Logic and Contemporary Rhetoric: The Use of Reason in Everyday Life , Boston: Cengage, 13th edition.
  • Browne, M. Neil and Stuart M. Keeley, 2018, Asking the Right Questions: A Guide to Critical Thinking , Hoboken, NJ: Pearson, 12th edition.
  • Center for Assessment & Improvement of Learning, 2017, Critical Thinking Assessment Test , Cookeville, TN: Tennessee Technological University.
  • Cleghorn, Paul. 2021. “Critical Thinking in the Elementary School: Practical Guidance for Building a Culture of Thinking”, in Daniel Fasko, Jr. and Frank Fair (eds.), Critical Thinking and Reasoning: Theory, Development, Instruction, and Assessmen t, Leiden: Brill, pp. 150–167. doi: 10.1163/9789004444591_010
  • Cohen, Jacob, 1988, Statistical Power Analysis for the Behavioral Sciences , Hillsdale, NJ: Lawrence Erlbaum Associates, 2nd edition.
  • College Board, 1983, Academic Preparation for College. What Students Need to Know and Be Able to Do , New York: College Entrance Examination Board, ERIC document ED232517.
  • Commission on the Relation of School and College of the Progressive Education Association, 1943, Thirty Schools Tell Their Story , Volume V of Adventure in American Education , New York and London: Harper & Brothers.
  • Council for Aid to Education, 2017, CLA+ Student Guide . Available at http://cae.org/images/uploads/pdf/CLA_Student_Guide_Institution.pdf ; last accessed 2022 07 16.
  • Dalgleish, Adam, Patrick Girard, and Maree Davies, 2017, “Critical Thinking, Bias and Feminist Philosophy: Building a Better Framework through Collaboration”, Informal Logic , 37(4): 351–369. [ Dalgleish et al. available online ]
  • Dewey, John, 1910, How We Think , Boston: D.C. Heath. [ Dewey 1910 available online ]
  • –––, 1916, Democracy and Education: An Introduction to the Philosophy of Education , New York: Macmillan.
  • –––, 1933, How We Think: A Restatement of the Relation of Reflective Thinking to the Educative Process , Lexington, MA: D.C. Heath.
  • –––, 1936, “The Theory of the Chicago Experiment”, Appendix II of Mayhew & Edwards 1936: 463–477.
  • –––, 1938, Logic: The Theory of Inquiry , New York: Henry Holt and Company.
  • Dominguez, Caroline (coord.), 2018a, A European Collection of the Critical Thinking Skills and Dispositions Needed in Different Professional Fields for the 21st Century , Vila Real, Portugal: UTAD. Available at http://bit.ly/CRITHINKEDUO1 ; last accessed 2022 07 16.
  • ––– (coord.), 2018b, A European Review on Critical Thinking Educational Practices in Higher Education Institutions , Vila Real: UTAD. Available at http://bit.ly/CRITHINKEDUO2 ; last accessed 2022 07 16.
  • ––– (coord.), 2018c, The CRITHINKEDU European Course on Critical Thinking Education for University Teachers: From Conception to Delivery , Vila Real: UTAD. Available at http:/bit.ly/CRITHINKEDU03; last accessed 2022 07 16.
  • Dominguez Caroline and Rita Payan-Carreira (eds.), 2019, Promoting Critical Thinking in European Higher Education Institutions: Towards an Educational Protocol , Vila Real: UTAD. Available at http:/bit.ly/CRITHINKEDU04; last accessed 2022 07 16.
  • Ennis, Robert H., 1958, “An Appraisal of the Watson-Glaser Critical Thinking Appraisal”, The Journal of Educational Research , 52(4): 155–158. doi:10.1080/00220671.1958.10882558
  • –––, 1962, “A Concept of Critical Thinking: A Proposed Basis for Research on the Teaching and Evaluation of Critical Thinking Ability”, Harvard Educational Review , 32(1): 81–111.
  • –––, 1981a, “A Conception of Deductive Logical Competence”, Teaching Philosophy , 4(3/4): 337–385. doi:10.5840/teachphil198143/429
  • –––, 1981b, “Eight Fallacies in Bloom’s Taxonomy”, in C. J. B. Macmillan (ed.), Philosophy of Education 1980: Proceedings of the Thirty-seventh Annual Meeting of the Philosophy of Education Society , Bloomington, IL: Philosophy of Education Society, pp. 269–273.
  • –––, 1984, “Problems in Testing Informal Logic, Critical Thinking, Reasoning Ability”, Informal Logic , 6(1): 3–9. [ Ennis 1984 available online ]
  • –––, 1987, “A Taxonomy of Critical Thinking Dispositions and Abilities”, in Joan Boykoff Baron and Robert J. Sternberg (eds.), Teaching Thinking Skills: Theory and Practice , New York: W. H. Freeman, pp. 9–26.
  • –––, 1989, “Critical Thinking and Subject Specificity: Clarification and Needed Research”, Educational Researcher , 18(3): 4–10. doi:10.3102/0013189X018003004
  • –––, 1991, “Critical Thinking: A Streamlined Conception”, Teaching Philosophy , 14(1): 5–24. doi:10.5840/teachphil19911412
  • –––, 1996, “Critical Thinking Dispositions: Their Nature and Assessability”, Informal Logic , 18(2–3): 165–182. [ Ennis 1996 available online ]
  • –––, 1998, “Is Critical Thinking Culturally Biased?”, Teaching Philosophy , 21(1): 15–33. doi:10.5840/teachphil19982113
  • –––, 2011, “Critical Thinking: Reflection and Perspective Part I”, Inquiry: Critical Thinking across the Disciplines , 26(1): 4–18. doi:10.5840/inquiryctnews20112613
  • –––, 2013, “Critical Thinking across the Curriculum: The Wisdom CTAC Program”, Inquiry: Critical Thinking across the Disciplines , 28(2): 25–45. doi:10.5840/inquiryct20132828
  • –––, 2016, “Definition: A Three-Dimensional Analysis with Bearing on Key Concepts”, in Patrick Bondy and Laura Benacquista (eds.), Argumentation, Objectivity, and Bias: Proceedings of the 11th International Conference of the Ontario Society for the Study of Argumentation (OSSA), 18–21 May 2016 , Windsor, ON: OSSA, pp. 1–19. Available at http://scholar.uwindsor.ca/ossaarchive/OSSA11/papersandcommentaries/105 ; last accessed 2022 07 16.
  • –––, 2018, “Critical Thinking Across the Curriculum: A Vision”, Topoi , 37(1): 165–184. doi:10.1007/s11245-016-9401-4
  • Ennis, Robert H., and Jason Millman, 1971, Manual for Cornell Critical Thinking Test, Level X, and Cornell Critical Thinking Test, Level Z , Urbana, IL: Critical Thinking Project, University of Illinois.
  • Ennis, Robert H., Jason Millman, and Thomas Norbert Tomko, 1985, Cornell Critical Thinking Tests Level X & Level Z: Manual , Pacific Grove, CA: Midwest Publication, 3rd edition.
  • –––, 2005, Cornell Critical Thinking Tests Level X & Level Z: Manual , Seaside, CA: Critical Thinking Company, 5th edition.
  • Ennis, Robert H. and Eric Weir, 1985, The Ennis-Weir Critical Thinking Essay Test: Test, Manual, Criteria, Scoring Sheet: An Instrument for Teaching and Testing , Pacific Grove, CA: Midwest Publications.
  • Facione, Peter A., 1990a, Critical Thinking: A Statement of Expert Consensus for Purposes of Educational Assessment and Instruction , Research Findings and Recommendations Prepared for the Committee on Pre-College Philosophy of the American Philosophical Association, ERIC Document ED315423.
  • –––, 1990b, California Critical Thinking Skills Test, CCTST – Form A , Millbrae, CA: The California Academic Press.
  • –––, 1990c, The California Critical Thinking Skills Test--College Level. Technical Report #3. Gender, Ethnicity, Major, CT Self-Esteem, and the CCTST , ERIC Document ED326584.
  • –––, 1992, California Critical Thinking Skills Test: CCTST – Form B, Millbrae, CA: The California Academic Press.
  • –––, 2000, “The Disposition Toward Critical Thinking: Its Character, Measurement, and Relationship to Critical Thinking Skill”, Informal Logic , 20(1): 61–84. [ Facione 2000 available online ]
  • Facione, Peter A. and Noreen C. Facione, 1992, CCTDI: A Disposition Inventory , Millbrae, CA: The California Academic Press.
  • Facione, Peter A., Noreen C. Facione, and Carol Ann F. Giancarlo, 2001, California Critical Thinking Disposition Inventory: CCTDI: Inventory Manual , Millbrae, CA: The California Academic Press.
  • Facione, Peter A., Carol A. Sánchez, and Noreen C. Facione, 1994, Are College Students Disposed to Think? , Millbrae, CA: The California Academic Press. ERIC Document ED368311.
  • Fisher, Alec, and Michael Scriven, 1997, Critical Thinking: Its Definition and Assessment , Norwich: Centre for Research in Critical Thinking, University of East Anglia.
  • Freire, Paulo, 1968 [1970], Pedagogia do Oprimido . Translated as Pedagogy of the Oppressed , Myra Bergman Ramos (trans.), New York: Continuum, 1970.
  • Gigerenzer, Gerd, 2001, “The Adaptive Toolbox”, in Gerd Gigerenzer and Reinhard Selten (eds.), Bounded Rationality: The Adaptive Toolbox , Cambridge, MA: MIT Press, pp. 37–50.
  • Glaser, Edward Maynard, 1941, An Experiment in the Development of Critical Thinking , New York: Bureau of Publications, Teachers College, Columbia University.
  • Groarke, Leo A. and Christopher W. Tindale, 2012, Good Reasoning Matters! A Constructive Approach to Critical Thinking , Don Mills, ON: Oxford University Press, 5th edition.
  • Halpern, Diane F., 1998, “Teaching Critical Thinking for Transfer Across Domains: Disposition, Skills, Structure Training, and Metacognitive Monitoring”, American Psychologist , 53(4): 449–455. doi:10.1037/0003-066X.53.4.449
  • –––, 2016, Manual: Halpern Critical Thinking Assessment , Mödling, Austria: Schuhfried. Available at https://pdfcoffee.com/hcta-test-manual-pdf-free.html; last accessed 2022 07 16.
  • Hamby, Benjamin, 2014, The Virtues of Critical Thinkers , Doctoral dissertation, Philosophy, McMaster University. [ Hamby 2014 available online ]
  • –––, 2015, “Willingness to Inquire: The Cardinal Critical Thinking Virtue”, in Martin Davies and Ronald Barnett (eds.), The Palgrave Handbook of Critical Thinking in Higher Education , New York: Palgrave Macmillan, pp. 77–87.
  • Haran, Uriel, Ilana Ritov, and Barbara A. Mellers, 2013, “The Role of Actively Open-minded Thinking in Information Acquisition, Accuracy, and Calibration”, Judgment and Decision Making , 8(3): 188–201.
  • Hatcher, Donald and Kevin Possin, 2021, “Commentary: Thinking Critically about Critical Thinking Assessment”, in Daniel Fasko, Jr. and Frank Fair (eds.), Critical Thinking and Reasoning: Theory, Development, Instruction, and Assessment , Leiden: Brill, pp. 298–322. doi: 10.1163/9789004444591_017
  • Haynes, Ada, Elizabeth Lisic, Kevin Harris, Katie Leming, Kyle Shanks, and Barry Stein, 2015, “Using the Critical Thinking Assessment Test (CAT) as a Model for Designing Within-Course Assessments: Changing How Faculty Assess Student Learning”, Inquiry: Critical Thinking Across the Disciplines , 30(3): 38–48. doi:10.5840/inquiryct201530316
  • Haynes, Ada and Barry Stein, 2021, “Observations from a Long-Term Effort to Assess and Improve Critical Thinking”, in Daniel Fasko, Jr. and Frank Fair (eds.), Critical Thinking and Reasoning: Theory, Development, Instruction, and Assessment , Leiden: Brill, pp. 231–254. doi: 10.1163/9789004444591_014
  • Hiner, Amanda L. 2021. “Equipping Students for Success in College and Beyond: Placing Critical Thinking Instruction at the Heart of a General Education Program”, in Daniel Fasko, Jr. and Frank Fair (eds.), Critical Thinking and Reasoning: Theory, Development, Instruction, and Assessment , Leiden: Brill, pp. 188–208. doi: 10.1163/9789004444591_012
  • Hitchcock, David, 2017, “Critical Thinking as an Educational Ideal”, in his On Reasoning and Argument: Essays in Informal Logic and on Critical Thinking , Dordrecht: Springer, pp. 477–497. doi:10.1007/978-3-319-53562-3_30
  • –––, 2021, “Seven Philosophical Implications of Critical Thinking: Themes, Variations, Implications”, in Daniel Fasko, Jr. and Frank Fair (eds.), Critical Thinking and Reasoning: Theory, Development, Instruction, and Assessment , Leiden: Brill, pp. 9–30. doi: 10.1163/9789004444591_002
  • hooks, bell, 1994, Teaching to Transgress: Education as the Practice of Freedom , New York and London: Routledge.
  • –––, 2010, Teaching Critical Thinking: Practical Wisdom , New York and London: Routledge.
  • Johnson, Ralph H., 1992, “The Problem of Defining Critical Thinking”, in Stephen P, Norris (ed.), The Generalizability of Critical Thinking , New York: Teachers College Press, pp. 38–53.
  • Kahane, Howard, 1971, Logic and Contemporary Rhetoric: The Use of Reason in Everyday Life , Belmont, CA: Wadsworth.
  • Kahneman, Daniel, 2011, Thinking, Fast and Slow , New York: Farrar, Straus and Giroux.
  • Kahneman, Daniel, Olivier Sibony, & Cass R. Sunstein, 2021, Noise: A Flaw in Human Judgment , New York: Little, Brown Spark.
  • Kenyon, Tim, and Guillaume Beaulac, 2014, “Critical Thinking Education and Debasing”, Informal Logic , 34(4): 341–363. [ Kenyon & Beaulac 2014 available online ]
  • Krathwohl, David R., Benjamin S. Bloom, and Bertram B. Masia, 1964, Taxonomy of Educational Objectives, Handbook II: Affective Domain , New York: David McKay.
  • Kuhn, Deanna, 1991, The Skills of Argument , New York: Cambridge University Press. doi:10.1017/CBO9780511571350
  • –––, 2019, “Critical Thinking as Discourse”, Human Development, 62 (3): 146–164. doi:10.1159/000500171
  • Lipman, Matthew, 1987, “Critical Thinking–What Can It Be?”, Analytic Teaching , 8(1): 5–12. [ Lipman 1987 available online ]
  • –––, 2003, Thinking in Education , Cambridge: Cambridge University Press, 2nd edition.
  • Loftus, Elizabeth F., 2017, “Eavesdropping on Memory”, Annual Review of Psychology , 68: 1–18. doi:10.1146/annurev-psych-010416-044138
  • Makaiau, Amber Strong, 2021, “The Good Thinker’s Tool Kit: How to Engage Critical Thinking and Reasoning in Secondary Education”, in Daniel Fasko, Jr. and Frank Fair (eds.), Critical Thinking and Reasoning: Theory, Development, Instruction, and Assessment , Leiden: Brill, pp. 168–187. doi: 10.1163/9789004444591_011
  • Martin, Jane Roland, 1992, “Critical Thinking for a Humane World”, in Stephen P. Norris (ed.), The Generalizability of Critical Thinking , New York: Teachers College Press, pp. 163–180.
  • Mayhew, Katherine Camp, and Anna Camp Edwards, 1936, The Dewey School: The Laboratory School of the University of Chicago, 1896–1903 , New York: Appleton-Century. [ Mayhew & Edwards 1936 available online ]
  • McPeck, John E., 1981, Critical Thinking and Education , New York: St. Martin’s Press.
  • Moore, Brooke Noel and Richard Parker, 2020, Critical Thinking , New York: McGraw-Hill, 13th edition.
  • Nickerson, Raymond S., 1998, “Confirmation Bias: A Ubiquitous Phenomenon in Many Guises”, Review of General Psychology , 2(2): 175–220. doi:10.1037/1089-2680.2.2.175
  • Nieto, Ana Maria, and Jorge Valenzuela, 2012, “A Study of the Internal Structure of Critical Thinking Dispositions”, Inquiry: Critical Thinking across the Disciplines , 27(1): 31–38. doi:10.5840/inquiryct20122713
  • Norris, Stephen P., 1985, “Controlling for Background Beliefs When Developing Multiple-choice Critical Thinking Tests”, Educational Measurement: Issues and Practice , 7(3): 5–11. doi:10.1111/j.1745-3992.1988.tb00437.x
  • Norris, Stephen P. and Robert H. Ennis, 1989, Evaluating Critical Thinking (The Practitioners’ Guide to Teaching Thinking Series), Pacific Grove, CA: Midwest Publications.
  • Norris, Stephen P. and Ruth Elizabeth King, 1983, Test on Appraising Observations , St. John’s, NL: Institute for Educational Research and Development, Memorial University of Newfoundland.
  • –––, 1984, The Design of a Critical Thinking Test on Appraising Observations , St. John’s, NL: Institute for Educational Research and Development, Memorial University of Newfoundland. ERIC Document ED260083.
  • –––, 1985, Test on Appraising Observations: Manual , St. John’s, NL: Institute for Educational Research and Development, Memorial University of Newfoundland.
  • –––, 1990a, Test on Appraising Observations , St. John’s, NL: Institute for Educational Research and Development, Memorial University of Newfoundland, 2nd edition.
  • –––, 1990b, Test on Appraising Observations: Manual , St. John’s, NL: Institute for Educational Research and Development, Memorial University of Newfoundland, 2nd edition.
  • OCR [Oxford, Cambridge and RSA Examinations], 2011, AS/A Level GCE: Critical Thinking – H052, H452 , Cambridge: OCR. Past papers available at https://pastpapers.co/ocr/?dir=A-Level/Critical-Thinking-H052-H452; last accessed 2022 07 16.
  • Ontario Ministry of Education, 2013, The Ontario Curriculum Grades 9 to 12: Social Sciences and Humanities . Available at http://www.edu.gov.on.ca/eng/curriculum/secondary/ssciences9to122013.pdf ; last accessed 2022 07 16.
  • Passmore, John Arthur, 1980, The Philosophy of Teaching , London: Duckworth.
  • Paul, Richard W., 1981, “Teaching Critical Thinking in the ‘Strong’ Sense: A Focus on Self-Deception, World Views, and a Dialectical Mode of Analysis”, Informal Logic , 4(2): 2–7. [ Paul 1981 available online ]
  • –––, 1984, “Critical Thinking: Fundamental to Education for a Free Society”, Educational Leadership , 42(1): 4–14.
  • –––, 1985, “McPeck’s Mistakes”, Informal Logic , 7(1): 35–43. [ Paul 1985 available online ]
  • Paul, Richard W. and Linda Elder, 2006, The Miniature Guide to Critical Thinking: Concepts and Tools , Dillon Beach, CA: Foundation for Critical Thinking, 4th edition.
  • Payette, Patricia, and Edna Ross, 2016, “Making a Campus-Wide Commitment to Critical Thinking: Insights and Promising Practices Utilizing the Paul-Elder Approach at the University of Louisville”, Inquiry: Critical Thinking Across the Disciplines , 31(1): 98–110. doi:10.5840/inquiryct20163118
  • Possin, Kevin, 2008, “A Field Guide to Critical-Thinking Assessment”, Teaching Philosophy , 31(3): 201–228. doi:10.5840/teachphil200831324
  • –––, 2013a, “Some Problems with the Halpern Critical Thinking Assessment (HCTA) Test”, Inquiry: Critical Thinking across the Disciplines , 28(3): 4–12. doi:10.5840/inquiryct201328313
  • –––, 2013b, “A Serious Flaw in the Collegiate Learning Assessment (CLA) Test”, Informal Logic , 33(3): 390–405. [ Possin 2013b available online ]
  • –––, 2013c, “A Fatal Flaw in the Collegiate Learning Assessment Test”, Assessment Update , 25 (1): 8–12.
  • –––, 2014, “Critique of the Watson-Glaser Critical Thinking Appraisal Test: The More You Know, the Lower Your Score”, Informal Logic , 34(4): 393–416. [ Possin 2014 available online ]
  • –––, 2020, “CAT Scan: A Critical Review of the Critical-Thinking Assessment Test”, Informal Logic , 40 (3): 489–508. [Available online at https://informallogic.ca/index.php/informal_logic/article/view/6243]
  • Rawls, John, 1971, A Theory of Justice , Cambridge, MA: Harvard University Press.
  • Rear, David, 2019, “One Size Fits All? The Limitations of Standardised Assessment in Critical Thinking”, Assessment & Evaluation in Higher Education , 44(5): 664–675. doi: 10.1080/02602938.2018.1526255
  • Rousseau, Jean-Jacques, 1762, Émile , Amsterdam: Jean Néaulme.
  • Scheffler, Israel, 1960, The Language of Education , Springfield, IL: Charles C. Thomas.
  • Scriven, Michael, and Richard W. Paul, 1987, Defining Critical Thinking , Draft statement written for the National Council for Excellence in Critical Thinking Instruction. Available at http://www.criticalthinking.org/pages/defining-critical-thinking/766 ; last accessed 2022 07 16.
  • Sheffield, Clarence Burton Jr., 2018, “Promoting Critical Thinking in Higher Education: My Experiences as the Inaugural Eugene H. Fram Chair in Applied Critical Thinking at Rochester Institute of Technology”, Topoi , 37(1): 155–163. doi:10.1007/s11245-016-9392-1
  • Siegel, Harvey, 1985, “McPeck, Informal Logic and the Nature of Critical Thinking”, in David Nyberg (ed.), Philosophy of Education 1985: Proceedings of the Forty-First Annual Meeting of the Philosophy of Education Society , Normal, IL: Philosophy of Education Society, pp. 61–72.
  • –––, 1988, Educating Reason: Rationality, Critical Thinking, and Education , New York: Routledge.
  • –––, 1999, “What (Good) Are Thinking Dispositions?”, Educational Theory , 49(2): 207–221. doi:10.1111/j.1741-5446.1999.00207.x
  • Simon, Herbert A., 1956, “Rational Choice and the Structure of the Environment”, Psychological Review , 63(2): 129–138. doi: 10.1037/h0042769
  • Simpson, Elizabeth, 1966–67, “The Classification of Educational Objectives: Psychomotor Domain”, Illinois Teacher of Home Economics , 10(4): 110–144, ERIC document ED0103613. [ Simpson 1966–67 available online ]
  • Skolverket, 2018, Curriculum for the Compulsory School, Preschool Class and School-age Educare , Stockholm: Skolverket, revised 2018. Available at https://www.skolverket.se/download/18.31c292d516e7445866a218f/1576654682907/pdf3984.pdf; last accessed 2022 07 15.
  • Smith, B. Othanel, 1953, “The Improvement of Critical Thinking”, Progressive Education , 30(5): 129–134.
  • Smith, Eugene Randolph, Ralph Winfred Tyler, and the Evaluation Staff, 1942, Appraising and Recording Student Progress , Volume III of Adventure in American Education , New York and London: Harper & Brothers.
  • Splitter, Laurance J., 1987, “Educational Reform through Philosophy for Children”, Thinking: The Journal of Philosophy for Children , 7(2): 32–39. doi:10.5840/thinking1987729
  • Stanovich Keith E., and Paula J. Stanovich, 2010, “A Framework for Critical Thinking, Rational Thinking, and Intelligence”, in David D. Preiss and Robert J. Sternberg (eds), Innovations in Educational Psychology: Perspectives on Learning, Teaching and Human Development , New York: Springer Publishing, pp 195–237.
  • Stanovich Keith E., Richard F. West, and Maggie E. Toplak, 2011, “Intelligence and Rationality”, in Robert J. Sternberg and Scott Barry Kaufman (eds.), Cambridge Handbook of Intelligence , Cambridge: Cambridge University Press, 3rd edition, pp. 784–826. doi:10.1017/CBO9780511977244.040
  • Tankersley, Karen, 2005, Literacy Strategies for Grades 4–12: Reinforcing the Threads of Reading , Alexandria, VA: Association for Supervision and Curriculum Development.
  • Thayer-Bacon, Barbara J., 1992, “Is Modern Critical Thinking Theory Sexist?”, Inquiry: Critical Thinking Across the Disciplines , 10(1): 3–7. doi:10.5840/inquiryctnews199210123
  • –––, 1993, “Caring and Its Relationship to Critical Thinking”, Educational Theory , 43(3): 323–340. doi:10.1111/j.1741-5446.1993.00323.x
  • –––, 1995a, “Constructive Thinking: Personal Voice”, Journal of Thought , 30(1): 55–70.
  • –––, 1995b, “Doubting and Believing: Both are Important for Critical Thinking”, Inquiry: Critical Thinking across the Disciplines , 15(2): 59–66. doi:10.5840/inquiryctnews199515226
  • –––, 2000, Transforming Critical Thinking: Thinking Constructively , New York: Teachers College Press.
  • Toulmin, Stephen Edelston, 1958, The Uses of Argument , Cambridge: Cambridge University Press.
  • Turri, John, Mark Alfano, and John Greco, 2017, “Virtue Epistemology”, in Edward N. Zalta (ed.), The Stanford Encyclopedia of Philosophy (Winter 2017 Edition). URL = < https://plato.stanford.edu/archives/win2017/entries/epistemology-virtue/ >
  • Vincent-Lancrin, Stéphan, Carlos González-Sancho, Mathias Bouckaert, Federico de Luca, Meritxell Fernández-Barrerra, Gwénaël Jacotin, Joaquin Urgel, and Quentin Vidal, 2019, Fostering Students’ Creativity and Critical Thinking: What It Means in School. Educational Research and Innovation , Paris: OECD Publishing.
  • Warren, Karen J. 1988. “Critical Thinking and Feminism”, Informal Logic , 10(1): 31–44. [ Warren 1988 available online ]
  • Watson, Goodwin, and Edward M. Glaser, 1980a, Watson-Glaser Critical Thinking Appraisal, Form A , San Antonio, TX: Psychological Corporation.
  • –––, 1980b, Watson-Glaser Critical Thinking Appraisal: Forms A and B; Manual , San Antonio, TX: Psychological Corporation,
  • –––, 1994, Watson-Glaser Critical Thinking Appraisal, Form B , San Antonio, TX: Psychological Corporation.
  • Weinstein, Mark, 1990, “Towards a Research Agenda for Informal Logic and Critical Thinking”, Informal Logic , 12(3): 121–143. [ Weinstein 1990 available online ]
  • –––, 2013, Logic, Truth and Inquiry , London: College Publications.
  • Willingham, Daniel T., 2019, “How to Teach Critical Thinking”, Education: Future Frontiers , 1: 1–17. [Available online at https://prod65.education.nsw.gov.au/content/dam/main-education/teaching-and-learning/education-for-a-changing-world/media/documents/How-to-teach-critical-thinking-Willingham.pdf.]
  • Zagzebski, Linda Trinkaus, 1996, Virtues of the Mind: An Inquiry into the Nature of Virtue and the Ethical Foundations of Knowledge , Cambridge: Cambridge University Press. doi:10.1017/CBO9781139174763
How to cite this entry . Preview the PDF version of this entry at the Friends of the SEP Society . Look up topics and thinkers related to this entry at the Internet Philosophy Ontology Project (InPhO). Enhanced bibliography for this entry at PhilPapers , with links to its database.
  • Association for Informal Logic and Critical Thinking (AILACT)
  • Critical Thinking Across the European Higher Education Curricula (CRITHINKEDU)
  • Critical Thinking Definition, Instruction, and Assessment: A Rigorous Approach
  • Critical Thinking Research (RAIL)
  • Foundation for Critical Thinking
  • Insight Assessment
  • Partnership for 21st Century Learning (P21)
  • The Critical Thinking Consortium
  • The Nature of Critical Thinking: An Outline of Critical Thinking Dispositions and Abilities , by Robert H. Ennis

abilities | bias, implicit | children, philosophy for | civic education | decision-making capacity | Dewey, John | dispositions | education, philosophy of | epistemology: virtue | logic: informal

Copyright © 2022 by David Hitchcock < hitchckd @ mcmaster . ca >

  • Accessibility

Support SEP

Mirror sites.

View this site from another server:

  • Info about mirror sites

The Stanford Encyclopedia of Philosophy is copyright © 2024 by The Metaphysics Research Lab , Department of Philosophy, Stanford University

Library of Congress Catalog Data: ISSN 1095-5054

Creatively and Critically Challenging Assumptions

  • First Online: 20 March 2024

Cite this chapter

ethics creative and critical thinking

  • Gregory J. Feist 3  

194 Accesses

Critical thinking and creative thinking are two related and yet distinct constructs. The core connection is they both start by challenging assumptions. After all, assumptions are simply the implicit starting point of our reasoning process, and starting points can and often do lead us astray and prevent us from solving important and difficult problems (just think of the 9-dot problem). People who can reflect on their assumptions (meta-cognition) and can see the invisible starting points, are more likely to come up with new assumptions, which lead to novel and original and meaningful (creative) solutions to a problem. In addition, the flip-side to critical thinking is conspiratorial, gullible, anti-evidence-based thinking that is ubiquitous in politics and online conversations. In this chapter, I raise and try to answer two basic questions: First, are creative thinkers critical thinkers and are critical thinkers creative thinkers? Second, how can fostering critical and creative thinking mitigate the trend toward non-rational, polarized, public conversation?

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save.

  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
  • Available as EPUB and PDF
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Alghafri, A. S. R., & Ismail, H. N. B. (2014). The effects of integrating creative and critical thinking on schools students’ thinking. International Journal of Social Science and Humanity, 4 (6), 518–525.

Article   Google Scholar  

Amabile, T. M., Collins, M. A., Conti, R., Phillips, E., Picariello, M., Ruscio, J., & Whitney, D. (2018). Creativity in context: Update to the social psychology of creativity . Routledge.

Book   Google Scholar  

Anderson, B. R., & Feist, G. J. (2017). Transformative science: A new index and the impact of non-funding, private funding, and public funding. Social Epistemology, 31 (2), 130–151.

Avsec, S., & Savec, V. F. (2019). Creativity and critical thinking in engineering design: The role of interdisciplinary augmentation. Global Journal of Engineering Education, 21 (1), 30–36.

Google Scholar  

Baker, M., Rudd, R., & Pomeroy, C. (2001). Relationships between critical and creative thinking. Journal of Southern Agricultural Education Research, 51 (1), 173–188.

Barron, F., & Harrington, D. M. (1981). Creativity, intelligence, and personality. Annual Review of Psychology, 32 , 439–476. https://doi.org/10.1146/annurev.ps.32.020181.002255

Beaty, R. E., Benedek, M., Barry Kaufman, S., & Silvia, P. J. (2015). Default and executive network coupling supports creative idea production. Scientific Reports, 5 (1), 1–14.

Beaty, R. E., Kenett, Y. N., Christensen, A. P., Rosenberg, M. D., Benedek, M., Chen, Q., et al. (2018). Robust prediction of individual creative ability from brain functional connectivity. Proceedings of the National Academy of Sciences, 115 (5), 1087–1092.

Beghetto, R. A., & Kaufman, J. C. (2007). Toward a broader conception of creativity: A case for “mini-c” creativity. Psychology of Aesthetics, Creativity, and the Arts, 1 (2), 73–79. https://doi.org/10.1037/1931-3896.1.2.73

Birgili, B. (2015). Creative and critical thinking skills in problem-based learning environments. Journal of Gifted Education and Creativity, 2 (2), 71–80.

Bleedorn, B. D. (1993). Introduction: Toward an integration of creative and critical thinking. American Behavioral Scientist, 37 (1), 10–20.

Caddick, Z. A., & Feist, G. J. (2021). When beliefs and evidence collide: Psychological and ideological predictors of motivated reasoning about climate change. Thinking & Reasoning, 1–37 . https://doi.org/10.1080/13546783.2021.1994009

Calaprise, A. (2005). The new quotable Einstein . Princeton University Press.

Campbell, D. T. (1960). Blind variation and selective retentions in creative thought as in other knowledge processes. Psychological Review, 67 (6), 380–400.

Chan, Z. C. (2013). Exploring creativity and critical thinking in traditional and innovative problem-based learning groups. Journal of Clinical Nursing, 22 (15–16), 2298–2307.

Charyton, C., Jagacinski, R. J., Merrill, J. A., Clifton, W., & DeDios, S. (2011). Assessing creativity specific to engineering with the revised creative engineering design assessment. Journal of Engineering Education, 100 (4), 778–799.

Chatfield, T. (2018). Critical thinking . Sage.

Combs, L. B., Cennamo, K. S., & Newbill, P. L. (2009). Developing critical and creative thinkers: Toward a conceptual model of creative and critical thinking processes. Educational Technology , 3–14.

Davies, M., Barnett, A., & van Gelder, T. (2021). Using computer-assisted argument mapping to teach reasoning to students. In J. A. Blair (Ed.), Studies in Critical Thinking (2nd ed., pp. 115–152). Windsor Studies in Argumentation.

De Pisapia, N., Bacci, F., Parrott, D., & Melcher, D. (2016). Brain networks for visual creativity: A functional connectivity study of planning a visual artwork. Scientific Reports, 6 (1), 1–11.

Durante, D., & Dunson, D. B. (2018). Bayesian inference and testing of group differences in brain networks. Bayesian Analysis, 13 (1), 29–58.

Epstein, S., Pacini, R., Denes-Raj, V., & Heier, H. (1996). Individual differences in intuitive–experiential and analytical–rational thinking styles. Journal of Personality and Social Psychology, 71 (2), 390–405.

Evans, J. S. B. (2008). Dual-processing accounts of reasoning, judgment, and social cognition. Annual Review of Psychology, 59 , 255–278.

Feist, G. J. (1991). Synthetic and analytic thought: Similarities and differences among art and science students. Creativity Research Journal, 4 (2), 145–155.

Feist, G. J. (2022). The creative personality: Current understandings and debates. In J. Plucker (Ed.), Creativity and innovation: Theory, research and practice (2nd ed., pp. 45–65). Prufrock Press.

Chapter   Google Scholar  

Finke, R. A., Ward, T. B., & Smith, S. M. (1996). Creative cognition: Theory, research, and applications . MIT Press. (two stage generative/exploration GENPLOR model)

Freud, S. (1900/1981). Die Traumdeutung [Interpretation of Dreams] . Fisher Verlag.

Gelder, T. V. (2015). Using argument mapping to improve critical thinking skills. In The Palgrave handbook of critical thinking in higher education (pp. 183–192). Palgrave Macmillan.

Gimpel, H., Heger, S., Olenberger, C., & Utz, L. (2021). The effectiveness of social norms in fighting fake news on social media. Journal of Management Information Systems, 38 (1), 196–221.

Glassner, A., & Schwarz, B. B. (2007). What stands and develops between creative and critical thinking? Argumentation? Thinking Skills and Creativity, 2 (1), 10–18.

Gonen-Yaacovi, G., De Souza, L. C., Levy, R., Urbanski, M., Josse, G., & Volle, E. (2013). Rostral and caudal prefrontal contribution to creativity: A meta-analysis of functional imaging data. Frontiers in Human Neuroscience, 7 , 465.

Grohman, M., Wodniecka, Z., & Kłusak, M. (2006). Divergent thinking and evaluation skills: Do they always go together? The Journal of Creative Behavior, 40 (2), 125–145.

Gross, J. (2023, January 10). How Finland is teaching a generation to spot misinformation. New York Times . Retrieved January 10, 2023, from https://www.nytimes.com/2023/01/10/world/europe/finland-misinformation-classes.html?searchResultPosition=1

Halpern, D. F., & Sternberg, R. J. (2020). An introduction to critical thinking: Maybe it will change your life. In R. J. Sternberg & D. F. Halpern (Eds.), Critical thinking in psychology (pp. 1–9). Cambridge University Press.

Hidayati, N., Zubaidah, S., Suarsini, E., & Praherdhiono, H. (2019). Examining the relationship between creativity and critical thinking through integrated problem-based learning and digital mind maps. Universal Journal of Education Research, 7 (9A), 171–179.

Johnson, D. W., & Johnson, R. T. (1993). Creative and critical thinking through academic controversy. American Behavioral Scientist, 37 (1), 40–53.

Kahneman, D. (2011). Thinking, fast and slow . Macmillan.

Kant, I. (1790/1987). Critique of Judgment (W.S. Pluhar translator). Hackett Publishing Co.

Kaufman, J. C., & Beghetto, R. A. (2009). Beyond big and little: The four c model of creativity. Review of General Psychology, 13 (1), 1–12. https://doi.org/10.1037/a0013688

Kenett, Y. N., Medaglia, J. D., Beaty, R. E., Chen, Q., Betzel, R. F., Thompson-Schill, S. L., & Qiu, J. (2018). Driving the brain towards creativity and intelligence: A network control theory analysis. Neuropsychologia, 118 , 79–90.

Kleinmintz, O. M., Ivancovsky, T., & Shamay-Tsoory, S. G. (2019). The two-fold model of creativity: The neural underpinnings of the generation and evaluation of creative ideas. Current Opinion in Behavioral Sciences, 27 , 131–138. https://doi.org/10.1016/j.cobeha.2018.11.004

Kris, E. (1952). Psychoanalytic explorations in art . International University Press.

Ku, K. Y., Kong, Q., Song, Y., Deng, L., Kang, Y., & Hu, A. (2019). What predicts adolescents’ critical thinking about real-life news? The roles of social media news consumption and news media literacy. Thinking Skills and Creativity, 33 , 100570. https://doi.org/10.1016/j.tsc.2019.05.004

Kunda, Z. (1990). The case for motivated reasoning. Psychological Bulletin, 108 (3), 480–498. https://doi.org/10.1037/0033-2909.108.3.480

Lau, J. Y. (2011). An introduction to critical thinking and creativity: Think more, think better . John Wiley & Sons.

Marmion, J.-F. (Ed.). (2018). The psychology of stupidity . Penguin Books.

Matthews, M. L. (2011). Connecting creativity and critical thinking to the campaign planning process. Communication Teacher, 25 (1), 61–67.

Padget, S. (Ed.). (2013). Creativity and critical thinking . Routledge.

Paul, R. W. (1993). The logic of creative and critical thinking. American Behavioral Scientist, 37 (1), 21–39.

Paul, R. W., & Elder, L. (2006). Critical thinking: The nature of critical and creative thought. Journal of Developmental Education, 30 (2), 34.

Pennycook, G., McPhetres, J., Zhang, Y., Lu, J. G., & Rand, D. G. (2020). Fighting COVID-19 misinformation on social media: Experimental evidence for a scalable accuracy-nudge intervention. Psychological Science, 31 (7), 770–780.

Pennycook, G., & Rand, D. G. (2019). Fighting misinformation on social media using crowdsourced judgments of news source quality. Proceedings of the National Academy of Sciences, 116 (7), 2521–2526.

Roozenbeek, J., Van der Linden, S., Goldberg, B., Rathje, S., & Lewandowski, S. (2022). Psychological inoculation improves resilience against misinformation on social media. Science Advances, 8 (34). https://doi.org/10.1126/sciadv.abo625

Runco, M. A., & Jaeger, G. J. (2012). The standard definition of creativity. Creativity Research Journal, 24 (1), 92–96. https://doi.org/10.1080/10400419.2012.650092

Sagan, C. (1996). The demon-haunted world: Science as a candle in the dark . Random House.

Shermer, M. (1997). Why people believe weird things: Pseudoscience, superstition, and other confusions of our time . Freeman & Co..

Simonton, D. K. (2004). Creativity in science: Chance, logic, genius, and zeitgeist . Cambridge University Press.

Simonton, D. K. (2022). The blind-variation and selective-retention theory of creativity: Recent developments and current status of BVSR. Creativity Research Journal , 1–20. https://doi.org/10.1080/10400419.2022.2059919

Sola, E., Hoekstra, R., Fiore, S., & McCauley, P. (2017). An investigation of the state of creativity and critical thinking in engineering undergraduates. Creative Education, 8 (09), 1495.

Sowden, P. T., Pringle, A., & Gabora, L. (2015). The shifting sands of creative thinking: Connections to dual-process theory. Thinking & Reasoning, 21 (1), 40–60.

Spuzic, S., Narayanan, R., Abhary, K., Adriansen, H. K., Pignata, S., Uzunovic, F., & Guang, X. (2016). The synergy of creativity and critical thinking in engineering design: The role of interdisciplinary augmentation and the fine arts. Technology in Society, 45 , 1–7.

Stanovich, K. E., West, R. F., & Toplak, M. E. (2016). The rationality quotient: Toward a test of rational thinking . MIT Press.

Sternberg, R. J. (2021). Transformational creativity: The link between creativity, wisdom, and the solution of global problems. Philosophies, 6 (3), 75. https://doi.org/10.3390/philosophies60330075

Sternberg, R. J., & Halpern, D. F. (2020). How to think critically about politics…and anything else. In R. J. Sternberg & D. F. Halpern (Eds.), Critical thinking in psychology (2nd ed., pp. 354–376). Cambridge University Press.

Sternberg, R. J., & Lubart, T. I. (1999). The concept of creativity: Prospects and paradigms. In R. J. Sternberg (Ed.), Handbook of creativity (3rd ed., pp. 3–15). Cambridge University Press.

Stupple, E. J., Maratos, F. A., Elander, J., Hunt, T. E., Cheung, K. Y., & Aubeeluck, A. V. (2017). Development of the Critical Thinking Toolkit (CriTT): A measure of student attitudes and beliefs about critical thinking. Thinking Skills and Creativity, 23 , 91–100.

Ülger, K. A. N. İ. (2016). The relationship between creative thinking and critical thinking skills of students. Hacettepe Universitesi Egitim Fakultesi Dergisi-Hacettepe University Journal of Education, 31 , 695–710.

Vincent-Lancrin, S., González-Sancho, C., Bouckaert, M., de Luca, F., Fernández-Barrerra, M., Jacotin, G., et al. (2019). Fostering students’ creativity and critical thinking: What it means in school. Educational research and innovation . OECD Publishing.

Vosoughi, S., Roy, D., & Aral, S. (2018, March 9). The spread of true and false news online. Science, 359 (6380), 1146–1151. https://doi.org/10.1126/science.aap9559

Wechsler, S. M., Saiz, C., Rivas, S. F., Vendramini, C. M. M., Almeida, L. S., Mundim, M. C., & Franco, A. (2018). Creative and critical thinking: Independent or overlapping components? Thinking Skills and Creativity, 27 , 114–122.

Weston, A. (2007). Creativity for critical thinkers . Oxford University Press.

Wu, X., Yang, W., Tong, D., Sun, J., Chen, Q., Wei, D., et al. (2015). A meta-analysis of neuroimaging studies on divergent thinking using activation likelihood estimation. Human Brain Mapping, 36 (7), 2703–2718.

Download references

Author information

Authors and affiliations.

Department of Psychology, San Jose State University, San Jose, CA, USA

Gregory J. Feist

You can also search for this author in PubMed   Google Scholar

Corresponding author

Correspondence to Gregory J. Feist .

Editor information

Editors and affiliations.

Department of Psychology, College of Human Ecology, Cornell University, Ithaca, NY, USA

Robert J. Sternberg

Mississippi State University, Starkville, MS, USA

Sareh Karami

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Feist, G.J. (2024). Creatively and Critically Challenging Assumptions. In: Sternberg, R.J., Karami, S. (eds) Transformational Creativity. Palgrave Macmillan, Cham. https://doi.org/10.1007/978-3-031-51590-3_9

Download citation

DOI : https://doi.org/10.1007/978-3-031-51590-3_9

Published : 20 March 2024

Publisher Name : Palgrave Macmillan, Cham

Print ISBN : 978-3-031-51589-7

Online ISBN : 978-3-031-51590-3

eBook Packages : Education Education (R0)

Share this chapter

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Publish with us

Policies and ethics

  • Find a journal
  • Track your research

Critical Thinking, Creativity, Ethical Reasoning: A Unity of Opposites

  • February 2009
  • This person is not on ResearchGate, or hasn't claimed this research yet.

Discover the world's research

  • 25+ million members
  • 160+ million publication pages
  • 2.3+ billion citations

No full-text available

Request Full-text Paper PDF

To read the full-text of this research, you can request a copy directly from the authors.

  • CURR PSYCHOL

Wangbing Shen

  • Huijia Zhan

Shantanu Tilak

  • Think Skills Creativ

Omer Kocak

  • Nermin Çakmak
  • J CLEAN PROD

Alexia Sanz-Hernández

  • Sabine Roeser

Helena Hollis

  • Jonas Andreasen Lysgaard

Samuray hakan Bulut

  • Ebru Zencir Ciftci

Mohammed Almulla

  • Esther Ponnammal

Thanavathi C.

  • Barrington Moore
  • John McManners
  • FOREIGN AFF
  • Robert Legvold
  • Andrew Meier

George Lakoff

  • Richard W. Paul
  • Linda Elder
  • Recruit researchers
  • Join for free
  • Login Email Tip: Most researchers use their institutional email address as their ResearchGate login Password Forgot password? Keep me logged in Log in or Continue with Google Welcome back! Please log in. Email · Hint Tip: Most researchers use their institutional email address as their ResearchGate login Password Forgot password? Keep me logged in Log in or Continue with Google No account? Sign up

Logo for OPEN OCO

What is Ethics?

Andrew Fisher; David Svolba; Henry Imler; and Mark Dimmock

Click to print this chapter: What Is Ethics?

Welcome to Ethics! This field of study can be thought of in several ways, but for our purposes, we will think of Ethics as the study of applied value. [1]   When we talk about Ethics, we are generally talking about one of three things:

  • Descriptive Ethics
  • Normative Ethics, or

Descriptive Ethics is describing what and how a person or group thinks about right and wrong. The goal is to understand the Other. Here we are not attempting to evaluate the Other’s positions. We will not be spending much time doing descriptive ethics – we will leave that to the fields of Religious Studies, Sociology, History, et cetera.

Normative Ethics is the process of figuring out what is morally permissible or impermissible by applying a moral theory to a given problem or situation. The goal is to figure out what is right and wrong. Another way of saying this is that normative ethics is the do-ing of ethics. We will be spending a portion of our time in this course doing normative ethics. You will encounter lots of moral dilemmas, thought experiments, and historical reflections that will challenge you to coherently apply a given (or your own) moral approach to the problem to create solutions.

Metaethics is the process of thinking about Ethics itself. [2] This is what we will primarily be concerning ourselves with in this class. Some questions we will cover will include the following.

  • What is the nature of value? Is it a fiction, created, or discovered?
  • What beings are valuable (and to what degree)?
  • What is the right or wrong making feature of our actions?
  • What determines a valuable life (the good life)?

We will also look at various moral theories that have been posed as methods of determining what is moral and immoral. Major approaches include:

  • Natural Law Theory,
  • Utilitarianism,
  • Deontology, and
  • Virtue Ethics.

Our goal here is to understand the nature of Ethics and determine which ethical approaches are worthwhile. We might ask if the approach is coherent (consistent with itself without contradiction), complete (is able to address most ethical questions), pragmatic (is able to be lived out), et cetera. In this class, we will primarily be doing Metaethics.

Methods of Thinking about Ethical Problems [3]

Throughout this class, we will deal with ethical problems, situations in the abstract or real people’s lives in which we must make a moral determination (example of doing normative ethics).  We begin with a hard case , one which might pull us in different directions.

Baby Theresa . Theresa is born an anencephalic infant, which means that she will never be conscious, though she may live for several months since she has a functioning brain-stem that controls respiration and other life-sustaining processes.  Theresa’s parents are understandably devastated.  After consulting with Theresa’s doctors, the parents make a decision: they request that Theresa’s healthy organs be removed, thereby killing her, and given to otherwise healthy children who will die if they do not receive an organ.  The alternative is to donate Theresa’s organs after she dies, but as we wait for nature to take its course children will die who could have been saved, and Theresa’s organs will become less viable. [4]

Would it be ethically wrong to kill Baby Theresa in order to save the lives of other children?

How would we even begin to answer a question like this?

Some False Starts

Why not seek an answer to the question by…

Consulting the law?

But there may not be a law that covers the hard case, in which case the law will not offer us any guidance.  More importantly, however:

Is the law a reliable guide to right and wrong?  Let’s consider: can we think of actions (real or imagined, current or historical) that are legal but unethical?  Can we think of actions that are illegal but ethical? If so – if legality and ethics can diverge – then the law probably isn’t a reliable guide to determining the right thing to do.

Conducting an opinion poll?

But others may be as torn as we are concerning what to do, in which case an opinion poll won’t offer us any guidance.  More importantly, however:

Are opinion polls a reliable guide to right and wrong?  Let’s consider: can we think of actions that are (or were ) popularly approved of but unethical?  Can we think of ethical actions that are not popularly approved of?  If so – if popular opinion and ethics can diverge – then opinion polls will not be a reliable guide to determining the right thing to do.

Going with ‘gut feelings,’ or the dictates of conscience?

But especially when it comes to hard cases, we may not have clear feelings one way or the other—or, more likely still, our feelings might pull us in opposing directions, leading us to draw different conclusions about right and wrong.  More importantly, however:

Are ‘gut feelings’ (or conscience) a reliable guide to right and wrong?  Again, let’s apply the same divergence test we applied when considering the first two suggestions: can we think of examples in which conscience errs, or a person’s gut feelings lead her astray?  We might also reasonably wonder about the source of gut feelings or dictates of conscience.  Why think that these give us glimpses of ethical truth, rather than, for example, merely reflecting on assumptions and biases that we have accumulated through our upbringing and socialization?

Ethical Argument

There is a better approach to ethical hard cases than any of the false starts canvassed above: we can think about them.  We can consider the reasons for and against certain ethical evaluations.  We can construct and evaluate ethical arguments and see in which direction the weight of reasons tilt.

You might not be accustomed to thinking of ethics as a subject we can reason about.  After all, many ethical disagreements seem anything but reasonable: they are often passionately emotional and intractable.  But this might simply reflect the fact that we are not prone to reason about ethics well .  Really, this is not so surprising, since reasoning well about any subject, and certainly a subject as complex and difficult as ethics, requires considerable experience.

A first step in learning how to reason well about ethical issues is to learn how ethical arguments work.  One standard form of ethical argument seeks to derive particular ethical judgments— for example, the judgment that it would be wrong to kill Baby Theresa—from general ethical principles .  A general ethical principle is a statement that says that a certain kind of action is ethical or unethical.

Here, for example, is a general ethical principle, which we may call the Benefits-Without-Harm Principle , or

BWHP :  If an action will benefit people, without harming anyone, then it is ethically right.

BWHP identifies what philosophers call a sufficient condition for ethically right action.  If an action benefits people without causing any harm, then that’s enough – it’s sufficient – to make that action ethically right, regardless of other features of the action or the circumstances in which the action is performed.

Suppose we find BWHP intuitively compelling.  Does it shed any light on our question about whether killing Baby Theresa would be unethical?  It might seem to, for one could appeal to BWHP in making the following ethical argument:

Argument 1 (A1)

  • 1) If an action will benefit people, without harming anyone, then it is ethically right.
  • 2) Killing Baby Theresa will benefit people, without harming anyone.
  • 3) Therefore, killing Baby Theresa is ethically right.

For the moment, never mind whether this argument is convincing.  Rather, try to appreciate how this method of arriving at ethical judgments differs significantly from the false starts we considered above.

Evaluating Ethical Arguments

In evaluating a simple ethical argument like A1, there are two basic questions we can ask:

  • 1) Is the general principle to which the argument appeals (in this case, BWHP) a plausible one?
  • 2) Is the principle correctly applied to the case under consideration?

As for the first question, one common way to assess the plausibility of a general ethical principle is by using what philosophers call the method of counterexample .  This involves searching for cases (real or imagined) in which the principle gives the intuitively wrong result.  Let’s illustrate this method by devising a possible counterexample to our sample principle, BWHP:

Benefactor .  I am a very wealthy man in a small city with two hospitals.  One hospital (Sunnyvale) serves the very rich and is decked out with all the latest and greatest medical equipment and is staffed by the most talented doctors and nurses.  The other hospital (City General) serves the rest of the city (a majority of the population) and is badly under-equipped, under-staffed, and desperately in need of upgrades and repairs.  Despite being aware of the dramatic inequality in the relative state of these two hospitals, I donate several million dollars to Sunnyvale and give nothing to City General. My reason is that I have been a patient at Sunnyvale several times in the past and am grateful for the treatment and care I received there.

Have I acted ethically right?  Was giving several million dollars to Sunnyvale the right thing to do ? BWHP suggests that it was.  After all:

Argument 2 (A2)

  • 2) Donating the money to Sunnyvale benefits people without harming anyone.
  • 3) Therefore, donating the money to Sunnyvale is ethically right.

But suppose we disagree with the claim that donating the money to Sunnyvale is the ethically right thing to do.  What I should have done, we might argue, is donate the money to the hospital that needed it most—City General—where it could have done significantly more good.  In our estimation then, BWHP yields the incorrect verdict in the case of Benefactor , and that’s a reason to doubt its validity.

Of course, counterexamples in ethics are never conclusive , since one always has the option to ‘bite the bullet’ and take on-board the counterintuitive ethical judgment. For example, a proponent of BWHP could give up the judgment that the money should have been donated to City General (and thereby state that giving it to Sunnyvale was the right thing) instead of giving up on BWHP. In ethics, counterexamples give us a choice: we can modify our principles to fit our ethical judgments, or we can modify our ethical judgments to fit our principles.  Unfortunately, there is no algorithm for deciding when to do which.  The best we can do is try to use good judgment and be on guard against various forms of bias.

In any case, let’s suppose that BWHP passes our tests.  Let’s suppose we’ve considered a wide range of cases in which an action benefits people without harming anyone, and without exception we are disposed to judge these actions ethically right.  When evaluating arguments like A1, there is still work to be done even if we find acceptable the general ethical principle to which the argument appeals.  We need to ask whether the principle actually applies to the case under consideration.  In evaluating A1, for example, we have to ask whether it is true that killing Baby Theresa would benefit people without harming anyone.  We may disagree about whether an individual like Baby Theresa is harmed by being killed.  In evaluating A2, we might disagree about whether there can be circumstances in which not bestowing a gift constitutes a harm, and, if so, whether these circumstances obtain in Benefactor .  Complex conceptual and empirical issues like these arise all the time when thinking about right and wrong and form a large part of the workload in philosophical ethics.

Other Important Argument Forms

Thus far we’ve looked only at ethical arguments in which a particular action is said to conform to a general ethical principle.  These arguments have the following form or pattern :

  • General Principle: Actions of type X are ethically right (or ethically wrong).
  • Particular judgment: This action, a , is an X.
  • Conclusion: Thus, a is ethically right (or ethically wrong).

As you begin to read more widely in philosophical ethics you will notice that there are many different argument-forms that philosophers commonly employ.  Learning these patterns will improve your comprehension of arguments in ethics and your ability to offer compelling support for your own ethical views.  Here we will cover two more forms: arguments from analogy and arguments from inference to the best explanation .

Arguments from Analogy

  • X is ethically right (or ethically wrong).
  • Y is just like X in all ethically relevant respects.
  • Thus, Y is ethically right (or ethically wrong).

Arguments from analogy are very common and can be very powerful. They derive their persuasive force from a basic principle of rational consistency stating that we should treat like cases alike .

A great illustration of this argument-form can be found in the philosopher Peter Singer’s essay “Famine, Affluence, and Morality.”  In that essay Singer aims to show that people in an affluent society like ours have an ethical obligation to contribute money to charitable organizations working to help the global poor.  In supporting this claim, Singer asks us to imagine that we are passing by a shallow pond in which a small child is drowning. Supposing we could save the child at little cost to ourselves, Singer thinks that

  • Nearly everyone would acknowledge that they have in these circumstances an ethical obligation to help the drowning child.

He then argues:

  • There are no ethically relevant differences between the situation of the drowning child and the situation of the global poor.

And so, Singer concludes:

  • We have an ethical obligation to help the global poor.

In evaluating any argument from analogy, Singer’s included, the most important (but not the only) question to ask is whether it is true that there are no ethically relevant differences between the cases being compared.  After all, if there are ethically relevant differences, these could justify reaching a different conclusion about the two cases (there is no principle stating we must treat unlike cases alike).  And indeed this is the issue on which Singer and critics of his now classic essay have focused.

Arguments from Inference to the Best Explanation

  • The best explanation for why X is ethically right (or ethically wrong) is captured by a general principle P.
  • Thus, we should accept P.
  • But P implies that Y is ethically right (or ethically wrong).

Another common argument-form in ethics, arguments from inference to the best explanation trade on the fact that when we accept an ethical principle we commit ourselves to accepting its implications. A great illustration of this argument-form can be found in Don Marquis’ essay, “Why Abortion is Immoral.”  In that essay Marquis argues as follows:

  • It is wrong to kill a normal, adult human being.
  • The best explanation for why it is wrong to kill a normal, adult human being is the Deprivation Principle: it is wrong to deprive an individual of a future-of-value.
  • Thus, we should accept the Deprivation Principle.
  • But the Deprivation Principle implies that abortion is wrong, since abortions deprive individuals (the fetuses) of a future-of-value.
  • Thus, abortion is wrong.

In evaluating arguments from inference to the best explanation, Marquis’ included, the most important (but not the only) question to ask is whether the proffered explanation for the initial ethical judgment really is best .  Perhaps there is an alternative principle that explains the initial judgment just as well or better, and which doesn’t imply what the proffered principle implies.  And indeed this is the issue on which Marquis and his critics have focused.

Critical Thinking

By critical thinking , we refer to thinking that is recursive in nature. Any time we encounter new information or new ideas, we double back and rethink our prior conclusions on the subject to see if any other conclusions are better suited. [5]

The recursive nature of critical thinking is drawn out to show the cycle: Steps go from Initial Phenomena & Thinking to Claim/Theory, which is the Interpretation of Phenomena, to Additional Phenomena & Thinking, to then a Re-Evaluation in light of new input, and back to the beginning.

Critical thinking can be contrasted with Authoritarian thinking . This type of thinking seeks to preserve the original conclusion. Here, thinking and conclusions are policed, as to question the system is to threaten the system. And threats to the system demand a defensive response. Critical thinking is short-circuited in authoritarian systems so that the conclusions are conserved instead of being open for revision.

Authoritarian thinking short circuits the recursive nature of critical thinking by not allowing questioning of traditionally held views.

Humility and vulnerability are key to critical thinking. We might also frame critical thinking in terms of having an open vs. an arrogant mind. The Greek philosopher Plato used two terms that help us name poor thinking. In the dialog Alcibiades , Socrates accuses his friend of being both ignorant and foolish. [6] Agnoeo (ignorance) for Plato, is a simple lack of knowledge — something which can be fixed with ease. Amathia (foolishness) , on the other hand, is a lack of awareness of one’s ignorance. [7] The opposite of amathia is not knowledge itself, but of an awareness of one’s ignorance . Socrates, in The Apology , concludes his search for wisdom in realizing that he is ignorant. [8] And so humility and vulnerability are key parts of critical thinking.

Liberation, not Banking — On Attitude and Practice

Ethics is more than just fact-learning, or a “history of ideas”. It is different from chemistry, mathematics, languages, theology etc. It is unique. Sure, it is important to learn some facts, and learn what others believed, but a successful student needs to do more than simply regurgitate information . One aim of this book is to aid you in engaging with a living discipline. Ethics is a live and evolving subject. When you study philosophy, you are entering a dialog with those that have gone before you and those beside you. Learning about what various philosophers think will enable you to become clearer about what you think and add to that evolving dialog.

Ethics, like much of life, is more developing an attitude vs. accumulating facts. Paulo Freire develops the idea of the “Banking Model of Education” where facts, concepts, et cetera are deposited in the student by a learned master. [9] Such a view considers education to be static and a mere tool in the accumulation of wealth. You may recall politicians on both sides talk about education primarily in terms of job-training. While this is a useful benefit of education, the primary goal of education is to transform an “empty mind into an open one.” [10]

Notice the shift from banking to liberation in the quote. The term “empty mind” implies the purpose of education is to fill the mind with facts, terms, procedures, and directions. But we are not robots whose function is to merely recall information and process orders! We are something else entirely. Just what will be explored throughout this course. An open mind is a liberated mind. The open mind searches for what is good and what is true for their own sakes, not because it will increase one’s bottom line.

Freire contrasts the Banking Model of Education with what can be called a “Liberation Model of Education.” This approach to education places an emphasis upon the humanization of the self and the Other. The goal for the student and the teacher to partner together to solve the problems that face their communities. Sometimes this will involve unmasking the machines that govern our lives but remain hidden from public view. Other times it will involve imagining a more just society or efficient contraption. It might even involve naming and reckoning with current systems of oppression as well as coming to terms with how injustices of the past echo forward. It always resists demonizing the Other and refuses to turn the tables, allowing the oppressed to become the vengeful oppressors, as is the temptation.

The Liberation Educational model is able to simultaneously realize that in some ways we have been the beneficiaries of unjust social contracts, even though we have not been signatories to them. A Banking Model of Education is unable to evaluate the systems in which it is embedded because within it, all knowledge is stable and depends upon the legitimacy of the system for its stability. In contrast, in the Liberation Model of Education, we can question the systems themselves, demanding better and more just systems. We will talk about the connection between power, justice, and knowledge elsewhere in the course.

For Reflection and Discussion – Set 1

  • In your educational history, have you encountered something like the banking or liberation model?
  • If you have experienced both, which did you find more humanizing?
  • What problems face your community? How might you partner others to work on solving those problems?
  • In what ways might you be the beneficiaries of an unjust social contracts even though you are not signatories of the contract?
  • What sort of attitude is required in regurgitating facts vs. doing ethics?

Distinctions

As we embark on our study of ethics, there are some concepts we need to carefully keep separate. It will be easy to fall victim to these flaws in reasoning. The authors have been guilty of these things from time to time! Before we get to these distinctions, let us talk about one distinction we do not make. Some people distinguish between “ethics” and “morality”. We do not. For us, nothing hangs on the difference between them. In this book you will see us switching between the terms, so do not get hung up on this distinction.

Is vs. Ought – Hume’s Guillotine

David Hume famously pointed out that we cannot move from an is to an ought . [11] He notes that many systems of ethics do, but that he can find no reason that justifies such a transcendence of categories. While this separation of is and ought by Hume is used to argue in part for his skepticism of prescriptive ethical theories we can use the distinction more broadly to note that just because someone is doing something is not evidence that they ought to be doing something. We can illustrate the concept with the following diagram.

Venn diagram showing the relationship between all that is happening and all that should be happening. One Circle (that which is) has an A and a B within it; Another Circle (that which ought to be) also includes the B, but also a C. D is outside of both circles.

Let’s examine these regions:

  • Region A – What people are doing, but should not be doing (These are the things we need to stop doing.)
  • Region B –Those actions people should be doing and are doing. (This is the sweet spot.)
  • Region C – Those hypothetical actions we should be doing, but are not doing. (Where we need to move.)
  • Region D – Those hypothetical actions we are not doing and should not be doing. (Stay away!)

Consider some examples that concern what people are doing (IS) and what they should be doing (OUGHT). Imagine the headline: “Scientists discover a gene explaining why we want to punch people wearing red trousers”. The article includes lots of science showing the genes and the statistical proof. Yet, none of this will tells us whether acting violently towards people wearing red trousers is morally acceptable. The explanation of why people feel and act in certain ways leaves it open as to how people morally ought to act.

For Reflection and Discussion – Set 2

1. What actions would you place within regions A, B, C, and D?

2. Discuss why you all placed those actions within their corresponding reasons.

3. What does your answer to #2 say about your ethical viewpoint?

Consider a more serious example, relating to the ethics of eating meat. Supporters of meat-eating often point to our incisor teeth. This shows that it is natural for us to eat meat, a fact used as a reason for thinking that it is morally acceptable to do so. But this is a bad argument. Just because we have incisors does not tell us how we morally ought to behave. It might explain why we find it easy to eat meat, and it might even explain why we like eating meat. But this is not relevant to the moral question. Don’t you believe us? Imagine that dentists discover that our teeth are “designed” to eat other humans alive. What does this tell us about whether it is right or wrong to eat humans alive? Nothing.

Legal vs. Moral

It is easy for people to conflate that which moral with that which is legal . But, in fact, these are two very different categories, much like is vs ought. We can represent this with the following diagram.

The relation between the sets of actions that are legal (within a given jurisdiction) and the actions that are moral.

Venn diagram showing the relation between the sets of actions that are legal (within a given jurisdiction) and the actions that are moral. A and B are contained in the Legal circle. B and C are contained in the Moral circle. D is outside of both circles.

In the figure above, the categories of actions that are legal overlap with the collection of actions that are moral, but they are not the same set of things. Once again, we have used the letters A, B, C, and D to denote positions in the diagram. Let us look at some possible examples for each of these locations:

  • Region A – Legal but not Moral – Jim Crow Laws;
  • Region B – Legal and Moral- Refraining from Killing the Innocent;
  • Region C – Moral but not Legal – Breaking Jim Crow Laws; and
  • Region D – Not moral and not Legal – Killing the Innocent.

Using your knowledge of history or your googling devices, look up instances of immoral behaviors that have been legal in their local jurisdictions.

And so, we can see that we need to be careful when talking about issues of legality and morality. Just because something is legal does not make it moral. In fact, most of the worst atrocities we humans have inflicted upon ourselves have been legal within their jurisdictions. Similarly, we can identify instances of illegal behaviors which are, in fact, moral.

The Issue of Disagreement

Finally, we want to draw your attention to a common bad argument as we want you to be aware of the mistake it leads to. Imagine that a group of friends are arguing about which country has won the most Olympic gold medals. Max says China, Alastair says the US, Dinh says the UK. There is general ignorance and disagreement; but does this mean that there is not an answer to the question of “which country has won the most Olympic gold medals?” No! We cannot move from the fact that people disagree to the conclusion that there is no answer.

Now consider a parallel argument that we hear far too often. Imagine that you and your friends are discussing whether euthanasia is morally acceptable. Some say yes, the others say no. Each of you cite how different cultures have different views on euthanasia. Does this fact — that there is disagreement — mean that there is no answer to the question of whether euthanasia is morally acceptable? Again, the answer is no. That answer did not follow in the Olympic case, and it does not follow in the moral one either.

So just because different cultures have different moral views, this does not show, by itself, that there is no moral truth and no answer to the question. If you are interested in the idea that there is a lack of moral truth in ethics, then Moral Error Theorists defend exactly this position in the chapter on Metaethics.

In this introduction, we have sketched out some basic ideas necessary to start the study of Ethics. We have examined the basics of critical thinking and discussed 3 methods of talking about ethics: Descriptive Ethics, Normative Ethics, and Metaethics. We also looked at the three major positions on the nature of Ethics itself: Nonrealism, Relativism, and Realism. We have signposted some errors to avoid when it comes to thinking about ethics, and some strategies to consider instead. It may be worth occasionally revisiting the ideas discussed here during your studies, to test your own lines of argument and evaluate how “thinking well” is progressing for you. This would not be a weakness! The authors, and any honest philosopher, can reassure you — philosophy is hard, but it is worth it. We hope you find this textbook useful and rewarding in helping you on your own journey through Ethics.

For Reflection and Discussion – Set 3

  • What did you think Ethics and Philosophy were before you came into class? How about now?
  • What are the most pressing ethical problems facing you and your community?
  • Give examples of the is/ought and legal/moral distinctions. When have you or others conflated the them in the past?
  • Given what limited exposure you have had to the concepts, do you agree with the Nonrealist, Relativist, or Realist positions? Explain your reasoning and use an example to showcase your thinking.

Check Your Understanding

Select the best answer for each item.

Citation & Use

This chapter was sourced from Phronesis: An Open Introduction to Ethical Theory with Readings , by Henry Imler, which holds a CC-BY-NC-SA 4.0 license.

  • Mark Schroeder, “Value Theory,” in The Stanford Encyclopedia of Philosophy, ed. Edward N. Zalta, Fall 2016 (Metaphysics Research Lab, Stanford University, 2016), https://plato.stanford.edu/archives/fall2016/entries/value-theory/. ↵
  • Geoff Sayre-McCord, “Metaethics,” in  The Stanford Encyclopedia of Philosophy , ed. Edward N. Zalta, Summer 2014 (Metaphysics Research Lab, Stanford University, 2014), https://plato.stanford.edu/archives/sum2014/entries/metaethics/. ↵
  • This section was drawn from David Svolba's chapter on the same topic in Introduction to Ethics from NGE Press. His work is licensed under the Creative Commons open culture licence (CC-BY). ↵
  • Drawn from the actual case of Theresa Ann Campo Pearson.  For an overview of the ethical issues involved, see https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5606434/.  ↵
  • This discussion of critical thinking is drawn from Professor Barrett’s critical thinking model. For more, see Mike Barrett, “Critical Thinking,” in  Reading, Thinking, Writing (LOGOS Project at MACC, 2017). ↵
  • Plato, “Alcibiades,” in  Plato in 12 Volumes , trans. Harold North Flower, vol. 1 (London: Harvard University Press, 1966), sec. 118b, http://data.perseus.org/citations/urn:cts:greekLit:tlg0059.tlg013.perseus-eng1:118b. ↵
  • Euripides, in  Bacchae , invokes the idea of “willful blindness” with this term. See Robert Scott and H.G. Liddell,  An Intermediate Greek-English Lexicon  (Oxford, New York: Oxford University Press, 1945). and Euripides and T.A. Buckley, “Bacchae,” in  The Tragedies of Euripides (London: Henry G. Bohn, 1850), l. 490, http://data.perseus.org/citations/urn:cts:greekLit:tlg0006.tlg017.perseus-eng1:476-518. ↵
  • Plato, “The Apology,” in  Plato in 12 Volumes , trans. Harold North Flower, vol. 1 (London: Harvard University Press, 1966), secs. 20e–23c, http://data.perseus.org/citations/urn:cts:greekLit:tlg0059.tlg002.perseus-eng1:20e. ↵
  • Paulo Freire and Donaldo Macedo,  Pedagogy of the Oppressed: 50th Anniversary Edition , 4 edition (Bloomsbury Academic, 2018), chap. 2. ↵
  • Quote by Malcom Forbes as recorded in: Richard Lederer,  A Tribute to Teachers: Wit and Wisdom, Information and Inspiration about Those Who Change Our Lives (Marion Street Press, 2011), chap. 9. ↵
  • David Hume,  A Treatise on Human Nature: Being an Attempt to Introduce the Experimental Method of Reasoning Into Moral Subjects; and Dialogues Concerning Natural Religion (Longmans, Green and Company, 1874), 245–46. ↵

What is Ethics? Copyright © 2024 by Andrew Fisher; David Svolba; Henry Imler; and Mark Dimmock is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License , except where otherwise noted.

Share This Book

Leading in Context

Unleash the Positive Power of Ethical Leadership

How Is Critical Thinking Different From Ethical Thinking?

ethics creative and critical thinking

By Linda Fisher Thornton

Ethical thinking and critical thinking are both important and it helps to understand how we need to use them together to make decisions. 

  • Critical thinking helps us narrow our choices.  Ethical thinking includes values as a filter to guide us to a choice that is ethical.
  • Using critical thinking, we may discover an opportunity to exploit a situation for personal gain.  It’s ethical thinking that helps us realize it would be unethical to take advantage of that exploit.

Develop An Ethical Mindset Not Just Critical Thinking

Critical thinking can be applied without considering how others will be impacted. This kind of critical thinking is self-interested and myopic.

“Critical thinking varies according to the motivation underlying it. When grounded in selfish motives, it is often manifested in the skillful manipulation of ideas in service of one’s own, or one’s groups’, vested interest.” Defining Critical Thinking, The Foundation For Critical Thinking

Critical thinking informed by ethical values is a powerful leadership tool. Critical thinking that sidesteps ethical values is sometimes used as a weapon. 

When we develop leaders, the burden is on us to be sure the mindsets we teach align with ethical thinking. Otherwise we may be helping people use critical thinking to stray beyond the boundaries of ethical business. 

Unl eash the Positive Power of Ethical Leadership

© 2019-2024 Leading in Context LLC

ethics creative and critical thinking

Share this:

  • Click to share on Twitter (Opens in new window)
  • Click to share on Facebook (Opens in new window)
  • Click to email a link to a friend (Opens in new window)
  • Click to share on Pinterest (Opens in new window)
  • Click to print (Opens in new window)
  • Click to share on LinkedIn (Opens in new window)
  • Pingback: Unveiling Ethical Insights: Reflecting on My Business Ethics Class – Atlas-blue.com
  • Pingback: The Ethics Of Artificial Intelligence – Surfactants
  • Pingback: Five Blogs – 17 May 2019 – 5blogs

Join the Conversation!

This site uses Akismet to reduce spam. Learn how your comment data is processed .

' src=

  • Already have a WordPress.com account? Log in now.
  • Subscribe Subscribed
  • Copy shortlink
  • Report this content
  • View post in Reader
  • Manage subscriptions
  • Collapse this bar

Creative Thinking vs. Critical Thinking

What's the difference.

Creative thinking and critical thinking are two distinct but equally important cognitive processes. Creative thinking involves generating new ideas, concepts, and solutions by exploring various possibilities and thinking outside the box. It encourages imagination, originality, and innovation. On the other hand, critical thinking involves analyzing, evaluating, and questioning ideas, arguments, and information to make informed decisions and judgments. It emphasizes logical reasoning, evidence-based thinking, and the ability to identify biases and fallacies. While creative thinking focuses on generating ideas, critical thinking focuses on evaluating and refining those ideas. Both thinking processes are essential for problem-solving, decision-making, and personal growth.

AttributeCreative ThinkingCritical Thinking
DefinitionGenerating new and original ideas, solutions, or perspectives.Analyzing, evaluating, and making reasoned judgments based on evidence and logical reasoning.
ApproachExploratory, imaginative, and open-minded.Systematic, logical, and objective.
FocusEmphasizes novelty, uniqueness, and innovation.Emphasizes accuracy, validity, and reliability.
ProcessBrainstorming, free association, lateral thinking.Analysis, evaluation, inference, deduction.
GoalGenerating creative ideas, solutions, or possibilities.Developing informed and well-reasoned judgments or decisions.
ApplicationArt, design, innovation, problem-solving.Science, research, decision-making, problem-solving.

Further Detail

Introduction.

Creative thinking and critical thinking are two distinct cognitive processes that play crucial roles in problem-solving, decision-making, and innovation. While they share some similarities, they also have distinct attributes that set them apart. In this article, we will explore the characteristics of creative thinking and critical thinking, highlighting their differences and showcasing how they complement each other in various contexts.

Creative Thinking

Creative thinking is a cognitive process that involves generating new ideas, concepts, or solutions by exploring possibilities, making connections, and thinking outside the box. It is characterized by originality, flexibility, and fluency of thought. Creative thinkers often challenge conventional wisdom, embrace ambiguity, and are open to taking risks. They are adept at finding alternative perspectives and exploring multiple solutions to problems.

One of the key attributes of creative thinking is the ability to think divergently. This means being able to generate a wide range of ideas or possibilities, often through brainstorming or free association. Creative thinkers are not limited by constraints and are willing to explore unconventional or unorthodox approaches to problem-solving.

Another important aspect of creative thinking is the ability to make connections between seemingly unrelated concepts or ideas. This skill, known as associative thinking, allows creative thinkers to draw upon a diverse range of knowledge and experiences to generate innovative solutions. They can see patterns, analogies, and relationships that others may overlook.

Furthermore, creative thinking involves the willingness to take risks and embrace failure as a learning opportunity. Creative thinkers understand that not all ideas will be successful, but they are not deterred by setbacks. They view failures as stepping stones towards finding the right solution and are persistent in their pursuit of innovative ideas.

In summary, creative thinking is characterized by divergent thinking, associative thinking, risk-taking, and persistence. It encourages the exploration of new ideas and unconventional approaches to problem-solving.

Critical Thinking

Critical thinking, on the other hand, is a cognitive process that involves analyzing, evaluating, and interpreting information to form reasoned judgments or decisions. It is characterized by logical, systematic, and objective thinking. Critical thinkers are skilled at identifying biases, assumptions, and fallacies in arguments, and they strive to make well-informed and rational decisions based on evidence.

One of the key attributes of critical thinking is the ability to think analytically. Critical thinkers break down complex problems or situations into smaller components, examine the relationships between them, and evaluate the evidence or information available. They are adept at identifying logical inconsistencies or flaws in reasoning, which helps them make sound judgments.

Another important aspect of critical thinking is the ability to evaluate information objectively. Critical thinkers are skeptical and question the validity and reliability of sources. They seek evidence, consider alternative viewpoints, and weigh the strengths and weaknesses of different arguments before forming their own opinions. This attribute is particularly valuable in today's information-rich society, where misinformation and biased narratives are prevalent.

Furthermore, critical thinking involves the ability to think systematically. Critical thinkers follow a logical and structured approach to problem-solving, ensuring that all relevant factors are considered. They are skilled at identifying assumptions, clarifying concepts, and drawing logical conclusions based on the available evidence. This systematic approach helps minimize errors and biases in decision-making.

In summary, critical thinking is characterized by analytical thinking, objective evaluation, skepticism, and systematic reasoning. It emphasizes the importance of evidence-based decision-making and helps individuals navigate complex and information-rich environments.

Complementary Attributes

While creative thinking and critical thinking have distinct attributes, they are not mutually exclusive. In fact, they often complement each other and can be seen as two sides of the same coin.

Creative thinking can benefit from critical thinking by providing a framework for evaluating and refining ideas. Critical thinking helps creative thinkers assess the feasibility, viability, and desirability of their innovative ideas. It allows them to identify potential flaws, consider alternative perspectives, and make informed decisions about which ideas to pursue further.

On the other hand, critical thinking can benefit from creative thinking by expanding the range of possibilities and solutions. Creative thinking encourages critical thinkers to explore unconventional approaches, challenge assumptions, and consider alternative viewpoints. It helps them break free from rigid thinking patterns and discover innovative solutions to complex problems.

Moreover, both creative thinking and critical thinking require open-mindedness and a willingness to embrace ambiguity. They both involve a certain level of discomfort and uncertainty, as individuals venture into uncharted territories of thought. By combining creative and critical thinking, individuals can develop a well-rounded cognitive toolkit that enables them to tackle a wide range of challenges.

Creative thinking and critical thinking are two distinct cognitive processes that bring unique attributes to problem-solving, decision-making, and innovation. Creative thinking emphasizes divergent thinking, associative thinking, risk-taking, and persistence, while critical thinking emphasizes analytical thinking, objective evaluation, skepticism, and systematic reasoning.

While they have their differences, creative thinking and critical thinking are not mutually exclusive. They complement each other and can be seen as two sides of the same coin. Creative thinking benefits from critical thinking by providing a framework for evaluation and refinement, while critical thinking benefits from creative thinking by expanding the range of possibilities and solutions.

By cultivating both creative and critical thinking skills, individuals can enhance their ability to navigate complex problems, make well-informed decisions, and drive innovation in various domains. These cognitive processes are not only valuable in academic and professional settings but also in everyday life, where the ability to think creatively and critically can lead to personal growth and success.

Comparisons may contain inaccurate information about people, places, or facts. Please report any issues.

Please log in to save materials. Log in

  • Austin Community College
  • Effective Learning Strategies
  • Student Success
  • https-www-oercommons-org-courseware-module-25864-s
  • https://www.oercommons.org/courseware/module/25864/student/206121

Chapter 7: Critical and Creative Thinking

Chapter 7: Critical and Creative Thinking

Learning Framework: Effective Strategies for College Success

Learning Objectives

By the end of this section, you will be able to:

  • Define critical thinking
  • Describe the role that logic plays in critical thinking
  • Describe how critical thinking skills can be used to evaluate information
  • Perform fact-checking in the form of lateral reading to evaluate sources of information
  • Identify strategies for developing yourself as a critical thinker
  • Explore key elements and stages in the creative process
  • Apply specific skills for stimulating creative perspectives and innovative options
  • Integrate critical and creative thinking in the process of problem-solving

Critical and Creative Thinking

Critical thinking.

As a college student, you are tasked with engaging and expanding your thinking skills. One of the most important of these skills is critical thinking because it relates to nearly all tasks, situations, topics, careers, environments, challenges, and opportunities. It is a “domain-general” thinking skill, not one that is specific to a particular subject area.

What Is Critical Thinking?

Critical thinking  is clear, reasonable, reflective thinking focused on deciding what to believe or do (Robert Ennis.) It means asking probing questions like “How do we know?” or “Is this true in every case or just in this instance?” It involves being skeptical and challenging assumptions rather than simply memorizing facts or blindly accepting what you hear or read.

Imagine, for example, that you’re reading a history textbook. You wonder who wrote it and why, because you detect certain biases in the writing. You find that the author has a limited scope of research focused only on a particular group within a population. In this case, your critical thinking reveals that there are “other sides to the story.”

Who are critical thinkers, and what characteristics do they have in common? Critical thinkers are usually curious and reflective people. They like to explore and probe new areas and seek knowledge, clarification, and new solutions. They ask pertinent questions, evaluate statements and arguments, and they distinguish between facts and opinion. They are also willing to examine their own beliefs, possessing a manner of humility that allows them to admit lack of knowledge or understanding when needed. They are open to changing their mind. Perhaps most of all, they actively enjoy learning, and seeking new knowledge is a lifelong pursuit. This may well be you!

No matter where you are on the road to being a critical thinker, you can always more fully develop and finely tune your skills. Doing so will help you develop more balanced arguments, express yourself clearly, read critically, and glean important information efficiently. Critical thinking skills will help you in any profession or any circumstance of life, from science to art to business to teaching. With critical thinking, you become a clearer thinker and problem solver.

               
QuestioningPassively accepting
SkepticisimMemorizing
Challenging reasoningGroup thinking
Examining AssumptionsBlind acceptance of authority
Uncovering biasesFollowing conventional thinking

The following video, from Lawrence Bland, presents the major concepts and benefits of critical thinking.

Critical Thinking and Logic

Critical thinking is fundamentally a process of questioning information and data and then reflecting on and assessing what you discover to arrive at a reasonable conclusion. You may question the information you read in a textbook, or you may question what a politician or a professor or a classmate says.

You can also question a commonly held belief or a new idea. It is equally important (and even more challenging) to question your own thinking and beliefs! With critical thinking, anything and everything is subject to question and examination for the purpose of logically constructing reasoned perspectives.

What Is Logic?

The word  logic  comes from the Ancient Greek  logike , referring to the science or art of reasoning. Using logic, a person evaluates arguments and reasoning and strives to distinguish between good and bad reasoning, or between truth and falsehood. Using logic, you can evaluate the ideas and claims of others, make good decisions, and form sound beliefs about the world.

Questions of Logic in Critical Thinking

Let’s use a simple example of applying logic to a critical-thinking situation. In this hypothetical scenario, a man has a Ph.D. in political science, and he works as a professor at a local college. His wife works at the college, too. They have three young children in the local school system, and their family is well known in the community. The man is now running for political office. Are his credentials and experience sufficient for entering public office? Will he be effective in the political office? Some voters might believe that his personal life and current job, on the surface, suggest he will do well in the position, and they will vote for him. In truth, the characteristics described don’t guarantee that the man will do a good job. The information is somewhat irrelevant. What else might you want to know? How about whether the man had previously held a political office and done a good job? In this case, we want to think critically about how much information is adequate in order to make a decision based on  logic  instead of  assumptions.

The following questions, presented in Figure 1, below, are ones you may apply to formulate a logical, reasoned perspective in the above scenario or any other situation:

  • What’s happening?  Gather the basic information and begin to think of questions.
  • Why is it important?  Ask yourself why it’s significant and whether or not you agree.
  • What don’t I see?  Is there anything important missing?
  • How do I know?  Ask yourself where the information came from and how it was constructed.
  • Who is saying it?  What’s the position of the speaker and what is influencing them?
  • What else?   What if?  What other ideas exist and are there other possibilities?

Infographic titled "Questions a Critical Thinker Asks." From the top, text reads: What's Happening? Gather the basic information and begin to think of questions (image of two stick figures talking to each other). Why is it Important? Ask yourself why it's significant and whether or not you agree. (Image of bearded stick figure sitting on a rock.) What Don't I See? Is there anything important missing? (Image of stick figure wearing a blindfold, whistling, walking away from a sign labeled Answers.) How Do I Know? Ask yourself where the information came from and how it was constructed. (Image of stick figure in a lab coat, glasses, holding a beaker.) Who is Saying It? What's the position of the speaker and what is influencing them? (Image of stick figure reading a newspaper.) What Else? What If? What other ideas exist and are there other possibilities? (Stick figure version of Albert Einstein with a thought bubble saying "If only time were relative...".

Problem-Solving with Critical Thinking

For most people, a typical day is filled with critical thinking and problem-solving challenges. In fact, critical thinking and problem-solving go hand-in-hand. They both refer to using knowledge, facts, and data to solve problems effectively. But with problem-solving, you are specifically identifying, selecting, and defending your solution. Below are some examples of using critical thinking to problem-solve:

  • Your friend was upset and said some unkind words to you, which put a crimp in the relationship. You try to see through the angry behaviors to determine how you might best support your friend and help bring the relationship back to a comfortable spot.
  • ​​​Your final art class project challenges you to conceptualize form in new ways. On the last day of class when students present their projects, you describe the techniques you used to fulfill the assignment. You explain why and how you selected that approach.
  • You have a job interview for a position that you feel you are only partially qualified for, although you really want the job and are excited about the prospects. You analyze how you will explain your skills and experiences in a way to show that you are a good match for the prospective employer.
  • You are doing well in college, and most of your college and living expenses are covered. But there are some gaps between what you want and what you feel you can afford. You analyze your income, savings, and budget to better calculate what you will need to stay in college and maintain your desired level of spending.

Evaluating Information with Critical Thinking

In 2010, a textbook used in fourth-grade classrooms in Virginia became big news for all the wrong reasons. The book,  Our Virginia  by Joy Masoff, caught the attention of a parent who was helping her child do her homework, according to  an article in  The Washington Post . Carol Sheriff was a historian for the College of William and Mary and as she worked with her daughter, she began to notice some glaring historical errors, not the least of which was a passage that described how thousands of African Americans fought for the South during the Civil War.

Further investigation into the book revealed that, although the author had written textbooks on a variety of subjects, she was not a trained historian. The research she had done to write  Our Virginia,  and in particular the information she included about Black Confederate soldiers, was done through the Internet and included sources created by groups like the Sons of Confederate Veterans, an organization that promotes views of history that de-emphasize the role of slavery in the Civil War.

There’s no question that evaluating sources is an important part of the research process and doesn’t just apply to Internet sources. Using inaccurate, irrelevant, or poorly researched sources can affect the quality of your own work. Being able to understand and apply the concepts that follow is crucial to becoming a more savvy user and creator of information.

Fact-Checking With Lateral Reading

When you find a source of information, how do you know if it’s true? How can you be sure that it is a reliable, trustworthy, and effective piece of evidence for your research? This section will introduce you to a set of strategies to quickly and effectively verify your sources, based on the approach taken by professional fact-checkers. Fact-checking is a form of  information hygiene , the  “metaphorical handwashing you engage in to prevent the spread of misinformation” (Caulfield). It  can minimize your own susceptibility to misinformation and disinformation, and help you to avoid spreading it to others.

In 2017, the Stanford History Education Group conducted a study, “ Lateral Reading: Reading Less and Learning More When Evaluating Digital Information .” Here, they assessed the internet evaluation skills of presumed experts: Stanford undergraduates, History professors, and professional fact-checkers. This fascinating study confirmed that even Stanford students and professors with PhDs in History struggled to identify credible sources on the internet.

For example, in one task, the participants were presented with two websites that provided information on bullying, and they were given up to ten minutes to determine which was the more reliable site. One of the websites (American Academy of Pediatrics) was from the largest professional organization of pediatricians in the world, while the other site (American College of Pediatricians) had been labeled a hate group because of its virulently anti-gay stance. The result?

  • Only 50% of the historians identified the reliable website
  • Only 20% of the undergrads identified the reliable website
  • 100% of the fact-checkers were able to quickly identify the reliable website

Watch this supplemental video that gives an overview of The Stanford Experiment.

The SIFT Method

Mike Caulfield, Washington State University digital literacy expert, has helpfully condensed key fact-checking strategies into a short list of four moves, or things to do to quickly make a decision about whether or not a source is worthy of your attention. It is referred to as the “SIFT” method:

SIFT: Stop. Investigate the source. Find better coverage. Trace claims, quotes and media to the original context

When you initially encounter a source of information and start to read it—stop. Ask yourself whether you know and trust the author, publisher, publication, or website. If you don’t, use the other fact-checking moves that follow, to get a better sense of what you’re looking at. In other words, don’t read, share, or use the source in your research until you know what it is, and you can verify it is reliable.

This is a particularly important step, considering what we know about the  attention economy —social media, news organizations, and other digital platforms purposely promote sensational, divisive, and outrage-inducing content that emotionally hijacks our attention in order to keep us “engaged” with their sites (clicking, liking, commenting, sharing). Stop and check your emotions before engaging!

Investigate the Source

You don’t have to do a three-hour investigation into a source before you engage with it. But if you’re reading a piece on economics, and the author is a Nobel prize-winning economist, that would be useful information. Likewise, if you’re watching a video on the many benefits of milk consumption, you would want to be aware if the video was produced by the dairy industry. This doesn’t mean the Nobel economist will always be right and that the dairy industry can’t ever be trusted. But knowing the expertise and agenda of the person who created the source is crucial to your interpretation of the information provided.

When investigating a source, fact-checkers read “laterally” across many websites, rather than digging deep (reading “vertically”) into the one source they are evaluating. That is, they don’t spend much time on the source itself, but instead they quickly get off the page and see what others have said about the source. They open up many tabs in their browser, piecing together different bits of information from across the web to get a better picture of the source they’re investigating.

Watch the following short video for a demonstration of this strategy. Pay particular attention to how Wikipedia can be used to quickly get useful information about publications, organizations, and authors.

Find Better Coverage

What if the source you find is low-quality, or you can’t determine if it is reliable or not? Perhaps  you don’t really care about the source—you care about the claim that source is making. You want to know if it is true or false. You want to know if it represents a consensus viewpoint, or if it is the subject of much disagreement. A common example of this is a meme you might encounter on social media. The random person or group who posted the meme may be less important than the quote or claim the meme makes.

Your best strategy in this case might be to find a better source altogether, to look for other coverage that includes trusted reporting or analysis on that same claim. Rather than relying on the source that you initially found, you can trade up for a higher quality source.

The point is that you’re not wedded to using that initial source. We have the internet! You can go out and find a better source, and invest your time there. Watch the followng video that demonstrates this strategy and notes how fact-checkers build a library of trusted sources they can rely on to provide better coverage.

Trace Claims, Quotes, and Media to the Original Context

Much of what we find on the internet has been stripped of context. Maybe there’s a video of a fight between two people with Person A as the aggressor. But what happened before that? What was clipped out of the video and what stayed in? Maybe there’s a picture that seems real but the caption could be misleading. Maybe a claim is made about a new medical treatment based on a research finding, but you’re not certain if the cited research paper actually said that. The people who re-report these stories either get things wrong by mistake, or, in some cases, they are intentionally misleading us.

In these cases you will want to trace the claim, quote, or media back to the source, so you can see it in its original context and get a sense of whether the version you saw was accurately presented. Watch the following video that discusses re-reporting vs. original reporting and demonstrates a quick tip: going “upstream” to find the original reporting source.

Developing Yourself As a Critical Thinker

Critical thinking is a fundamental skill for college students, but it should also be a lifelong pursuit. Below are additional strategies to develop yourself as a critical thinker in college and in everyday life:

  • Reflect and practice : Always reflect on what you’ve learned. Is it true all the time? How did you arrive at your conclusions?
  • Use wasted time : It’s certainly important to make time for relaxing, but if you find you are indulging in too much of a good thing, think about using your time more constructively. Determine when you do your best thinking and try to learn something new during that part of the day.
  • Redefine the way you see things : It can be very uninteresting to always think the same way. Challenge yourself to see familiar things in new ways. Put yourself in someone else’s shoes and consider things from a different angle or perspective.  If you’re trying to solve a problem, list all your concerns: what you need in order to solve it, who can help, what some possible barriers might be, etc. It’s often possible to reframe a problem as an opportunity. Try to find a solution where there seems to be none.
  • Analyze the influences on your thinking and in your life : Why do you think or feel the way you do? Analyze your influences. Think about who in your life influences you. Do you feel or react a certain way because of social convention, or because you believe it is what is expected of you? Try to break out of any molds that may be constricting you.
  • Express yourself : Critical thinking also involves being able to express yourself clearly. Most important in expressing yourself clearly is stating one point at a time. You might be inclined to argue every thought, but you might have greater impact if you focus just on your main arguments. This will help others to follow your thinking clearly. For more abstract ideas, assume that your audience may not understand. Provide examples, analogies, or metaphors where you can.
  • Enhance your wellness : It’s easier to think critically when you take care of your mental and physical health. Try taking activity breaks throughout the day to reach 30 to 60 minutes of physical activity each day. Scheduling physical activity into your day can help lower stress and increase mental alertness. Also,  do your most difficult work when you have the most energy . Think about the time of day you are most effective and have the most energy. Plan to do your most difficult work during these times. And be sure to  reach out for help i f you feel you need assistance with your mental or physical health (see  Maintaining Your Mental (and Physical) Health  for more information).

Creative Thinking

Creative thinking  is an invaluable skill for college students because it helps you look at problems and situations from a fresh perspective. Creative thinking is a way to develop novel or unorthodox solutions that do not depend wholly on past or current solutions. It’s a way of employing strategies to clear your mind so that your thoughts and ideas can transcend what appears to be the limitations of a problem. Creative thinking is a way of moving beyond barriers and it can be understood as a  skill,  as opposed to an inborn talent or natural “gift”, that can be taught as well as learned.

However, the ability to think and act in creative ways is a natural ability that we all exhibited as children. The curiosity, wonder, imagination, playfulness, and persistence in obtaining new skills are what transformed us into the powerful learners that we became well before we entered school. As a creative thinker now, you are curious, optimistic, and imaginative. You see problems as interesting opportunities, and you challenge assumptions and suspend judgment. You don’t give up easily. You work hard. Is this you? Even if you don’t yet see yourself as a competent creative thinker or problem-solver yet, you can learn solid skills and techniques to help you become one.

How to Stimulate Creative Thinking

The following video,  How to Stimulate the Creative Process , identifies six strategies to stimulate your creative thinking.

  • Sleep on it . Over the years, researchers have found that the REM sleep cycle boosts our creativity and problem-solving abilities, providing us with innovative ideas or answers to vexing dilemmas when we awaken. Keep a pen and paper by the bed so you can write down your nocturnal insights if they wake you up.
  • Go for a run or hit the gym . Studies indicate that exercise stimulates creative thinking, and the brainpower boost lasts for a few hours.
  • Allow your mind to wander  a few times every day. Far from being a waste of time, daydreaming has been found to be an essential part of generating new ideas. If you’re stuck on a problem or creatively blocked, think about something else for a while.
  • Keep learning . Studying something far removed from your area of expertise is especially effective in helping you think in new ways.
  • Put yourself in nerve-racking situations  once in a while to fire up your brain. Fear and frustration can trigger innovative thinking.
  • Keep a notebook  with you, or create a file for ideas on your smartphone or laptop, so you always have a place to record fleeting thoughts. They’re sometimes the best ideas of all.

The following video, Where Good Ideas Come From by Steven Johnson, reinforces the idea that time allows creativity to flourish.

Watch this supplemental video by PBS Digital Studies: How To Be Creative | Off Book | PBS Digital Studio for a more in-depth look on how to become a “powerful creative person.”

Problem Solving with Creative Thinking

Creative problem-solving is a type of problem-solving that involves searching for new and novel solutions to problems. It’s a way to think “outside of the box.” Unlike critical thinking, which scrutinizes assumptions and uses reasoning, creative thinking is about generating alternative ideas— practices and solutions that are unique and effective. It’s about facing sometimes muddy and unclear problems and seeing how things can be done differently.

As you continue to develop your creative thinking skills, be alert to perceptions about creative thinking that could slow down progress. Remember that creative thinking and problem-solving are ways to transcend the limitations of a problem and see past barriers.

 

1

Every problem has only one solution (or one right answer)

The goal of problem-solving is to solve the problem, and most problems can be solved in any number of ways. If you discover a solution that works, it’s a good solution. Other people may think up solutions that differ from yours, but that doesn’t make your solution wrong or unimportant. What is the solution to “putting words on paper?” Fountain pen, ballpoint, pencil, marker, typewriter, printer, printing press, word-processing… all are valid solutions!

2

The best answer, solution, or method has already been discovered

Look at the history of any solution and you’ll see that improvements, new solutions, and new right answers are always being found. What is the solution to human transportation? The ox or horse, the cart, the wagon, the train, the car, the airplane, the jet, the space shuttle? What is the best and last?

3

Creative answers are technologically complex

Only a few problems require complex technological solutions. Most problems you’ll encounter need only a thoughtful solution involving personal action and perhaps a few simple tools. Even many problems that seem to require technology can be addressed in other ways.

4

Ideas either come or they don’t. Nothing will help— certainly not structure.

There are many successful techniques for generating ideas. One important technique is to include structure. Create guidelines, limiting parameters, and concrete goals for yourself that stimulate and shape your creativity. This strategy can help you get past the intimidation of “the blank page.” For example, if you want to write a story about a person who gained insight through experience, you can stoke your creativity by limiting or narrowing your theme to “a young girl in Cambodia who escaped the Khmer Rouge to find a new life as a nurse in France.” Apply this specificity and structure to any creative endeavor.

Critical and creative thinking complement each other when it comes to problem-solving. The process of alternatively focusing and expanding your thinking can generate more creative, innovative, and effective outcomes.

Problem-Solving Action Checklist

Problem-solving can be an efficient and rewarding process, especially if you are organized and mindful of critical steps and strategies. Remember to assume the attributes of a good critical thinker: if you are curious, reflective, knowledge-seeking, open to change, probing, organized, and ethical, your challenge or problem will be less of a hurdle, and you’ll be in a good position to find intelligent solutions. The steps outlined in this checklist will help you adhere to these qualities in your approach to any problem:

1. Define the problem
2. Identify available solutions
3. Select your solution

KEY TAKEAWAYS

  • Critical thinking is logical and reflective thinking focused on deciding what to believe or do.
  • Critical thinking involves questioning and evaluating information.
  • Evaluating information is a complex, but essential, process. You can use the SIFT method to help determine if sources and information are reliable.
  • Creative thinking is both a natural aspect of childhood and a re-learnable skill as an adult.
  • Creative thinking is as essential a skill as critical thinking and integrating them can contribute to  innovative and rewarding experiences in life.
  • Critical and creative thinking both contribute to our ability to solve problems in a variety of contexts.
  • You can take specific actions to develop and strengthen your critical and creative thinking skills.

LICENSES AND ATTRIBUTIONS

CC LICENSED CONTENT, ORIGINAL

  • Critical and Creative Thinking  Authored by : Laura Lucas, Tobin Quereau, and Heather Syrett.  Provided by : Austin Community College.  License :  CC BY-NC-SA-4.0

CC LICENSED CONTENT, SPECIFIC ATTRIBUTION

  • Chapter cover image.  Authored by : Hans-Peter Gauster.  Provided by : Unsplash.  Located at :  https://unsplash.com/photos/3y1zF4hIPCg .  License :  CC0: No Rights Reserved
  • Creative Thinking Skills  in College Success.  Authored by : Linda Bruce.  Provided by : Lumen Learning.  Located at :  https://courses.lumenlearning.com/collegesuccess-lumen/chapter/creative-thinking-skills/ .  License :  CC BY 4.0
  • Critical Thinking Skills  in College Success.   Authored by : Linda Bruce.  Provided by : Lumen Learning.  Located at :  https://courses.lumenlearning.com/collegesuccess-lumen/chapter/critical-thinking-skills/ .  License :  CC BY 4.0
  • Evaluate: Assessing Your Research Process and Findings  in Information Literacy.  Authored by : Bernnard, Bobish, Hecker, Holden, Hosier, Jacobsen, Loney, Bullis.  Provided by : Lumen Learning.  Located at :  https://courses.lumenlearning.com/informationliteracy/chapter/evaluate-assessing-your-research-process-and-findings/ .  License :  CC BY-NC-SA-4.0
  • The SIFT Method in Introduction to College Research . Authored by:  Walter D. Butler; Aloha Sargent; and Kelsey Smith. Provided by: Pressbooks. Located at : https://oer.pressbooks.pub/collegeresearch/chapter/the-sift-method/ . License: CC BY 4.0
  • Why Fact-Checking in Introduction to College Research . Authored by:  Walter D. Butler; Aloha Sargent; and Kelsey Smith. Provided by: Pressbooks. Located at : https://oer.pressbooks.pub/collegeresearch/chapter/why-fact-checking/ . License: CC BY 4.0

ALL RIGHTS RESERVED CONTENT

Where Good Ideas Come From.  Authored by : Steven Johnson. Provided by: Riverhead Books.  Located at :  https://www.youtube.com/watch?v=NugRZGDbPFU .  License :  All Rights Reserved .  License Terms : Standard YouTube License

How to Stimulate the Creative Process.  Provided by : Howcast.  Located at :  https://youtu.be/kPC8e-Jk5uw .  License :  All Rights Reserved .  License Terms : Standard YouTube License

Version History

  • University of Nebraska System
  • Get To Know Nebraska
  • Online Experience
  • Non-Credit Courses
  • Digital Learning Innovation
  • Online Programs
  • Areas of Study
  • Request Information
  • online programs
  • areas of study
  • Request Info
  • Toggle search

Critical & Creative Thinking, MA (Ethics & Values)

Master of Arts Degree in Critical and Creative Thinking with a Concentration in Ethics and Values

The online Master of Arts (MA) in Critical & Creative Thinking with a concentration in Ethics & Values degree program, students discover the manner in which our ethics and values impinge on the rest of our lives. Students will apply a wide variety of theories and methodologies from philosophy, religious studies, and political science in the exploration of the human condition.

Total Credits

Cost Per Credit

Through coursework, students will:

  • Gain a deeper theoretical understanding of the multifaceted relationships between ethics and values.
  • Analyze the cross-cultural significance of human values, ethical practices and social movements in the geopolitics of globalization and sustainability.
  • Explore the relationship between ethics and other facets of human experience such as culture, politics, religion and economics.
  • Investigate the nature of conflict and different strategies or conflict resolution and gain a fuller toolbox of ways to respond to the tensions that often erupt from the collision of different ethics and values.

Students completing this program must complete 30 credit hours, including the following requirements:

  • Introduction to Critical and Creative Thinking.
  • Twelve credit hours chosen from a primary concentration.
  • An additional twelve credit hours chosen through an array of electives from outside the primary concentration or from a secondary MA CCT concentration.
  • A graduate project.

Additional Program Information

For up-to-date application, course and licensure information, visit the campus program page.

The University of Nebraska at Omaha is dedicated to the city and state in its name. As the University of Nebraska's metropolitan university campus, no fences or barriers separate students from the opportunities offered by the greater Omaha area. The campus addresses real issues, by providing relevant learning opportunities that uniquely prepare graduates as professionals and active members of their community so they can transform and improve the lives of those on a local, regional, national, and international level.

people discussing together in small group

Career Outlook

This interdisciplinary degree provides a unique opportunity to pursue both breadth and depth within the rich and diverse landscape of the liberal arts and sciences. Students pursuing this degree will enhance their career potential by developing advanced skills and abilities necessary for critical thinking, creativity and leadership.

Finance Your Education

The University of Nebraska offers some of the most affordable tuition rates in the region, particularly for our online programs. Explore the array of funding options to finance your education in a way that makes sense for you.

Online tuition rates are calculated by credit hour and college offering the course and, because the University of Nebraska is a public institution supported by Nebraska taxpayers, Nebraska residents may receive a lower tuition rate than out-of-state students.

Cost Per Credit

In-State

Out-of-State

$388

$820

Note: Campuses may charge additional fees; see the  for more details.

If you are a college student considering transferring courses, an adult returning to college or a high school student with college credit, Transfer Nebraska is for you.

Verify this program is permitted in your state.

Distance Education State Authorization Dashboard

Similar Programs

collaborating at table with sticky notes

Critical & Creative Thinking, MA (Organizational Science & Leadership)

University of Nebraska at Omaha

business people working in open office

Business Administration, MBA

University of Nebraska–Lincoln

man speaking to audience

Public Administration, MPA

Get started.

Fill out the form below to request more information.

Field is required.

We will be contacting you soon.

An error occurred during submission.

COOKIE USAGE:

The University of Nebraska System uses cookies to give you the best online experience. By clicking "I Agree" and/or continuing to use this website without adjusting your browser settings, you accept the use of cookies.

PRIVACY SETTINGS

Michael W. Austin Ph.D.

Standards of Critical Thinking

Thinking towards truth..

Posted June 11, 2012 | Reviewed by Ekua Hagan

  • What Is Cognition?
  • Take our Mental Processing Test
  • Find a therapist near me

What is critical thinking? According to my favorite critical thinking text , it is disciplined thinking that is governed by clear intellectual standards.

This involves identifying and analyzing arguments and truth claims, discovering and overcoming prejudices and biases, developing your own reasons and arguments in favor of what you believe, considering objections to your beliefs, and making rational choices about what to do based on your beliefs.

Clarity is an important standard of critical thought. Clarity of communication is one aspect of this. We must be clear in how we communicate our thoughts, beliefs, and reasons for those beliefs.

Careful attention to language is essential here. For example, when we talk about morality , one person may have in mind the conventional morality of a particular community, while another may be thinking of certain transcultural standards of morality. Defining our terms can greatly aid us in the quest for clarity.

Clarity of thought is important as well; this means that we clearly understand what we believe, and why we believe it.

Precision involves working hard at getting the issue under consideration before our minds in a particular way. One way to do this is to ask the following questions: What is the problem at issue? What are the possible answers? What are the strengths and weaknesses of each answer?

Accuracy is unquestionably essential to critical thinking. In order to get at or closer to the truth, critical thinkers seek accurate and adequate information. They want the facts because they need the right information before they can move forward and analyze it.

Relevance means that the information and ideas discussed must be logically relevant to the issue being discussed. Many pundits and politicians are great at distracting us away from this.

Consistency is a key aspect of critical thinking. Our beliefs should be consistent. We shouldn’t hold beliefs that are contradictory. If we find that we do hold contradictory beliefs, then one or both of those beliefs are false. For example, I would likely contradict myself if I believed both that " Racism is always immoral" and "Morality is entirely relative." This is a logical inconsistency.

There is another form of inconsistency, called practical inconsistency, which involves saying you believe one thing while doing another. For example, if I say that I believe my family is more important than my work, but I tend to sacrifice their interests for the sake of my work, then I am being practically inconsistent.

The last three standards are logical correctness, completeness, and fairness. Logical correctness means that one is engaging in correct reasoning from what we believe in a given instance to the conclusions that follow from those beliefs. Completeness means that we engage in deep and thorough thinking and evaluation, avoiding shallow and superficial thought and criticism. Fairness involves seeking to be open-minded, impartial, and free of biases and preconceptions that distort our thinking.

Like any skill or set of skills, getting better at critical thinking requires practice. Anyone wanting to grow in this area might think through these standards and apply them to an editorial in the newspaper or on the web, a blog post, or even their own beliefs. Doing so can be a useful and often meaningful exercise.

Michael W. Austin Ph.D.

Michael W. Austin, Ph.D. , is a professor of philosophy at Eastern Kentucky University.

  • Find a Therapist
  • Find a Treatment Center
  • Find a Psychiatrist
  • Find a Support Group
  • Find Online Therapy
  • United States
  • Brooklyn, NY
  • Chicago, IL
  • Houston, TX
  • Los Angeles, CA
  • New York, NY
  • Portland, OR
  • San Diego, CA
  • San Francisco, CA
  • Seattle, WA
  • Washington, DC
  • Asperger's
  • Bipolar Disorder
  • Chronic Pain
  • Eating Disorders
  • Passive Aggression
  • Personality
  • Goal Setting
  • Positive Psychology
  • Stopping Smoking
  • Low Sexual Desire
  • Relationships
  • Child Development
  • Self Tests NEW
  • Therapy Center
  • Diagnosis Dictionary
  • Types of Therapy

September 2024 magazine cover

It’s increasingly common for someone to be diagnosed with a condition such as ADHD or autism as an adult. A diagnosis often brings relief, but it can also come with as many questions as answers.

  • Emotional Intelligence
  • Gaslighting
  • Affective Forecasting
  • Neuroscience

U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings

The PMC website is updating on October 15, 2024. Learn More or Try it out now .

  • Advanced Search
  • Journal List
  • PMC10054602

Logo of jintell

Creativity, Critical Thinking, Communication, and Collaboration: Assessment, Certification, and Promotion of 21st Century Skills for the Future of Work and Education

Branden thornhill-miller.

1 Faculty of Philosophy, University of Oxford, Oxford OX2 6GG, UK

2 International Institute for Competency Development, 75001 Paris, France

Anaëlle Camarda

3 LaPEA, Université Paris Cité and Univ Gustave Eiffel, 92100 Boulogne-Billancourt, France

4 Institut Supérieur Maria Montessori, 94130 Nogent-Sur-Marne, France

Maxence Mercier

Jean-marie burkhardt.

5 LaPEA, Univ Gustave Eiffel and Université Paris Cité, CEDEX, 78008 Versailles, France

Tiffany Morisseau

6 Strane Innovation, 91190 Gif-sur-Yvette, France

Samira Bourgeois-Bougrine

Florent vinchon, stephanie el hayek.

7 AFNOR International, 93210 Saint-Denis, France

Myriam Augereau-Landais

Florence mourey, cyrille feybesse.

8 Centre Hospitalier Guillaume Regnier, Université de Rennes 1, 35200 Rennes, France

Daniel Sundquist

Todd lubart, associated data.

Not Applicable.

This article addresses educational challenges posed by the future of work, examining “21st century skills”, their conception, assessment, and valorization. It focuses in particular on key soft skill competencies known as the “4Cs”: creativity, critical thinking, collaboration, and communication. In a section on each C, we provide an overview of assessment at the level of individual performance, before focusing on the less common assessment of systemic support for the development of the 4Cs that can be measured at the institutional level (i.e., in schools, universities, professional training programs, etc.). We then present the process of official assessment and certification known as “labelization”, suggesting it as a solution both for establishing a publicly trusted assessment of the 4Cs and for promoting their cultural valorization. Next, two variations of the “International Institute for Competency Development’s 21st Century Skills Framework” are presented. The first of these comprehensive systems allows for the assessment and labelization of the extent to which development of the 4Cs is supported by a formal educational program or institution. The second assesses informal educational or training experiences, such as playing a game. We discuss the overlap between the 4Cs and the challenges of teaching and institutionalizing them, both of which may be assisted by adopting a dynamic interactionist model of the 4Cs—playfully entitled “Crea-Critical-Collab-ication”—for pedagogical and policy-promotion purposes. We conclude by briefly discussing opportunities presented by future research and new technologies such as artificial intelligence and virtual reality.

1. Introduction

There are many ways of describing the massive educational challenges faced in the 21st century. With the appearance of computers and digital technologies, new means of interacting between people, and a growing competitiveness on the international level, organizations are now requiring new skills from their employees, leaving educational systems struggling to provide appropriate ongoing training. Indeed, according to the World Economic Forum’s 2020 “Future of Jobs Report”, studying 15 industries in 26 advanced and emerging countries, up to 50% of employees will need some degree of “reskilling” by 2025 ( World Economic Forum 2020 ). Although many national and international educational efforts and institutions now explicitly put the cultivation of new kinds of skills on their educational agendas, practical means of assessing such skills remains underdeveloped, thus hampering the valorization of these skills and the development of guidance for relevant pedagogy ( Care et al. 2018 ; Vincent-Lancrin et al. 2019 ; for overviews and discussion of higher education in global developmental context, see Blessinger and Anchan 2015 ; Salmi 2017 ).

This article addresses some of these challenges and related issues for the future of education and work, by focusing on so-called “21st Century Skills” and key “soft skills” known as the “4Cs” (creativity, critical thinking, communication, and collaboration), more particularly. It begins with a brief discussion of these skills, outlining their conceptual locations and potential roles in the modern educational context. A section on each “C” then follows, defining the C, summarizing research and methods for its scientific assessment at the individual level, and then outlining some means and avenues at the systemic level for fostering its development (e.g., important aspects of curriculum, institutional structure, or of the general environment, as well as pedagogical methods) that might be leveraged by an institution or program in order to promote the development of that C among its students/trainees. In the next section, the certification-like process of “labelization” is outlined and proposed as one of the best available solutions both for valorizing the 4Cs and moving them towards the center of the modern educational enterprise, as well as for benchmarking and monitoring institutions’ progress in fostering their development. The International Institute for Competency Development’s 4Cs Framework is then outlined as an example of such a comprehensive system for assessing and labelizing the extent to which educational institutions and programs support the development of the 4Cs. We further demonstrate the possibility of labelizing and promoting support for the development of the 4Cs by activities or within less formal educational settings, presenting a second framework for assessment of the 4Cs in games and similar training activities. Our discussion section begins with the challenges to implementing educational change in the direction of 21st century skills, focusing on the complex and overlapping nature of the 4Cs. Here, we propose that promoting a “Dynamic Interactionist Model of the 4Cs” not only justifies grouping them together, but it might also assist more directly with some of the challenges of pedagogy, assessment, policy promotion, and ultimately, institutionalization, faced by the 4Cs and related efforts to modernize education. We conclude by suggesting some important future work for the 4Cs individually and also as an interrelated collective of vital skills for the future of education and work.

“21st Century Skills”, “Soft Skills”, and the “4Cs”

For 40 years, so-called “21st century skills” have been promoted as those necessary for success in a modern work environment that the US Army War College ( Barber 1992 ) has accurately described as increasingly “VUCA”—“volatile, uncertain, complex and ambiguous”. Various lists of skills and competencies have been formulated on their own or as part of comprehensive overarching educational frameworks. Although a detailed overview of this background material is outside the scope of this article (see Lamri et al. 2022 ; Lucas 2022 for summaries), one of the first prominent examples of this trend was the Partnership for 21st Century Skills (P21), whose comprehensive “Framework for 21st Century Learning” is presented in Figure 1 ( Battelle for Kids 2022 ). This framework for future-oriented education originated the idea of the “4Cs”, placing them at its center and apex as “Learning and Innovation Skills” that are in need of much broader institutional support at the foundational level in the form of new standards and assessments, curriculum and instructional development, ongoing professional development, and appropriately improved learning environments ( Partnership for 21st Century Skills 2008 ). These points are also consistent with the approach and assessment frameworks presented later in this article.

An external file that holds a picture, illustration, etc.
Object name is jintelligence-11-00054-g001.jpg

The P21 Framework for 21st Century Learning. (© 2019, Battelle for Kids. All Rights Reserved. https://www.battelleforkids.org/ ; accessed on 17 January 2023).

Other important organizations such as the World Economic Forum ( 2015 ) have produced similar overarching models of “21st century skills’’ with the 4Cs at their center, but the term “21st century skills’’ has been rightly criticized for a several reasons: the skills referred to are not actually all unique to, or uniquely important to, the 21st century, and it is a term that is often used more as an advertising or promotional label for systems that sometimes conflate and confuse different kinds of skills with other concepts that users lump together ( Lucas 2019 ). Indeed, though there is no absolute consensus on the definition of a “skill”, they are often described as being multidimensional and involve the ability to solve problems in context and to perform tasks using appropriate resources at the right time and in the right combination ( Lamri and Lubart 2021 ). At its simplest, a skill is a “learned capacity to do something useful” ( Lucas and Claxton 2009 ), or an ability to perform a given task at a specified performance level, which develops through practice, experience. and training ( Lamri et al. 2022 ).

The idea of what skills “are’’, however, has also evolved to some extent over time in parallel to the nature of the abilities required to make valued contributions to society. The digital and information age, in particular, has seen the replacement by machines of much traditional work sometimes referred to as “hard skills’’—skills such as numerical calculation or driving, budget-formulating, or copyediting abilities, which entail mastery of fixed sets of knowledge and know-how of standard procedures, and which are often learned on the job. Such skills are more routine, machine-related, or technically oriented and not as likely to be centered on human interaction. In contrast, the work that has been increasingly valued in the 21st century involves the more complex, human interactive, and/or non-routine skills that Whitmore ( 1972 ) first referred to as “soft skills”.

Unfortunately, researchers, educators, and consultants have defined, redefined, regrouped, and expanded soft skills—sometimes labeling them “transversal competencies”, “generic competencies”, or even “life skills” in addition to “21st century skills”—in so many different ways within and across different domains of research and education (as well as languages and national educational systems) that much progress towards these goals has literally been “lost in translation” ( Cinque 2016 ).

Indeed, there is also a long-standing ambiguity and confusion between the terms “competency” (also competence) and “skill” due to their use across different domains (e.g., learning research, education, vocational training, personnel selection) as well as different epistemological backgrounds and cultural specificities ( Drisko 2014 ; Winterton et al. 2006 ; van Klink and Boon 2003 ). The term “competency” is, however, often used as a broader concept that encompasses skills, abilities, and attitudes, whereas, in a narrower sense, the term “skill” has been defined as “goal-directed, well-organized behavior that is acquired through practice and performed with economy of effort” ( Proctor and Dutta 1995, p. 18 ). For example, whereas the command of a spoken language or the ability to write are skills (hard skills, to be precise), the ability to communicate effectively is a competence that may draw on an individual’s knowledge of language, writing skills, practical IT skills, and emotional intelligence, as well as attitudes towards those with whom one is communicating ( Rychen and Hersch 2003 ). Providing high-quality customer service is a competency that relies on listening skills, social perception skills, and contextual knowledge of products. Beyond these potential distinctions, the term “competency” is predominant in Europe, whereas “skill” is more commonly used in the US. Yet it also frequently occurs that both are used as rough synonyms. For example, Voogt and Roblin ( 2012, p. 299 ) examine the “21st century competences and the recommended strategies for the implementation of these skills”, and Graesser et al. ( 2022, p. 568 ) state that twenty-first-century skills “include self-regulated learning, collaborative problem solving, communication (…) and other competencies”. In conclusion, the term “competencies” is often used interchangeably with “skills” (and can have a particularly large overlap with “soft skills”), but it is also often considered in a broader sense as a set of skills, knowledge, and attitudes that, together, meet a complex demand ( Ananiadoui and Claro 2009 ). From this perspective, one could argue that the 4Cs, as complex, “higher-order” soft skills, might best be labeled competencies. For ease and convenience, however, in this text, we consider the two terms interchangeable but favor the term “skills”, only using “competency” in some instances to avoid cumbersome repetition.

Even having defined soft skills as a potentially more narrow and manageable focus, we are still aware of no large-scale study that has employed a comprehensive enough range of actual psychometric measures of soft skills in a manner that might help produce a definitive empirical taxonomy. Some more recent taxonomic efforts have, however, attempted to provide additional empirical grounding for the accurate identification of key soft skills (see e.g., Joie-La Marle et al. 2022 ). Further, recent research by JobTeaser (see Lamri et al. 2022 ) surveying a large, diverse sample of young workers about a comprehensive, systematic list of soft skills as actually used in their professional roles represents a good step towards some clarification and mapping of this domain on an empirical basis. Despite the fact that both these studies necessarily involved assumptions and interpretive grouping of variables, the presence and importance of the 4Cs as higher-order skills is evident in both sets of empirical results.

Various comprehensive “21st century skills” systems proposed in the past without much empirical verification also seem to have been found too complex and cumbersome for implementation. The 4Cs, on the other hand, seem to provide a relatively simple, persuasive, targetable core that has been found to constitute a pedagogically and policy-friendly model by major organizations, and that also now seems to be gaining some additional empirical validity. Gathering support from researchers and industry alike, we suggest that the 4Cs can be seen as highest-level transversal skills—or “meta-competencies”—that allow individuals to remain competent and to develop their potential in a rapidly changing professional world. Thus, in the end, they may also be one of the most useful ways of summarizing and addressing the critical challenges faced by the future of work and education ( National Education Association 2011 ).

Taking them as our focus, we note, however, that the teaching and development of the 4Cs will require a complex intervention and mobilization of educational and socio-economic resources—both a major shift in pedagogical techniques and even more fundamental changes in institutional structures ( Ananiadoui and Claro 2009 ). One very important issue for understanding the 4Cs and their educational implementation related to this, which can simultaneously facilitate their teaching but be a challenge for their assessment, is the multidimensionality, interrelatedness, and transdisciplinary relevance of the 4Cs. Thus, we address the relationships between the Cs in the different C sections and later in our Discussion, we present a “Dynamic Interactionist Model of the 4Cs’’ that we hope will assist in their understanding, in the further development of pedagogical processes related to them, and in their public promotion and related policy. Ultimately, it is partly due to their complexity and interrelationships, we argue, that it is important and expedient that the 4Cs are taught, assessed, and promoted together.

2. The 4Cs, Assessment, and Support for Development

2.1. creativity.

In psychology, creativity is usually defined as the capacity to produce novel, original work that fits with task constraints and has value in its context (for a recent overview, see Lubart and Thornhill-Miller 2019 ). This basic definition, though useful for testing and measurement, is largely incomplete, as it does not contain any information about the individual or groups doing the creating or the nature of physical and social contexts ( Glăveanu 2014 ). Moreover, Corazza ( 2016 ) challenged this standard definition of creativity, arguing that as it focuses solely on the existence of an original and effective outcome, it misses the dynamics of the creative process, which is frequently associated with periods of creative inconclusiveness and limited occasions of creative achievements. To move away from the limitations of the standard definition of creativity, we can consider Bruner’s description of creativity as “figuring out how to use what you already know in order to go beyond what you currently think” (p. 183 in Weick 1993 ). This description echoes the notion of potential, which refers to a latent state that may be put to use if a person has the opportunity.

Creativity is a multifaceted phenomenon that can be approached from many different angles. There are three main frameworks for creativity studies: the 4Ps ( Rhodes 1961 ), the 5As ( Glăveanu 2013 ), and the 7Cs model ( Lubart 2017 ). These frameworks share at least four fundamental and measurable dimensions: the act of creating (process), the outcome of the creative process (product), the characteristics of creative actor(s) enacting the process (person), and the social and physical environment that enable or hinder the creative process (press). Contrary to many traditional beliefs, however, creativity can be trained and taught in a variety of different ways, both through direct, active teaching of creativity concepts and techniques and through more passive and indirect means such as the development of creativity-supporting contexts ( Chiu 2015 ; Thornhill-Miller and Dupont 2016 ). Alongside intelligence, with which it shares some common mechanisms, creativity is now recognized as an indispensable element for the flexibility and adaptation of individuals in challenging situations ( Sternberg 1986 ).

2.1.1. Individual Assessment of Creativity

Drawing upon previous efforts to structure creativity research, Batey ( 2012 ) proposed a taxonomic framework for creativity measurement that takes the form of a three-dimensional matrix: (a) the level at which creativity may be measured (the individual, the team, the organization, and the culture), (b) the facets of creativity that may be assessed (person/trait, process, press, and product), and (c) the measurement approach (objective, self-rating, other ratings). It is beyond the scope of this article to offer a literature review of all these dimensions, but for the purposes of this paper, we address some important aspects of individual-level and institutional-level assessment here.

Assessing creativity at an individual level encompasses two major approaches: (1) creative accomplishment based on production and (2) creative potential. Regarding the first approach focusing on creative accomplishment , there are at least four main assessment techniques (or tools representing variations of assessment techniques): (a) the historiometric approach, which applies quantitative analysis to historically available data (such as the number of prizes won or times cited) in an effort to understand eminent, field-changing creativity ( Simonton 1999 ); (b) the Consensual Assessment Technique (CAT) ( Amabile 1982 ), which offers a method for combining and validating judges’ subjective evaluations of a set of (potentially) creative productions or ideas; (c) the Creative Achievement Questionnaire ( Carson et al. 2005 ), which asks individuals to supply a self-reported assessment of their publicly recognizable achievement in ten different creative domains; and (d) the Inventory of Creative Activities and Achievements (ICAA) ( Jauk et al. 2014 ; Diedrich et al. 2018 ), which includes self-report scales assessing the frequency of engagement in creative activity and also levels of achievement in eight different domains.

The second major approach to individual assessment is based on creative potential, which measures the cognitive abilities and/or personality traits that are important for creative work. The two most popular assessments of creative potential are the Remote Associations Test (RAT) and the Alternative Uses Task (AUT). The RAT, which involves identifying the fourth word that is somehow associated with each of three given words, underscores the role that the ability to convergently associate disparate ideas plays as a key capacity for creativity. In contrast, the AUT, which requires individuals to generate a maximum number of ideas based on a prompt (e.g., different uses for a paperclip), is used to assess divergent thinking capacity. According to multivariate models of creative potential ( Lubart et al. 2013 ), there are cognitive factors (e.g., divergent thinking, mental flexibility, convergent thinking, associative thinking, selective combination), conative factors (openness, tolerance of ambiguity, intuitive thinking, risk taking, motivation to create), and environmental factors that all support creativity. Higher creative potential is predicted by having more of the ingredients for creativity. However, multiple different profiles among a similar set of these important ingredients exist, and their weighting for optimal creative potential varies according to the profession, the domain, and the task under consideration. For example, Lubart and Thornhill-Miller ( 2021 ) and Lubin et al. ( forthcoming ) have taken this creativity profiling approach, exploring the identification and training of the components of creative potential among lawyers and clinical psychologists, respectively. For a current example of this sort of comprehensive, differentiated measurement of creative potential in adults in different domains and professions, see CreativityProfiling.org. For a recent battery of tests that are relevant for children, including domain-relevant divergent-exploratory and convergent-integrative tasks, see Lubart et al. ( 2019 ). Underscoring the growing recognition of the importance of creativity assessment, measures of creative potential for students were introduced internationally for the first time in the PISA 2022 assessment ( OECD 2019a ).

2.1.2. Institutional and Environmental Support for Development of Creativity

The structural support that institutions and programs can provide to promote the development of creativity can be described as coming through three main paths: (1) through design of the physical environment in a manner that supports creativity, (2) through teaching about creativity, the creative process, and creativity techniques, and (3) through training opportunities to help students/employees develop personal habits, characteristics, and other ingredients associated with creative achievement and potential.

Given the multi-dimensionality of the notion of creativity, the environment can positively influence and help develop creative capacities. Studies have shown that the physical environment in which individuals work can enhance their positive emotions and mood and thus their creativity. For example, stimulating working environments might have unusual furniture and spaces that have natural light, windows open to nature, plants and flowers, a relaxing atmosphere and colors in the room (e.g., green and blue), or positive sounds (e.g., calm music or silence), as well as inspiring and energizing colors (e.g., yellow, pink, orange). Furthermore, the arrangement of physical space to promote interpersonal exchange rather than isolation, as well as the presence of tools, such as whiteboards, that support and show the value of exchange, are also important (for reviews, see Dul and Ceylan 2011 ; Samani et al. 2014 ).

Although it has been claimed that “creativity is intelligence having fun” ( Scialabba 1984 ; Reiman 1992 ), for most people, opportunities for fun and creativity, especially in their work environment, appear rather limited. In fact, the social and physical environment often hinders creativity. Corazza et al. ( 2021 )’s theoretical framework concerning the “Space-Time Continuum”, related to support for creativity, suggests that traditional education systems are an example of an environment that is “tight” both in the conceptual “space” it affords for creativity and in the available time allowed for creativity to happen—essentially leaving little room for original ideas to emerge. Indeed, though world-wide data suggest that neither money nor mere time spent in class correlate well with educational outcomes, both policies and pedagogy that direct the ways in which time is spent make a significant difference ( Schleicher 2022 ). Research and common sense suggest that teachers, students, and employees need more space and time to invest energy in the creative process and the development of creative potential.

Underscoring the importance of teaching the creative process and creativity techniques is the demonstration, in a number of contexts, that groups of individuals who generate ideas without a specific method are often negatively influenced by their social environment. For example, unless guarded against, the presence of others tends to reduce the number of ideas generated and to induce a fixation on a limited number of ideas conforming to those produced by others ( Camarda et al. 2021 ; Goldenberg and Wiley 2011 ; Kohn and Smith 2011 ; Paulus and Dzindolet 1993 ; Putman and Paulus 2009 ; Rietzschel et al. 2006 ). To overcome these cognitive and social biases, different variants of brainstorming techniques have shown positive effects (for reviews of methods, see Al-Samarraie and Hurmuzan 2018 ; Paulus and Brown 2007 ). These include: using ( Osborn 1953 ) initial brainstorming rules (which aim to reduce spontaneous self-judgment of ideas and fear of this judgment by others); drawing attention to ideas generated by others by writing them down independently (e.g., the technique known as “brainwriting”); and requiring incubation periods between work sessions by forcing members of a problem-solving group to take breaks ( Paulus and Yang 2000 ; Paulus and Kenworthy 2019 ).

It is also possible to use design methods that are structured to guide the creative process and the exploration of ideas, as well as to avoid settling on uncreative solution paths ( Chulvi et al. 2012 ; Edelman et al. 2022 ; Kowaltowski et al. 2010 ; see Cotter et al. 2022 for a valuable survey of best practices for avoiding the suppression of creativity and fostering creative interaction and metacognition in the classroom). Indeed, many helpful design thinking-related programs now exist around the world and have been shown to have a substantial impact on creative outcomes ( Bourgeois-Bougrine 2022 ).

Research and experts suggest the utility of many additional creativity enhancement techniques (see, e.g., Thornhill-Miller and Dupont 2016 ), and the largest and most rapid effects are often attributed to these more method- or technique-oriented approaches ( Scott et al. 2004 ). More long-term institutional and environmental support for the development of creativity, however, should also include targeted training and understanding of personality and emotional traits associated with the “creative person” (e.g., empathy and exploratory habits that can expand knowledge, as well as increase tolerance of ambiguity, openness, and mental flexibility; see Lubart and Thornhill-Miller 2021 ). Complementing these approaches and focusing on a more systemic level, recent work conducted by the OECD exemplifies efforts aimed to foster creativity (and critical thinking) by focusing simultaneously on curriculum, educational activities, and teacher support and development at the primary, secondary, and higher education levels (see Vincent-Lancrin et al. 2019 ; Saroyan 2022 ).

2.2. Critical Thinking

Researchers, teachers, employers, and public policymakers around the world have long ranked the development of critical thinking (CT) abilities as one of the highest educational priorities and public needs in modern democratic societies ( Ahern et al. 2019 ; Dumitru et al. 2018 ; Pasquinelli et al. 2021 ). CT is central to better outcomes in daily life and general problem solving ( Hitchcock 2020 ), to intelligence and adaptability ( Halpern and Dunn 2021 ), and to academic achievement ( Ren et al. 2020 ). One needs to be aware of distorted or erroneous information in the media, of the difference between personal opinions and proven facts, and how to handle increasingly large bodies of information required to understand and evaluate information in the modern age.

Although much research has addressed both potentially related constructs, such as intelligence and wisdom, and lists of potential component aspects of human thought, such as inductive or deductive reasoning (for reviews of all of these, see Sternberg and Funke 2019 ), reaching a consensus on a definition has been difficult, because CT relies on the coordination of many different skills ( Bellaera et al. 2021 ; Dumitru et al. 2018 ) and is involved in, and sometimes described from the perspective of, many different domains ( Lewis and Smith 1993 ). Furthermore, as a transversal competency, having the skills to perform aspects of critical thinking in a given domain does not necessarily entail also having the metacognitive ability to know when to engage in which of its aspects, or having the disposition, attitude, or “mindset” that motivates one to actually engage in them—all of which are actually required to be a good critical thinker ( Facione 2011 ).

As pointed out by the American Philosophical Association’s consensus definition, the ideal “critical thinker” is someone who is inquisitive, open-minded, flexible, fair-minded, and keeps well-informed, thus understanding different points of view and perspectives ( Facione 1990b ). These characteristics, one might note, are also characteristic of the “creative individual” ( Facione 1990b ; Lai 2011 ), as is the ability to imagine alternatives, which is often cited as a component of critical thinking ability ( Facione 1990b ; Halpern 1998 ). Conversely, creative production in any domain needs to be balanced by critical appraisal and thought at each step of the creative process ( Bailin 1988 ). Indeed, it can be argued that creativity and critical thinking are inextricably linked and are often two sides of the same coin. Representing different aspects of “good thought” that are linked and develop in parallel, it seems reasonable that they should, in practice, be taught and considered together in teaching and learning ( Paul and Elder 2006 ).

Given its complexity, many definitions of critical thinking have been offered. However, some more recent work has helpfully defined critical thinking as “the capacity of assessing the epistemic quality of available information and—as a consequence of this assessment—of calibrating one’s confidence in order to act upon such information” ( Pasquinelli et al. 2021 ). This definition, unlike others proposed in the field (for a review, see: Bellaera et al. 2021 ; Liu et al. 2014 ), is specific (i.e., it limits the use of poorly defined concepts), as well as consensual and operational (i.e., it has clear and direct implications for the education and assessment of critical thinking skills; Pasquinelli et al. 2021 ; Pasquinelli and Bronner 2021 ). Thus, this approach assumes that individuals possess better or worse cognitive processes and strategies that make it possible to judge the reliability of the information received, by determining, for example, what the arguments provided actually are. Are the arguments convincing? Is the source of information identifiable and reliable? Does the information conflict with other information held by the individual?

It should also be noted that being able to apply critical thinking is necessary to detect and overcome the cognitive biases that can constrain one’s reasoning. Indeed, when solving a problem, it is widely recognized that people tend to automate the application of strategies that are usually relevant in similar and analogous situations that have already been encountered. However, these heuristics (i.e., automatisms) can be a source of errors, in particular, in tricky reasoning situations, as demonstrated in the field of reasoning, arithmetic problems ( Kahneman 2003 ) or even divergent thinking tasks ( Cassotti et al. 2016 ; for a review of biases, see Friedman 2017 ). Though some cognitive biases can even be seen as normal ways of thinking and feeling, sometimes shaping human beliefs and ideologies in ways that make it completely normal—and even definitely human— not to be objective (see Thornhill-Miller and Millican 2015 ), the mobilization of cognitive resources such as those involved in critical reasoning on logical bases usually makes it possible to overcome cognitive biases and adjust one’s reasoning ( West et al. 2008 ).

According to Pasquinelli et al. ( 2021 ), young children already possess cognitive functions underlying critical thinking, such as the ability to determine that information is false. However, until late adolescence, studies have demonstrated an underdevelopment of executive functions involved in resistance to biased reasoning ( Casey et al. 2008 ) as well as some other higher-order skills that underlie the overall critical thinking process ( Bloom 1956 ). According to Facione and the landmark American Philosophical Association’s task force on critical thinking ( Facione 1990b ; Facione 2011 ), these components of critical thinking can be organized into six measurable skills: the ability to (1) interpret information (i.e., meaning and context); (2) analyze information (i.e., make sense of why this information has been provided, identify pro and con arguments, and decide whether we can accept the conclusion of the information); (3) make inferences (i.e., determine the implications of the evidence, its reliability, the undesirable consequences); (4) evaluate the strength of the information (i.e., its credibility, determine the trust in the person who provides it); (5) provide explanations (i.e., summarize the findings, determine how the information can be interpreted, and offer verification of the reasoning); (6) self-regulate (i.e., evaluate the strength of the methods applied, determine the conflict between different conclusions, clarify the conclusions, and verify missing elements).

2.2.1. Individual Assessment of Critical Thinking

The individual assessment of critical thinking skills presents a number of challenges, because it is a multi-task ability and involves specific knowledge in the different areas in which it is applied ( Liu et al. 2014 ; Willingham 2008 ). However, the literature provides several tools with which to measure different facets of cognitive functions and skills involved in the overarching critical thinking process ( Lai 2011 ; Liu et al. 2014 ). Most assessments involve multiple-choice questions requiring reasoning within a particular situation based upon a constrained set of information provided. For example, in one of the most widely used tests, the California Critical Thinking Skills Test ( Facione 1990a ), participants are provided with everyday scenarios and have to answer multiple questions targeting the six higher-order skills described previously. Similarly, the Watson–Glaser Critical Thinking Appraisal ( Watson 1980 ; Watson and Glaser 2010 ) presents test takers with passages and scenarios measuring their competencies at recognizing assumptions, evaluating arguments, and drawing conclusions. Although the Watson–Glaser is one of the oldest and most frequently used assessments internationally for hiring and promotion in professional contexts, its construct validity, like many other measures of this challenging topic, has some limitations ( Possin 2014 ).

Less frequently, case study or experiential methods of assessment are also used. This approach may involve asking participants to reflect on past experiences, analyze the situations they faced and the way they behaved or made judgments and decisions and then took action ( Bandyopadhyay and Szostek 2019 ; Brookfield 1997 ). These methods, often employed by teachers or employers on students and employees, usually involve the analysis of qualitative data that can cast doubt on the reliability of the results. Consequently, various researchers have suggested ways to improve analytic methods, and they emphasize the need to create more advanced evaluation methods ( Brookfield 1997 ; Liu et al. 2014 ).

For example, Liu et al. ( 2014 ) reviewed current assessment methods and suggest that future work improves the operational definition of critical thinking, aiming to assess it both in different specific contexts and in different formats. Specifically, assessments could be contextualized within the major areas addressed by education programs (e.g., social sciences, humanities, and/or natural sciences), and the tasks themselves should be as practically connected to the “real world” as possible (e.g., categorizing a set of features, opinions, or facts based on whether or not they support an initial statement). Moreover, as Brookfield ( 1997 ) argues, because critical thinking is a social process that takes place in specific contexts of knowledge and culture, it should be assessed as a social process, therefore, involving a multiplicity of experiences, perceptions, and contributions. Thus, Brookfield makes three recommendations for improving the assessment of critical thinking that are still relevant today: (1) to assess critical thinking in specific situations, so one can study the process and the discourse related to it; (2) to involve students/peers in the evaluation of critical thinking abilities, so that the evaluation is not provided only by the instructor; and (3) to allow learners or participants in an experiment to document, demonstrate, and justify their engagement in critical thinking, because this learning perspective can provide insight into basic dimensions of the critical thinking process.

Finally, another more recent and less widely used form of assessment targets the specific executive functions that underlie logical reasoning and resistance to cognitive biases, as well as the ability of individuals to resist these biases. This form of assessment is usually done through specific experimental laboratory tasks that vary depending on the particular executive function and according to the domain of interest ( Houdé and Borst 2014 ; Kahneman 2011 ; West et al. 2008 ).

2.2.2. Institutional and Environmental Support for Development of Critical Thinking Skills

The executive functions underlying general critical thinking, the ability to overcome bias ( Houdé 2000 ; Houdé and Borst 2014 ), and meta-cognitive processes (i.e., meta information about our cognitive strategies) can all be trained and enhanced by educational programs ( Abrami et al. 2015 ; Ahern et al. 2019 ; Alsaleh 2020 ; Bellaera et al. 2021 ; Uribe-Enciso et al. 2017 ; Popil 2011 ; Pasquinelli and Bronner 2021 ; Yue et al. 2017 ).

Educational programs and institutions can support the development of critical thinking in several different ways. The process of developing critical thinking focuses on the interaction between personal dispositions (attitudes and habits), skills (evaluation, reasoning, self-regulation), and finally, knowledge (general and specific knowledge, as well as experience) ( Thomas and Lok 2015 ). It is specifically in regard to skills and knowledge that institutions are well suited to develop critical thinking through pedagogical elements such as rhetoric training, relevance of information evaluation (e.g., media literacy, where and how to check information on the internet, dealing with “fake news”, etc.), deductive thinking skills, and inductive reasoning ( Moore and Parker 2016 ). A few tools, such as case studies or concept mapping, can also be used in conjunction with a problem-based learning method, both in individual and team contexts and in person or online ( Abrami et al. 2015 ; Carmichael and Farrell 2012 ; Popil 2011 ; Thorndahl and Stentoft 2020 ). According to Marin and Halpern ( 2011 ), training critical thinking should include explicit instruction involving at least the four following components and objectives: (1) working on attitudes and encouraging individuals to think; (2) teaching and practicing critical thinking skills; (3) training for transfer between contexts, identifying concrete situations in which to adopt the strategies learned; and (4) suggesting metacognition through reflection on one’s thought processes. Supporting these propositions, Pasquinelli and Bronner ( 2021 ), in a French national educational report, proposed practical advice for creating workshops to stimulate critical thinking in school classrooms, which appear relevant even in non-school intervention situations. For example, the authors suggest combining concrete examples and exercises with general and abstract explanations, rules and strategies, which can be transferred to other areas beyond the one studied. They also suggest inviting learners to create examples of situations (e.g., case studies) in order to increase the opportunities to practice and for the learner to actively participate. Finally, they suggest making the process of reflection explicit by asking the learner to pay attention to the strategies adopted by others in order to stimulate the development of metacognition.

2.3. Communication

In its most basic definition, communication consists of exchanging information to change the epistemic context of others. In cooperative contexts, it aims at the smooth and efficient exchange of information contributing to the achievement of a desired outcome or goal ( Schultz 2010 ). But human communication involves multiple dimensions. Both verbal and non-verbal communication can involve large quantities of information that have to be both formulated and deciphered with a range of purposes and intentions in mind ( Jones and LeBaron 2002 ). These dimensions of communication have as much to do with the ability to express oneself, both orally and in writing and the mastering of a language (linguistic competences), as with the ability to use this communication system appropriately (pragmatic skills; see Grassmann 2014 ; Matthews 2014 ), and with social skills, based on the knowledge of how to behave in society and on the ability to connect with others, to understand the intentions and perspectives of others ( Tomasello 2005 ).

Like the other 4Cs, according to most authorities, communication skills are ranked by both students and teachers as skills of the highest priority for acquisition in order to be ready for the workforce in 2030 ( OECD 2019b ; Hanover Research 2012 ). Teaching students how to communicate efficiently and effectively in all the new modalities of information exchange is an important challenge faced by all pedagogical organizations today ( Morreale et al. 2017 ). All dimensions of communication (linguistic, pragmatic, and social) are part of what is taught in school curricula at different levels. But pragmatic and social competencies are rarely explicitly taught as such. Work on social/emotional intelligence (and on its role in students’ personal and professional success) shows that these skills are both disparate and difficult to assess ( Humphrey et al. 2007 ). Research on this issue is, however, becoming increasingly rigorous, with the potential to provide usable data for the development of science-based practice ( Keefer et al. 2018 ). Teachers and pedagogical teams also have an important, changing role to play: they also need to master new information and communication technologies and the transmission of information through them ( Zlatić et al. 2014 ).

Communication has an obvious link with the three other Cs. Starting with critical thinking, sound communication implies fostering the conditions for a communicative exchange directed towards a common goal, which is, at least in educational and professional contexts, based on a fair evaluation of reality ( Pornpitakpan 2004 ). Collaboration too has a strong link with communication, because successful collaboration is highly dependent on the quality of knowledge sharing and trust that emerges between group members. Finally, creativity involves the communication of an idea to an audience and can involve high-quality communication when creative work occurs in a team context.

2.3.1. Individual Assessment of Communication

Given the vast field of communication, an exhaustive list of its evaluation methods is difficult to establish. A number of methods have been reported in the literature to assess an individual’s ability to communicate non-verbally and verbally. But although these two aspects are intrinsically linked, they are rarely measured together with a single tool. Moreover, as Spitzberg ( 2003 ) pointed out, communication skills are supported by different abilities, classically conceptualized as motivational functions (e.g., confidence and goal-orientation), knowledge (e.g., content and procedural knowledge), or cognitive and socio-cognitive functions (e.g., theory of mind, verbal cognition, emotional intelligence, and empathy; McDonald et al. 2014 ; Rothermich 2020 ), implying different specific types of evaluations. Finally, producing vs. receiving communication involve different skills and abilities, which can also vary according to the context ( Landa 2005 ).

To overcome these challenges, Spitzberg ( 2003 ) recommends the use of different assessment criteria. These criteria include the clarity of interaction, the understanding of what was involved in the interaction, the satisfaction of having interacted (expected to be higher when communication is effective), the efficiency of the interaction (the more competent someone is, the less effort, complexity, and resources will be needed to achieve their goal), its effectiveness or appropriateness (i.e., its relevance according to the context), as well as criteria relative to the quality of the dialogue (which involves coordination, cooperation, coherence, reciprocity, and mutuality in the exchange with others). Different forms of evaluation are also called for, such as self-reported questionnaires, hetero-reported questionnaires filled out by parents, teachers, or other observers, and tasks involving exposure to role-playing games, scenarios or videos (for a review of these assessment tools, see Cömert et al. 2016 ; Landa 2005 ; Sigafoos et al. 2008 ; Spitzberg 2003 ; van der Vleuten et al. 2019 ). Results from these tools must then be associated with others assessing underlying abilities, such as theory of mind and metacognition.

2.3.2. Institutional and Environmental Support for Development of Communication Skills

Although communication appears to be a key employability skill, the proficiency acquired during studies rarely meets the expectations of employers ( Jackson 2014 ). Communication must therefore become a priority in the training of students, beyond the sectors in which it is already known as essential (e.g., in medicine, nursing, engineering, etc.; Bourke et al. 2021 ; D’Alimonte et al. 2019 ; Peddle et al. 2018 ; Riemer 2007 ), and also through professional development ( Jackson 2014 ). Training programs involving, for example, communication theory classes ( Kruijver et al. 2000 ) and self-assessment tools that can be used in specific situations ( Curtis et al. 2013 ; Rider and Keefer 2006 ) have had convincingly positive results. The literature suggests that interactive approaches in small groups, in which competencies are practiced explicitly in an open and feedback-safe environment, are more effective ( Bourke et al. 2021 ; D’Alimonte et al. 2019 ; AbuSeileek 2012 ; Fryer-Edwards et al. 2006 ). These can take different forms: project-based work, video reviews, simulation or role-play games (see Hathaway et al. 2022 for a review; Schlegel et al. 2012 ). Finally, computer-assisted learning methods can be relevant for establishing a secure framework (especially, for example, when learning another language): anonymity indeed helps to overcome anxiety or social blockages linked to fear of public speaking or showing one’s difficulties ( AbuSeileek 2012 ). Each of these methods tackles one or more dimensions of communication that must then be assessed as such, by means of tools specifically developed and adapted to the contexts in which these skills are expressed (e.g., see the two 4Cs evaluation grids for institutions and for games outlined in Section 4 and Section 5 , below).

2.4. Collaboration

Collaborative problem solving—and more generally, collaboration—has gained increasing attention in national and international assessments (e.g., PISA) as an educational priority encompassing social, emotional, and cognitive skills critical to efficiency, effectiveness, and innovation in the modern global economy ( Graesser et al. 2018 ; OECD 2017 ). Understanding what makes effective collaboration is of crucial importance for professional practice and training ( Détienne et al. 2012 ; Graesser et al. 2018 ), as evidenced by the long line of research on group or team collaboration over the past 40 years (for a review, see e.g., Salas et al. 2004 ; Mathieu et al. 2017 ). Although there is no consensus on a definition of collaboration, scholars often see it as mutual engagement in a coordinated effort to achieve a common goal that involves the sharing of goals, resources, and representations relating to the joint activity of participants; and other important aspects relate to mutual respect, trust, responsibilities, and accountability within situational rules and norms ( Détienne et al. 2012 ).

In the teamwork research literature, skills are commonly described across three classes most often labeled Knowledge, Behavior, and Attitudes (e.g., Cannon-Bowers et al. 1995 ). Knowledge competencies refer to the skills related to elaborating the knowledge content required for the group to process and successfully achieve the task/goal to which they are assigned. Behavior includes skills related to the actualization of actions, coordination, communication, and interactions within the group as well as with any other relevant interlocutors for the task at hand. Note here that effective collaboration involves skills that have also been identified elsewhere as essential competencies, including communication, creativity, and critical thinking. Finally, several attitudes have been evidenced or hypothesized as desirable competencies in the team context, for example, attitude towards teamwork, collective orientation, cohesion/team morale, etc. Another common distinction lies between teamwork and taskwork. Teamwork refers to the collaborative, communicative, or social skills required to coordinate the work within the participants in order to achieve the task, whereas taskwork refers to specific aspects related to solving the task such as using the tools and knowing the procedure, policies, and any other task-related activities ( Salas et al. 2015 ; Graesser et al. 2018 ). Furthermore, collaborative competences can have specific (to a group of people or to a task) and general dimensions (i.e., easily transferable to any group or team situation and to other tasks). For example, skills related to communication, information exchange, conflict management, maintaining attention and motivation, leadership, etc. are present and transferable to a large number of group work situations and tasks (team-generic and task-contingent skills). Other skills can, on the other hand, be more specific to a team or group, such as internal organization, motivation, knowledge of the skills distributed in the team, etc.

2.4.1. Individual Assessment of Collaboration

Assessing collaboration requires capturing the dynamic and multi-level nature of the collaboration process, which is not as easily quantifiable as group/team inputs and outputs (task performance, satisfaction, and changes at group/team and individual level). There are indeed multiple interactions between the context, the collaboration processes, the task processes, and their (various) outcomes ( Détienne et al. 2012 ). The integrative concept of “quality of collaboration” ( Burkhardt et al. 2009 ) encapsulates much of what is currently known about collaborative processes and what constitutes effective collaboration. According to this approach, collaborative processes can be grouped along several dimensions concerning communication processes such as grounding, task-related processes (e.g., exchanges of knowledge relevant for the task at hand), and organization/coordination processes ( Burkhardt et al. 2009 ). Communication processes are most important for ensuring the construction of a common referential within a group of collaborators. Task-related processes relate to how the group resolves the task at hand by sharing and co-elaborating knowledge, by confronting their various perspectives, and by converging toward negotiated solutions. Collaboration also involves group management activities such as: (a) common goal management and coordination activities, e.g., allocation and planning of tasks; (b) meeting/interaction management activities, e.g., ordering and postponing of topics in the meeting. Finally, the ability to pursue reflexive activity, in the sense of reflecting not only on the content of a problem or solution but on one’s collaboration and problem-solving strategies, is critical for the development of the team and supports them in changing and improving their practices. Graesser et al. ( 2018 ) identify collaborative skills based on the combination of these dimensions with a step in the problem-solving process.

A large body of methodology developed to assess collaboration processes and collaborative tools has been focused on quantifying a restricted subset of fine-grained interactions (e.g., number of speakers’ turns; number of words spoken; number of interruptions; amount of grounding questions). This approach has at least two limitations. First, because these categories of analysis are often ad hoc with respect to the considered situation, they are difficult to apply in all situations and make it difficult to compare between studies. Second, quantitative variations of most of these indicators are non-univocal: any increase or decrease of them could signify either an interactive–intensive collaboration or else evidence of major difficulties in establishing and/or maintaining the collaboration ( Détienne et al. 2012 ). Alternatively, qualitative approaches based on multidimensional views of collaboration provide a more elaborated or nuanced view of collaboration and are useful for identifying potential relationships between distinctive dimensions of collaboration and aspects of team performance, in order to identify processes that could be improved. Based on the method of Spada et al. ( 2005 ) in Computer-Supported Collaborative Learning (CSCL) research, Burkhardt et al. ( 2009 ) have proposed a multi-dimensional rating scheme for evaluating the quality of collaboration (QC) in technology-mediated design. QC distinguishes seven dimensions, grouped along five aspects, identified as central for collaboration in a problem-solving task such as design: communication (1, 2), task-oriented processes (3, 4), group-oriented processes (5), symmetry in interaction—an orthogonal dimension—(6), and individual task orientation (7). This method has recently been adapted for use in the context of assessing games as a support to collaborative skills learning.

2.4.2. Institutional and Environmental Support for Development of Collaboration and Collaborative Skills

Support for individuals’ development of collaborative skills provided by institutions and programs can take a variety of forms: (a) through the social impact of the physical structure of the organization, (b) the nature of the work required within the curriculum, (c) content within the curriculum focusing on collaboration and collaborative skills, and (d) the existence and promotion of extracurricular and inter-institutional opportunities for collaboration.

For instance, institutional support for collaboration has taken a variety of forms in various fields such as healthcare, engineering, public participation, and education. Training and education programs such as Interprofessional Education or Team Sciences in the health domain ( World Health Organization 2010 ; Hager et al. 2016 ; O’Carroll et al. 2021 ), Peer-Led Team Learning in chemistry and engineering domains ( Wilson and Varma-Nelson 2016 ), or Collaborative Problem Solving in education ( Peña-López 2017 ; Taddei 2009 ) are notable examples.

Contextual support recently arose from the deployment of online digital media and new mixed realities in the workplace, in the learning environments and in society at large—obviously stimulated and accentuated with the COVID-19 pandemic. This has led many organizations to invest in proposing support for synchronous and asynchronous collaboration (notably remote, between employees, between students and educators or within group members, etc.) in various ways, including the provision of communication hardware and software, computer-supported cooperative work and computer-supported collaborative learning platforms, training and practical guides, etc. Users can collaborate through heterogeneous hybrid collaborative interaction spaces that can be accessed through virtual or augmented reality, but also simple video conferencing or even a voice-only or text-only interface. These new spaces for collaboration are, however, often difficult to use and less satisfactory than face-to-face interactions, suggesting the need for more research on collaborative activities and on how to support them ( Faidley 2018 ; Karl et al. 2022 ; Kemp and Grieve 2014 ; Singh et al. 2022 ; Waizenegger et al. 2020 ).

A substantive body of literature on teams, collaborative learning, and computer-supported technologies provides evidence related to individual, contextual, and technological factors impacting the collaboration quality and efficiency. For example, teacher-based skills that are critical for enhancing collaboration are, among others, the abilities to plan, monitor, support, consolidate, and reflect upon student interaction in group work ( Kaendler et al. 2016 ). Research focuses also on investigating the most relevant tasks and evaluating the possibilities offered by technology to support, to assess (e.g., Nouri et al. 2017 ; Graesser et al. 2018 ), and/or to learn the skills involved in pursuing effective and satisfying collaboration (see e.g., Schneider et al. 2018 ; Doyle 2021 ; Ainsworth and Chounta 2021 ).

3. Labelization: Valorization of the 4Cs and Assessing Support for Their Development

Moving from the nature of the 4Cs and their individual assessment and towards the ways in which institutions can support their development in individuals, we can now address the fundamentally important question of how best to support and promote this 21st century educational mission within and among institutions themselves. This also raises the question of the systemic recognition of educational settings that are conducive to the development of the 4Cs. In response to these questions, the nature and value of labelization is now presented.

A label is “a special mark created by a trusted third party and displayed on a product intended for sale, to certify its origin, to guarantee its quality and to ensure its conformity with the standards of practices in force” ( Renard 2005 ). A label is therefore a way of informing the public about the objective properties and qualities of a product, service, or system. The label is usually easily identifiable and can be seen as a proof that a product or service, a company, or an organization complies with defined criteria. Its effectiveness is therefore closely linked to the choice of requirements set out in its specifications, as well as to the independence and rigor of the body that verifies compliance with the criteria.

3.1. Labeling as a Means of Trust and Differentiation

As a sign of recognition established by a third party, the label or certification can constitute a proof of trust aiming to reassure the final consumer. According to Sutter ( 2005 ), there are different means of signaling trust. First, the brand name of a product or service and its reputation can, in itself, constitute a label when this brand name is recognized on the market. Second, various forms of self-declaration, such as internal company charters, though not statements assessed by a third party, show an internal commitment that can provide reassurance. Finally, there is certification or labeling, which is awarded by an external body and requires a third-party assessment by a qualified expert, according to criteria set out in a specific reference framework. It is this external body, a trusted third party, which guarantees the reliability of the label and constitutes a guarantee of credibility. Its objectivity and impartiality are meant to guarantee that the company, organization, product, or service meets defined quality or reliability criteria ( Jahn et al. 2005 ).

Research on populations around the world (e.g., Amron 2018 ; Sasmita and Suki 2015 ) show that the buying decisions of consumers are heavily influenced by the trust they have in a brand. More specifically, third-party assurances and labelization have been shown to strongly influence customer buying intentions and purchasing behavior (e.g., Kimery and McCord 2002 ; Lee et al. 2004 ). Taking France as an example, research shows that quality certification is seen as “important” or “significant” by 76% of companies ( Chameroy and Veran 2014 ), and decision makers feel more confident and are more willing to invest with the support of third-party approval than if their decision is merely based on the brand’s reputation or its demonstrated level of social responsibility ( Etilé and Teyssier 2016 ). Indeed, French companies with corporate social responsibility labels have been shown to have higher than average growth rates, and the adoption of quality standards is linked with a 7% increase in the share of export turnover ( Restout 2020 ).

3.2. Influence on Choice and Adoption of Goods and Services

Studies diverge in this area, but based on the seminal work of Parkinson ( 1975 ); Chameroy and Veran ( 2014 ), in their research on the effect of labels on willingness to pay, found that in 75% of cases, products with labels are chosen and preferred to those without labels, demonstrating the impact of the label on customer confidence—provided that it is issued by a recognized third party. Thus, brands that have good reputations tend to be preferred over cheaper new brands, because they are more accepted and valued by the individual social network ( Zielke and Dobbelstein 2007 ).

3.3. Process of Labelizing Products and Services

The creation of a label may be the result of a customer or market need, a request from a private sector of activity or from the government. Creating a label involves setting up a working group including stakeholders who are experts in the field, product managers, and a certification body in order to elaborate a reference framework. This is then reviewed by a specialized committee and validated by the stakeholders. The standard includes evaluation criteria that must be clearly defined ( Mourad 2017 ). An audit system is set up by a trusted third party. It must include the drafting of an audit report, a system for making decisions on labeling, and a system for identifying qualified assessors. The validity of the assessment process is reinforced by this double evaluation: a first level of audit carried out by a team of experts according to a clearly defined set of criteria and a second level of decision making assuring that the methodology and the result of the audit are in conformity with the defined reference framework.

3.4. Labelization of 21st Century Skills

The world of education is particularly concerned by the need to develop and assess 21st century skills, because it represents the first link in the chain of skills acquisition, preparing the human resources of tomorrow. One important means of simultaneously offering a reliable, independent assessment of 21st century skills and valorizing them by making them a core target within an educational system (schools, universities, and teaching and training programs of all kinds) is labelization. Two examples of labelization processes related to 21st century skills were recently developed by the International Institute for Competency Development ( 2021 ; see iicd.net; accessed on 20 November 2022) working with international experts, teachers, and researchers from the University of Paris Cité (formerly Université Sorbonne Paris Cité), Oxford University, and AFNOR UK (an accredited certification body and part of AFNOR International, a subsidiary of the AFNOR group, the only standards body in France).

The last two or three decades has seen the simultaneous rise of international ranking systems and an interest in quality assurance and assessment in an increasingly competitive educational market ( Sursock 2021 ). The aim of these labelization frameworks is to assist in the development of “quality culture” in education by offering individual programs, institutions, and systems additional independent, reliable means of benchmarking, charting progress, and distinguishing themselves based on their capacity to support and promote the development of crucial skills. Importantly, the external perspectives provided by such assessment system should be capable of being individually adapted and applied in a manner that can resist becoming rigidly imposed external standards ( Sursock and Vettori 2017 ). Similarly, as we have seen in the literature review, the best approach to understanding and assessing a particular C is from a combination of different levels and perspectives in context. For example, important approaches to critical thinking have been made from educationally, philosophically, and psychologically focused vantage points ( Lai 2011 ). We can also argue that understandings of creativity are also results of different approaches: the major models in the literature (e.g., the “4Ps” and “7Cs” models; see Lubart and Thornhill-Miller 2019 ) explicitly result from and include the objectives of different education-focused, process-focused, and “ingredient” or component-focused approaches.

The two assessment frameworks outlined in the sections that follow were formulated with these different perspectives and objective needs in mind. Given the complexity and very different natures of their respective targets (i.e., one assessing entire formal educational contexts such as institutions or programs, whereas the other targets the less multi-dimensional, informal educational activities represented by games), the assessment of the individual Cs also represents what experts consider a target-appropriate balance of education- and curriculum-focused, process-focused, and component-focused criteria for assessing each different C.

4. The International Institute for Competency Development’s 21st Century Competencies 4Cs Assessment Framework for Institutions and Programs

One comprehensive attempt to operationalize programmatic-level and institutional-level support for the development of the 4Cs is the International Institute for Competency Development’s 4Cs Assessment Framework ( International Institute for Competency Development 2021 ). Based upon expert opinion and a review of the available literature, this evaluation grid is a practical tool that divides each of the 4Cs into three “user-friendly” but topic-covering components (see Table 1 and definitions and further discussion in the sections that follow). Each of these components is then assessed across seven dimensions (see Table 2 , below), designed to cover concisely the pedagogical process and the educational context. Examples for each point level are provided within the evaluation grid in order to offer additional clarity for educational stakeholders and expert assessors.

Three different components of each C in IICD’s 21st Century Skills 4Cs Assessment Framework.

Creative ProcessCreative EnvironmentCreative Product
Critical thinking
about the world
Critical thinking
about oneself
Critical action and
decision making
Engagement and
participation
Perspective taking
and openness
Social regulation
Message formulationMessage deliveryMessage and
communication feedback

Seven dimensions evaluated for the 3 different components of each C.

Aspects of the overall educational program teaching, emphasizing, and promoting the 4Cs
Availability and access to different means, materials, space, and expertise, digital technologies, mnemonic and heuristic methods, etc. to assist in the proper use and exercise of the 4Cs
Actual student and program use of available resources promoting the 4Cs
Critical reflection and metacognition on the process being engaged in around the 4Cs
The formal and informal training, skills, and abilities of teachers/trainers and staff and their program of development as promoters of the 4Cs
Use and integration of the full range of resources external to the institution available to enhance the 4Cs
Availability of resources for students to create and actualize products, programs, events, etc. that require the exercise, promotion, or manifestation of the 4Cs

* Educational-level dependent and potentially less available for younger students or in some contexts.

The grid itself can be used in several important and different ways by different educational stakeholders: (1) by the institution itself in its self-evaluation and possible preparation for a certification or labelization process, (2) as an explicit list of criteria for external evaluation of the institution and its 4Cs-related programs, and (3) as a potential long-term development targeting tool for the institution or the institution in dialogue with the labelization process.

4.1. Evaluation Grid for Creativity

Dropping the component of “creative person” that is not relevant at the institutional level, this evaluation grid is based on Rhodes’ ( 1961 ) classic “4P” model of creativity, which remains the most concise model today ( Lubart and Thornhill-Miller 2019 ). The three “P” components retained are: creative process , creative environment , and creative product . Creative process refers to the acquisition of a set of tools and techniques that students can use to enhance the creativity of their thinking and work. Creative environment (also called “Press” in earlier literature) is about how the physical and social surroundings of students can help them be more creative. Finally, creative product refers to the evaluation of actual “productions” (e.g., a piece of art, text, speech, etc.) generated through the creative process.

4.2. Evaluation Grid for Critical Thinking

Our evaluation grid divides critical thinking into three main components: critical thinking about the world , critical thinking about oneself (self-reflection), as well as critical action and decision making . The first component refers to having an evidence-based view of the exterior world, notably by identifying and evaluating sources of information and using them to question current understandings and solve problems. Self-reflection refers to thinking critically about one’s own life situation, values, and actions; it presupposes the autonomy of thought and a certain distance as well as the most objective observation possible with regard to one’s own knowledge (“meta-cognition”). The third and final component, critical action and decision making, is about using critical thinking skills more practically in order to make appropriate life decisions as well as to be open to different points of view. This component also addresses soft skills and attitudes such as trusting information.

Our evaluation framework for critical thinking was in part inspired by Barnett’s “curriculum for critical being” (2015), whose model distinguishes two axes: one defined by the qualitative differences in the level of criticality attained and the second comprised of three different domains of application: formal knowledge, the self, and the world. The first two components of our framework (and the seven dimensions on which they are rated) reflect and encompass these three domains. Similar to Barrett’s proposal, our third rubric moves beyond the “skills-plus-dispositions” model of competency implicit in much theorizing about critical thinking and adds the importance of “action”—not just the ability to think critically and the disposition to do so, but the central importance of training and practicing “critical doing” ( Barnett 2015 ). Critical thinking should also be exercised collectively by involving students in collective thinking, facilitating the exchange of ideas and civic engagement ( Huber and Kuncel 2016 ).

4.3. Evaluation Grid for Collaboration

The first component of collaboration skills in the IICD grid is engagement and participation , referring to the active engagement in group work. Perspective taking and openness concerns the flexibility to work with and accommodate other group members and their points of view. The final dimension— social regulation —is about being able to reach for a common goal, notably through compromise and negotiation, as well as being aware of the different types of roles that group members can hold ( Hesse et al. 2015 ; Rusdin and Ali 2019 ; Care et al. 2016 ). (These last two components include elements of leadership, character, and emotional intelligence as sometimes described in other soft-skill and competency-related systems.) Participation, social regulation, and perspective taking have been identified as central social skills in collaborative problem solving ( Hesse et al. 2015 ). Regarding social regulation in this context, recognizing and profiting from group diversity is key ( Graesser et al. 2018 ). When describing an assessment in an educational setting of collaborative problem solving (with a task in which two or more students have to collaborate in order to solve it, each using a different set of resources), two main underpinning skills were described for the assessment: the social skill of audience awareness (“how to adapt one’s own behavior to suit the needs of the task and the partner’s requirements”, Care et al. 2016, p. 258 ) and the cognitive skill of planning and executing (developing a plan to reach for a goal) ( Care et al. 2016 ). The former is included in the perspective taking and openness rubric and the latter in the social regulation component in the IICD grid. Evans ( 2020 ) identified four main collaboration skills consistently mentioned in the scientific literature that are assessed in the IICD grid: the ability to plan and make group decisions (example item from the IICD grid: teachers provide assistance to students to overcome differences and reach a common goal during group work); the ability to communicate about thinking with the group (assessed notably in the meta-reflection strand of the IICD grid); the ability to contribute resources, ideas, and efforts and support group members (included notably in the engagement and participation as well as the social regulation components); and finally, the ability to monitor, reflect, and adapt individual and group processes to benefit the group (example item from the IICD grid: students use perspective-taking tools and techniques in group activities).

4.4. Evaluation Grid for Communication

The evaluation grid for communication is also composed of three dimensions: message formulation, message delivery, and message and communication feedback . Message formulation refers to the ability to design and structure a message to be sent, such as outlining the content of an argument. Message delivery is about effectively transmitting verbal and non-verbal aspects of a message. Finally, message and communication feedback refers to the ability of students and teachers to understand their audience, analyze their social surroundings, and interpret information in context. Other components of communication skills such as theory of mind, empathy, or emotional intelligence are also relevant and included in the process of applying the grid. Thompson ( 2020 ) proposes a four-component operationalized definition of communication for its assessment in students. First, they describe a comprehension strand covering the understanding and selection of adequate information from a range of sources. Message formulation in the IICD grid captures this dimension through its focus on content analysis and generation. Second, the presentation of information and ideas is mentioned in several different modes, adjusted to the intended audience, verbally as well as non-verbally. The message delivery component of the IICD grid focuses on these points. Third, the authors note the importance of communication technology and its advanced use. The IICD grid also covers the importance of technology use in its tools and techniques category, with, for example, an item that reads: students learn to effectively use a variety of formats of communication (social media, make a video, e-mail, letter writing, creating a document). Finally, Thompson ( 2020 ) describes the recognition of cultural and other differences as an important aspect of communication. The IICD grid aims at incorporating these aspects, notably in the meta-reflection category under each of the three dimensions.

5. Assessing the 4Cs in Informal Educational Contexts: The Example of Games

5.1. the 4cs in informal educational contexts.

So far, the focus has been on rather formal ways of nurturing the 4Cs. Although institutions and training programs are perhaps the most significant and necessary avenues of education, they are not the sole context in which 4Cs’ learning and improvement can manifest. One other important potential learning context is game play. Games are activities that are present and participated in throughout human society—by those of all ages, genders, and socio-economic statuses ( Bateson and Martin 2013 ; Huizinga 1949 ; Malaby 2007 ). This informal setting can also provide favorable conditions to help improve the 4Cs ( van Rosmalen et al. 2014 ) and should not be under-appreciated. Games provide a unique environment for learning, as they can foster a space to freely explore possibilities and one’s own potential ( de Freitas 2006 ). We argue that games are a significant potential pathway for the improvement of the 4Cs, and as such, they merit the same attention as more formal ways of learning and developing competencies.

5.2. 4Cs Evaluation Framework for Games

Compared to schools and educational institutions, the focus of IICD’s evaluation framework for games (see International Institute for Competency Development 2021 ) is more narrow. Thus, it is fundamentally different from the institutional grid: games, complex and deep as they can sometimes be, cannot directly be compared to the complexity of a school curriculum and all the programs it contains. The evaluation of a game’s effectiveness for training/improving a given C rests on the following principle: if a game presents affordances conducive to exercising a given skill, engaged playing of that game should help improve that skill.

The game’s evaluation grid is scored based on two criteria. For example, as a part of a game’s rating as a tool for the development of creativity, we determine the game must first meet two conditions. First, whether or not the game allows the opportunity for creativity to manifest itself: if creativity cannot occur in the game, it is obviously not eligible to receive ratings for that C. Second, whether or not creativity is needed in order to perform well in the game: if the players can win or achieve success in the game without needing creativity, this also means it cannot receive a rating for that C. If both conditions are met, however, the game will be considered potentially effective to improve creativity through the practice of certain components of creative behavior. This basic principle applies for all four of the Cs.

As outlined in Table 3 , below, the evaluation grid for each of the four Cs is composed of five components relevant to games that are different for each of the Cs. The grid works as follows: for each of the five components of each C, we evaluate the game on a list of sub-components using two yes/no scales: one for whether it is “possible” for that subcomponent to manifest and one for whether that sub-component is “required for success” in the game. This evaluation is done for all sub-components. After this, each general component is rated on the same two indicators. If 60% (i.e., three out of five) or more sub-components are positively rated as required, the general component is considered required. Then, the game is evaluated on its effectiveness for training and improving each of the 4Cs. If 60% or more components are positively rated as required, the game will be labelized as having the potential to be effective for training and improving the corresponding C.

Five different components evaluated for each C by the 4Cs assessment framework for games.

OriginalityDivergent ThinkingConvergent ThinkingMental FlexibilityCreative Dispositions
Goal-adequate judgment/ discernmentObjective thinkingMetacognitionElaborate eeasoningUncertainty management
Collaboration fluencyWell-argued deliberation and consensus-based decisionBalance of contributionOrganization and coordinationCognitive syncing, input, and support
Social InteractionsSocial cognitionMastery of written and spoken languageVerbal communicationNon-verbal communication

The evaluation grid for creativity is based on the multivariate model of creative potential (see Section 2.1.1 and Lubart et al. 2013 for more information) and is composed of four cognitive factors and one conative factor: originality , divergent thinking , convergent thinking , mental flexibility , and creative dispositions . Originality refers to the generation of ideas that are novel or unexpected, depending on the context. Divergent thinking corresponds to the generation of multiple ideas or solutions. Convergent thinking refers to the combination of multiple ideas and the selection of the most creative idea. Mental flexibility entails changing perspectives on a given problem and breaking away from initial ideas. Finally, creative dispositions concerns multiple personality-related factors conducive to creativity, such as openness to experience or risk taking.

The evaluation grid for critical thinking echoes Halpern’s ( 1998 ) as well as Marin and Halpern’s ( 2011 ) considerations for teaching this skill, that is, taking into consideration thinking skills, metacognition, and dispositions. The five components of the critical thinking grid are: goal-adequate discernment, objective thinking, metacognition, elaborate reasoning, and uncertainty management. Goal-adequate discernment entails the formulation of inferences and the discernment of contradictions when faced with a problem. Objective thinking corresponds to the suspension of one’s own judgment and the analysis of affirmations and sources in the most objective manner possible. Metacognition, here, is about questioning and reassessing information, as well as the awareness of one’s own cognitive biases. Elaborate reasoning entails reasoning in a way that is cautious, thorough, and serious. Finally, uncertainty management refers to the dispositional propensity to tolerate ambiguity and accept doubt.

The evaluation grid for collaboration is based on the quality of collaboration (QC) method ( Burkhardt et al. 2009 ; see Section 2.4.2 for more details) and is composed of the following five components: collaboration fluidity, well-argued deliberation and consensus-based decision, balance of contribution, organization and coordination, and cognitive syncing, input, and support. Collaboration fluidity entails the absence of speech overlap and the presence of a good flow in terms of turns to speak. Well-argued deliberation and consensus-based decision is about contributing to the discussion and task at hand, as well as participating in discussions and arguments, in order to obtain a consensus. Balance of contribution refers to having equal or equivalent contributions to organization, coordination, and decision making. Organization and coordination refers to effective management of roles, time, and “deadlines”, as well as the attribution of roles depending on participants’ skills. Finally, cognitive syncing, input, and support is about bringing ideas and resources to the group, as well as supporting and reinforcing other members of the group.

The five components used to evaluate communication in games include both linguistic, pragmatic, and social aspects. Linguistic skills per se are captured by the mastery of written and spoken language component. This component assesses language comprehension and the appropriate use of vocabulary. Pragmatic skills are captured by the verbal and non-verbal communication components and refer to the efficient use of verbal and body signals in the context of the game to achieve one’s communicative goals ( Grassmann 2014 ; Matthews 2014 ). Finally, the grid also evaluates social skills with its two last components, social interactions and social cognition, which, respectively, refer to the ability to interact with others appropriately—including by complying with the rules of the game—and to the understanding of other people’ mental states ( Tomasello 2005 ).

6. Discussion and Conclusions

Each of the 4Cs is a broad, multi-faceted concept that is the subject of a tremendous amount of research and discussion by a wide range of stakeholders in different disciplines, professions, and parts of the educational establishment. The development of evaluation frameworks to allow support for the 4Cs to be assessed and publicly recognized, using a label, is an important step for promoting and fostering these skills in educational contexts. As illustrated by IICD’s 4Cs Framework for educational institutions and programs, as well as its games/activities evaluation grid, the specific criteria to detect support for each C can vary depending upon the educational context (e.g., formal and institutional level or informal and at the activity level). Yet considering the 4Cs together highlights some additional observations, current challenges, and opportunities for the future that are worthy of discussion.

6.1. Interrelationships between the 4Cs and a New Model for Use in Pedagogy and Policy Promotion

One very important issue for understanding the 4Cs and their educational implementation that can be simultaneously a help and a hindrance for teaching them—and also a challenge when assessing them—is their multidimensionality and interrelatedness. In other words, the 4Cs are not entirely separate entities but instead, as Figure 2 shows, should be seen as four interlinked basic “elements” for future-oriented education that can help individuals in their learning process and, together, synergistically “bootstrap” the development of their cognitive potentials. Lamri and Lubart ( 2021 ), for example, found a certain base level of creativity was a necessary but not sufficient condition for success in managerial tasks, but that high-level performance required a combination of all four Cs. Some thinkers have argued that one cannot be creative without critical thinking, which also requires creativity, for example, to come up with alternative arguments (see Paul and Elder 2006 ). Similarly, among many other interrelationships, there is no collaboration without communication—and even ostensibly individual creativity is a “collaboration” of sorts with the general culture and precursors in a given field. As a result, it ranges from impossible to suboptimal to teach (or teach towards) one of the 4Cs without involving one or more of the others, and this commingling also underscores the genuine need and appropriateness of assessing them together.

An external file that holds a picture, illustration, etc.
Object name is jintelligence-11-00054-g002.jpg

“‘Crea-Critical-Collab-ication’: a Dynamic Interactionist Model of the 4Cs”. (Illustration of the interplay and interpenetration of creativity, critical thinking, collaboration, and communication shown in dimensional space according to their differing cognitive/individual vs. social/interpersonal emphases; (© 2023, Branden Thornhill-Miller. All Rights Reserved. thornhill-miller.com; accessed on 20 January 2023)).

From this perspective, Thornhill-Miller ( 2021 ) proposed a “dynamic interactionist model of the 4Cs” and their interrelated contributions to the future of education and work. Presented in Figure 2 , this model is meant to serve as a visual and conceptual aid for understanding the 4Cs and their interrelationships, thereby also promoting better use and understanding of them in pedagogical and policy settings. In addition to suggesting the portmanteau of “crea-critical thinking” as a new term to describe the overlap of much of the creative and critical thinking processes, the title of this model, “Crea-Critical-Collab-ication”, is a verbal representation of the fluid four-way interrelationship between the 4Cs visually represented in Figure 2 (a title meant to playfully repackage the 4Cs for important pedagogical and policy uses). This model goes further to suggest some dimensional differences in emphases that, roughly speaking, also often exist among the 4Cs: that is to say, the frequently greater emphasis on cognitive or individual elements at play in creativity and critical thinking in comparison to the social and interpersonal aspects more central to communication and collaboration ( Thornhill-Miller 2021 ).

Similarly focused on the need to promote a phase change towards future-oriented education, Lucas ( 2019 ) and colleagues have suggested conflating creative thinking and critical thinking in order to propose “3Cs” (creative thinking, communication, and collaboration) as new “foundational literacies” to symmetrically add to the 3Rs (Reading, wRiting, and aRithmetic) of previous educational eras. Although we applaud these efforts, from our applied research perspective, we believe that the individual importance of, and distinct differences between, creative thinking and critical thinking support preserving them both as separate constructs in order to encourage the greatest development of each of them. Moreover, if only three categories were somehow required or preferable, one could argue that uniting communication and collaboration (as “collab-ication” suggests) might be preferable—particularly also given the fact that substantial aspects of communication are already covered within the 3Rs. In any case, we look forward to more such innovations and collaborations in this vibrant and important area of work at the crossroads between research, pedagogy, and policy development.

6.2. Limitations and Future Work

The rich literature in each of the 4Cs domains shows the positive effects of integrating these dimensions into educational and professional curricula. At the same time, the complexity of their definitions makes them difficult to assess, both in terms of reliability (assessment must not vary from one measurement to another) and of validity (tests must measure that which they are intended to measure). However, applied research in this area is becoming increasingly rigorous, with a growing capacity to provide the necessary tools for evidence-based practice. The development of these practices should involve interdisciplinary teams of teachers and other educational practitioners who are equipped and trained accordingly. Similarly, on the research side, further exploration and clarification of subcomponents of the 4Cs and other related skills will be important. Recent efforts to clarify the conceptual overlap and hierarchical relations of soft skills for the future of education and work, for example, have been helpful and promising (e.g., Joie-La Marle et al. 2022 ; Lamri et al. 2022 ). But the most definitive sort of taxonomy and measurement model that we are currently lacking might only be established based on the large-scale administration of a comprehensive battery of skill-measuring psychometric tests on appropriate cross sections of society.

The rapid development and integration of new technologies will also aid and change the contexts, resources, and implementation of the 4Cs. For example, the recent developments make it clear that the 4Cs will be enhanced and changed by interaction with artificially intelligence, even as 4Cs-related skills will probably, for the same reason, increasingly constitute the core of available human work in the future (see, e.g., Ross 2018 ). Similarly, research on virtual reality and creativity suggest that VR environments assist and expand individual and collaborative creativity ( Bourgeois-Bougrine et al. 2022 ). Because VR technologies offer the possibility of enhanced and materially enriched communication, collaboration, and information availability, they not only allow for the enhancement of creativity techniques but also for similar expansions and improvements on almost all forms of human activity (see Thornhill-Miller and Dupont 2016 )—including the other three Cs.

6.3. Conclusion: Labelization of the 4Cs and the Future of Education and Work

Traditional educational approaches cannot meet the educational needs of our emergent societies if they do not teach, promote, and assess in line with the new learner characteristics and contexts of the 21st century ( Sahin 2009 ). The sort of future-oriented change and development required by this shift in institutional practices, programming, and structure will likely meet with significant resistance from comfortably entrenched (and often outdated) segments of traditional educational and training establishments. Additional external evaluation and monitoring is rarely welcome by workers in any context. We believe, however, that top-down processes from the innovative and competition-conscious administrative levels will be met by bottom-up demands from students and education consumers to support these institutional changes. And we contend that efforts such as labelizing 4C processes will serve to push educators and institutions towards more relevant offerings, oriented towards the future of work and helping build a more successful future for all.

In the end, the 4Cs framework seems to be a manageable, focused model for modernizing education, and one worthy of its growing prevalence in the educational and research marketplace for a number of reasons. These reasons include the complexity and cumbersome nature of larger alternative systems and the 4Cs’ persuasive presence at the core of a number of early and industry-driven frameworks. In addition, the 4Cs have benefitted from their subsequent promotion by organizations such as the OECD and the World Economic Forum, as well as some more direct support from recent empirical research. The promotion, teaching, and assessment of the 4Cs will require a complex social intervention and mobilization of educational resources—a major shift in pedagogy and institutional structures. Yet the same evolving digital technologies that have largely caused the need for these massive, rapid changes can also assist in the implementation of solutions ( van Laar et al. 2017 ). To the extent that future research also converges on such a model (that has already been found pedagogically useful and policy-friendly by so many individuals and organizations), the 4Cs framework has the potential to become a manageable core for 21st century skills and the future of education and work—one that stakeholders with various agendas can already begin building on for a better educational and economic future together.

Funding Statement

This research received no external funding.

Author Contributions

Conceptualization, B.T.-M. and T.L.; writing—original draft preparation, B.T.-M., A.C., M.M., J.-M.B., T.M., S.B.-B., S.E.H., F.V., M.A.-L., C.F., D.S., F.M.; writing—review and editing, B.T.-M., A.C., T.L., J.-M.B., C.F.; visualization, B.T.-M.; supervision, B.T.-M., T.L.; project administration, B.T.-M., T.L. All authors have read and agreed to the published version of the manuscript.

Institutional Review Board Statement

Not applicable.

Informed Consent Statement

Data availability statement, conflicts of interest.

B.T.-M. and T.L. are unpaid academic co-founder and project collaborator for the International Institute for Competency Development, whose labelization frameworks (developed in cooperation with Afnor International and the LaPEA lab of Université Paris Cité and Université Gustave Eiffel) are used as examples in this review. S.E.H. and M.A.-L. are employees of AFNOR International. No funding was received to support this research or article, which reflects the views of the scientists and researchers and not their organizations or companies.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

  • Abrami Philip C., Bernard Robert M., Borokhovski Eugene, Waddington David I., Wade C. Anne, Persson Tonje. Strategies for Teaching Students to Think Critically: A Meta-Analysis. Review of Educational Research. 2015; 85 :275–314. doi: 10.3102/0034654314551063. [ CrossRef ] [ Google Scholar ]
  • AbuSeileek Ali Farhan. The Effect of Computer-Assisted Cooperative Learning Methods and Group Size on the EFL Learners’ Achievement in Communication Skills. Computers & Education. 2012; 58 :231–39. doi: 10.1016/j.compedu.2011.07.011. [ CrossRef ] [ Google Scholar ]
  • Ahern Aoife, Dominguez Caroline, McNally Ciaran, O’Sullivan John J., Pedrosa Daniela. A Literature Review of Critical Thinking in Engineering Education. Studies in Higher Education. 2019; 44 :816–28. doi: 10.1080/03075079.2019.1586325. [ CrossRef ] [ Google Scholar ]
  • Ainsworth Shaaron E., Chounta Irene-Angelica. The roles of representation in computer-supported collaborative learning. In: Cress Ulrike, Rosé Carolyn, Wise Alyssa Friend, Oshima Jun., editors. International Handbook of Computer-Supported Collaborative Learning. Springer; Cham: 2021. pp. 353–69. [ CrossRef ] [ Google Scholar ]
  • Alsaleh Nada J. Teaching Critical Thinking Skills: Literature Review. [(accessed on 1 November 2022)]; The Turkish Online Journal of Educational Technology. 2020 19 :21–39. Available online: http://files.eric.ed.gov/fulltext/EJ1239945.pdf [ Google Scholar ]
  • Al-Samarraie Hosam, Hurmuzan Shuhaila. A Review of Brainstorming Techniques in Higher Education. Thinking Skills and Creativity. 2018; 27 :78–91. doi: 10.1016/j.tsc.2017.12.002. [ CrossRef ] [ Google Scholar ]
  • Amabile Teresa M. Social Psychology of Creativity: A Consensual Assessment Technique. Journal of Personality and Social Psychology. 1982; 43 :997–1013. doi: 10.1037/0022-3514.43.5.997. [ CrossRef ] [ Google Scholar ]
  • Amron Manajemen Pemasaran. The influence of brand image, brand trust, product quality, and price on the consumer’s buying decision of MPV cars. European Scientific Journal. 2018; 14 :228–39. doi: 10.19044/esj.2018.v14n13p228. [ CrossRef ] [ Google Scholar ]
  • Ananiadoui Katerina, Claro Magdalean. 21st Century Skills and Competences for New Millennium Learners in OECD Countries. OECD Publishing; Paris: 2009. OECD Education Working Papers, No. 41. [ CrossRef ] [ Google Scholar ]
  • Bailin Sharon. Achieving Extraordinary Ends: An Essay on Creativity. Springer; Dordrecht: 1988. [ CrossRef ] [ Google Scholar ]
  • Bandyopadhyay Subir, Szostek Jana. Thinking Critically about Critical Thinking: Assessing Critical Thinking of Business Students Using Multiple Measures. Journal of Education for Business. 2019; 94 :259–70. doi: 10.1080/08832323.2018.1524355. [ CrossRef ] [ Google Scholar ]
  • Barber Herbert F. Developing Strategic Leadership: The US Army War College Experience. Journal of Management Development. 1992; 11 :4–12. doi: 10.1108/02621719210018208. [ CrossRef ] [ Google Scholar ]
  • Barnett Ronald. The Palgrave Handbook of Critical Thinking in Higher Education. Palgrave Macmillan US; New York: 2015. A Curriculum for Critical Being; pp. 63–76. [ CrossRef ] [ Google Scholar ]
  • Bateson Patrick, Martin Paul. Play, Playfulness, Creativity and Innovation. Cambridge University Press; Cambridge: 2013. [ CrossRef ] [ Google Scholar ]
  • Batey Mark. The Measurement of Creativity: From Definitional Consensus to the Introduction of a New Heuristic Framework. Creativity Research Journal. 2012; 24 :55–65. doi: 10.1080/10400419.2012.649181. [ CrossRef ] [ Google Scholar ]
  • Battelle for Kids Framework for 21st Century Learning Definitions. 2022. [(accessed on 1 November 2022)]. Available online: http://static.battelleforkids.org/documents/p21/P21_Framework_DefinitionsBFK.pdf
  • Bellaera Lauren, Weinstein-Jones Yana, Ilie Sonia, Baker Sara T. Critical Thinking in Practice: The Priorities and Practices of Instructors Teaching in Higher Education. Thinking Skills and Creativity. 2021; 41 :100856. doi: 10.1016/j.tsc.2021.100856. [ CrossRef ] [ Google Scholar ]
  • Blessinger Patrick, Anchan John P. In: Democratizing Higher Education: International Comparative Perspectives. 1st ed. Blessinger Patrick, Anchan John P., editors. Routledge; London: 2015. [(accessed on 1 November 2022)]. Available online: https://www.routledge.com/Democratizing-Higher-Education-International-Comparative-Perspectives/Blessinger-Anchan/p/book/9781138020955 [ Google Scholar ]
  • Bloom Benjamin Samuel., editor. Taxonomy of Educational Objectives: The Classification of Educational Goals: Handbook I, Cognitive Domain. Longmans; New York: 1956. [ Google Scholar ]
  • Bourgeois-Bougrine Samira. The Palgrave Encyclopedia of the Possible. Springer International Publishing; Cham: 2022. Design Thinking. [ CrossRef ] [ Google Scholar ]
  • Bourgeois-Bougrine Samira, Bonnardel Nathalie, Burkhardt Jean-Marie, Thornhill-Miller Branden, Pahlavan Farzaneh, Buisine Stéphanie, Guegan Jérôme, Pichot Nicolas, Lubart Todd. Immersive Virtual Environments’ Impact on Individual and Collective Creativity: A Review of Recent Research. European Psychologist. 2022; 27 :237–53. doi: 10.1027/1016-9040/a000481. [ CrossRef ] [ Google Scholar ]
  • Bourke Sharon L., Cooper Simon, Lam Louisa, McKenna Lisa. Undergraduate Health Professional Students’ Team Communication in Simulated Emergency Settings: A Scoping Review. Clinical Simulation in Nursing. 2021; 60 :42–63. doi: 10.1016/j.ecns.2021.07.004. [ CrossRef ] [ Google Scholar ]
  • Brookfield Stephen D. Assessing Critical Thinking. New Directions for Adult and Continuing Education. 1997; 75 :17–29. doi: 10.1002/ace.7502. [ CrossRef ] [ Google Scholar ]
  • Burkhardt Jean-Marie, Détienne Françoise, Hébert Anne-Marie, Perron Laurence. Human-Computer Interaction—INTERACT 2009. Springer; Berlin/Heidelberg: 2009. Assessing the ‘Quality of Collaboration’ in Technology-Mediated Design Situations with Several Dimensions; pp. 157–60. [ CrossRef ] [ Google Scholar ]
  • Camarda Anaëlle, Bouhours Lison, Osmont Anaïs, Masson Pascal Le, Weil Benoît, Borst Grégoire, Cassotti Mathieu. Opposite Effect of Social Evaluation on Creative Idea Generation in Early and Middle Adolescents. Creativity Research Journal. 2021; 33 :399–410. doi: 10.1080/10400419.2021.1902174. [ CrossRef ] [ Google Scholar ]
  • Cannon-Bowers Janis, Tannenbaum Scott I., Salas Eduardo, Volpe Catherine E. Defining team competencies and establishing team training requirements. In: Guzzo Richard A., Salas Eduardo., editors. Team Effectiveness and Decision Making in Organizations. Jossey-Bass; San Francisco: 1995. pp. 333–80. [ Google Scholar ]
  • Care Esther, Scoular Claire, Griffin Patrick. Assessment of Collaborative Problem Solving in Education Environments. Applied Measurement in Education. 2016; 29 :250–64. doi: 10.1080/08957347.2016.1209204. [ CrossRef ] [ Google Scholar ]
  • Care Esther, Kim Helyn, Vista Alvin, Anderson Kate. Education System Alignment for 21st Century Skills: Focus on Assessment. Brookings Institution; Washington, DC: 2018. [ Google Scholar ]
  • Carmichael Erst, Farrell Helen. Evaluation of the Effectiveness of Online Resources in Developing Student Critical Thinking: Review of Literature and Case Study of a Critical Thinking Online Site. Journal of University Teaching and Learning Practice. 2012; 9 :38–55. doi: 10.53761/1.9.1.4. [ CrossRef ] [ Google Scholar ]
  • Carson Shelley H., Peterson Jordan B., Higgins Daniel M. Reliability, Validity, and Factor Structure of the Creative Achievement Questionnaire. Creativity Research Journal. 2005; 17 :37–50. doi: 10.1207/s15326934crj1701_4. [ CrossRef ] [ Google Scholar ]
  • Casey Betty J., Getz Sarah, Galvan Adriana. The Adolescent Brain. Developmental Review: DR. 2008; 28 :62–77. doi: 10.1016/j.dr.2007.08.003. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Cassotti Mathieu, Camarda Anaëlle, Poirel Nicolas, Houdé Olivier, Agogué Marine. Fixation Effect in Creative Ideas Generation: Opposite Impacts of Example in Children and Adults. Thinking Skills and Creativity. 2016; 19 :146–52. doi: 10.1016/j.tsc.2015.10.008. [ CrossRef ] [ Google Scholar ]
  • Chameroy Fabienne, Veran Lucien. Immatérialité de La Qualité et Effet Des Labels Sur Le Consentement à Payer. Management International. 2014; 18 :32–44. doi: 10.7202/1025088ar. [ CrossRef ] [ Google Scholar ]
  • Chiu Fa-Chung. Improving Your Creative Potential without Awareness: Overinclusive Thinking Training. Thinking Skills and Creativity. 2015; 15 :1–12. doi: 10.1016/j.tsc.2014.11.001. [ CrossRef ] [ Google Scholar ]
  • Chulvi Vicente, Mulet Elena, Chakrabarti Amaresh, López-Mesa Belinda, González-Cruz Carmen. Comparison of the Degree of Creativity in the Design Outcomes Using Different Design Methods. Journal of Engineering Design. 2012; 23 :241–69. doi: 10.1080/09544828.2011.624501. [ CrossRef ] [ Google Scholar ]
  • Cinque Maria. ‘Lost in Translation’. Soft Skills Development in European Countries. Tuning Journal for Higher Education. 2016; 3 :389–427. doi: 10.18543/tjhe-3(2)-2016pp389-427. [ CrossRef ] [ Google Scholar ]
  • Cömert Musa, Zill Jördis Maria, Christalle Eva, Dirmaier Jörg, Härter Martin, Scholl Isabelle. Assessing Communication Skills of Medical Students in Objective Structured Clinical Examinations (OSCE) - A Systematic Review of Rating Scales. PLoS ONE. 2016; 11 :e0152717. doi: 10.1371/journal.pone.0152717. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Corazza Giovanni Emanuele. Potential Originality and Effectiveness: The Dynamic Definition of Creativity. Creativity Research Journal. 2016; 28 :258–67. doi: 10.1080/10400419.2016.1195627. [ CrossRef ] [ Google Scholar ]
  • Corazza Giovanni Emanuele, Darbellay Frédéric, Lubart Todd, Panciroli Chiara. Developing Intelligence and Creativity in Education: Insights from the Space–Time Continuum. In: Lemmetty Soila, Collin Kaija, Glăveanu Vlad, Forsman Panu., editors. Creativity and Learning. Springer International Publishing; Cham: 2021. pp. 69–87. [ CrossRef ] [ Google Scholar ]
  • Cotter Katherine N., Beghetto Ronald A., Kaufman James C. Creativity in the Classroom: Advice for Best Practices. In: Lubart Todd, Botella Marion, Bourgeois-Bougrine Samira, Caroff Xavier, Guégan Jérôme, Mouchiroud Christohe, Nelson Julien, Zenasni Franck., editors. Homo Creativus. Springer International Publishing; Cham: 2022. pp. 249–64. [ CrossRef ] [ Google Scholar ]
  • Curtis J. Randall, Back Anthony L., Ford Dee W., Downey Lois, Shannon Sarah E., Doorenbos Ardith Z., Kross Erin K., Reinke Lynn F., Feemster Laura C., Edlund Barbara, et al. Effect of Communication Skills Training for Residents and Nurse Practitioners on Quality of Communication with Patients with Serious Illness: A Randomized Trial. JAMA: The Journal of the American Medical Association. 2013; 310 :2271. doi: 10.1001/jama.2013.282081. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • D’Alimonte Laura, McLaney Elizabeth, Prospero Lisa Di. Best Practices on Team Communication: Interprofessional Practice in Oncology. Current Opinion in Supportive and Palliative Care. 2019; 13 :69–74. doi: 10.1097/SPC.0000000000000412. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • de Freitas Sara. Learning in Immersive Worlds: A Review of Game-Based Learning. JISC; Bristol: 2006. [(accessed on 1 November 2022)]. Available online: http://www.jisc.ac.uk/media/documents/programmes/elearninginnovation/gamingreport_v3.pdf [ Google Scholar ]
  • Détienne Françoise, Baker Michael, Burkhardt Jean-Marie. Perspectives on Quality of Collaboration in Design. CoDesign. 2012; 8 :197–99. doi: 10.1080/15710882.2012.742350. [ CrossRef ] [ Google Scholar ]
  • Diedrich Jennifer, Jauk Emanuel, Silvia Paul J., Gredlein Jeffrey M., Neubauer Aljoscha C., Benedek Mathias. Assessment of Real-Life Creativity: The Inventory of Creative Activities and Achievements (ICAA) Psychology of Aesthetics, Creativity, and the Arts. 2018; 12 :304–16. doi: 10.1037/aca0000137. [ CrossRef ] [ Google Scholar ]
  • Doyle Denise. Creativity in the Twenty First Century. Edited by Anna Hui and Christian Wagner. Springer International Publishing; Cham: 2021. Creative and Collaborative Practices in Virtual Immersive Environments; pp. 3–19. [ CrossRef ] [ Google Scholar ]
  • Drisko James W. Competencies and Their Assessment. Journal of Social Work Education. 2014; 50 :414–26. doi: 10.1080/10437797.2014.917927. [ CrossRef ] [ Google Scholar ]
  • Dul Jan, Ceylan Canan. Work Environments for Employee Creativity. Ergonomics. 2011; 54 :12–20. doi: 10.1080/00140139.2010.542833. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Dumitru Daniela, Bigu Dragos, Elen Jan, Ahern Aoife, McNally Ciaran, O’Sullivan John. A European Review on Critical Thinking Educational Practices in Higher Education Institutions. UTAD; Vila Real: 2018. [(accessed on 2 November 2022)]. Available online: http://repositorio.utad.pt/handle/10348/8320 [ Google Scholar ]
  • Edelman Jonathan, Owoyele Babajide, Santuber Joaquin. Design Thinking in Education. Springer International Publishing; Cham: 2022. Beyond Brainstorming: Introducing Medgi, an Effective, Research-Based Method for Structured Concept Development; pp. 209–32. [ CrossRef ] [ Google Scholar ]
  • Etilé Fabrice, Teyssier Sabrina. Signaling Corporate Social Responsibility: Third-Party Certification versus Brands: Signaling CSR: Third-Party Certification versus Brands. The Scandinavian Journal of Economics. 2016; 118 :397–432. doi: 10.1111/sjoe.12150. [ CrossRef ] [ Google Scholar ]
  • Evans Carla. Measuring Student Success Skills: A Review of the Literature on Collaboration. National Center for the Improvement of Educational Assessment; Dover: 2020. [ Google Scholar ]
  • Facione Peter Arthur. The California Critical Thinking Skills Test–College Level. Technical Report# 1. Experimental Validation and Content Validity. [(accessed on 2 November 2022)]; 1990a Available online: https://files.eric.ed.gov/fulltext/ED327549.pdf
  • Facione Peter Arthur. Critical Thinking: A Statement of Expert Consensus for Purposes of Educational Assessment and Instruction. Research Findings and Recommendations. ERIC, Institute of Education Sciences; Washington, DC: 1990b. [(accessed on 2 November 2022)]. pp. 1–112. Available online: https://eric.ed.gov/?id=ED315423 [ Google Scholar ]
  • Facione Peter Arthur. Critical thinking: What it is and why it counts. Insight Assessment. 2011; 2007 :1–23. [ Google Scholar ]
  • Faidley Joel. Ph.D. dissertation. East Tennessee State University; Johnson City, TN, USA: 2018. Comparison of Learning Outcomes from Online and Face-to-Face Accounting Courses. [ Google Scholar ]
  • Friedman Hershey H. Cognitive Biases That Interfere with Critical Thinking and Scientific Reasoning: A Course Module. SSRN Electronic Journal. 2017:1–60. doi: 10.2139/ssrn.2958800. [ CrossRef ] [ Google Scholar ]
  • Fryer-Edwards Kelly, Arnold Robert M., Baile Walter, Tulsky James A., Petracca Frances, Back Anthony. Reflective Teaching Practices: An Approach to Teaching Communication Skills in a Small-Group Setting. Academic Medicine: Journal of the Association of American Medical Colleges. 2006; 81 :638–44. doi: 10.1097/01.ACM.0000232414.43142.45. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Glăveanu Vlad Petre. Rewriting the Language of Creativity: The Five A’s Framework. Review of General Psychology: Journal of Division 1, of the American Psychological Association. 2013; 17 :69–81. doi: 10.1037/a0029528. [ CrossRef ] [ Google Scholar ]
  • Glăveanu Vlad Petre. The Psychology of Creativity: A Critical Reading. Creativity Theories Research Applications. 2014; 1 :10–32. doi: 10.15290/ctra.2014.01.01.02. [ CrossRef ] [ Google Scholar ]
  • Goldenberg Olga, Wiley Jennifer. Quality, Conformity, and Conflict: Questioning the Assumptions of Osborn’s Brainstorming Technique. The Journal of Problem Solving. 2011; 3 :96–118. doi: 10.7771/1932-6246.1093. [ CrossRef ] [ Google Scholar ]
  • Graesser Arthur C., Sabatini John P., Li Haiying. Educational Psychology Is Evolving to Accommodate Technology, Multiple Disciplines, and Twenty-First-Century Skills. Annual Review of Psychology. 2022; 73 :547–74. doi: 10.1146/annurev-psych-020821-113042. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Graesser Arthur C., Fiore Stephen M., Greiff Samuel, Andrews-Todd Jessica, Foltz Peter W., Hesse Friedrich W. Advancing the Science of Collaborative Problem Solving. Psychological Science in the Public Interest. 2018; 19 :59–92. doi: 10.1177/1529100618808244. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Grassmann Susanne. The pragmatics of word learning. In: Matthews Danielle., editor. Pragmatic Development in First Language Acquisition. John Benjamins Publishing Company; Amsterdam: 2014. pp. 139–60. [ CrossRef ] [ Google Scholar ]
  • Hager Keri, St Hill Catherine, Prunuske Jacob, Swanoski Michael, Anderson Grant, Lutfiyya May Nawal. Development of an Interprofessional and Interdisciplinary Collaborative Research Practice for Clinical Faculty. Journal of Interprofessional Care. 2016; 30 :265–67. doi: 10.3109/13561820.2015.1092951. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Halpern Diane F. Teaching Critical Thinking for Transfer across Domains: Disposition, Skills, Structure Training, and Metacognitive Monitoring. The American Psychologist. 1998; 53 :449–55. doi: 10.1037/0003-066X.53.4.449. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Halpern Diane F., Dunn Dana S. Critical Thinking: A Model of Intelligence for Solving Real-World Problems. Journal of Intelligence. 2021; 9 :22. doi: 10.3390/jintelligence9020022. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Hanover Research A Crosswalk of 21st Century Skills. 2012. [(accessed on 15 August 2022)]. Available online: http://www.hanoverresearch.com/wp-content/uploads/2011/12/A-Crosswalk-of-21st-Century-Skills-Membership.pdf
  • Hathaway Julia R., Tarini Beth A., Banerjee Sushmita, Smolkin Caroline O., Koos Jessica A., Pati Susmita. Healthcare Team Communication Training in the United States: A Scoping Review. Health Communication. 2022:1–26. doi: 10.1080/10410236.2022.2036439. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Hesse Friedrich, Care Esther, Buder Juergen, Sassenberg Kai, Griffin Patrick. A Framework for Teachable Collaborative Problem Solving Skills. In: Griffin Patrick, Care Esther., editors. Assessment and Teaching of 21st Century Skills. Springer Netherlands; Dordrecht: 2015. pp. 37–56. [ Google Scholar ]
  • Hitchcock David. Critical Thinking. In: Edward Nouri Zalta., editor. The Stanford Encyclopedia of Philosophy (Fall 2020 Edition) Stanford University; Stanford: 2020. [ Google Scholar ]
  • Houdé Olivier. Inhibition and cognitive development: Object, number, categorization, and reasoning. Cognitive Development. 2000; 15 :63–73. doi: 10.1016/S0885-2014(00)00015-0. [ CrossRef ] [ Google Scholar ]
  • Houdé Olivier, Borst Grégoire. Measuring inhibitory control in children and adults: Brain imaging and mental chronometry. Frontiers in Psychology. 2014; 5 :616. doi: 10.3389/fpsyg.2014.00616. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Huber Christopher R., Kuncel Nathan R. Does College Teach Critical Thinking? A Meta-Analysis. Review of Educational Research. 2016; 86 :431–68. doi: 10.3102/0034654315605917. [ CrossRef ] [ Google Scholar ]
  • Huizinga Johan. Homo Ludens: A Study of the Play-Elements in Culture. Routledge; London: 1949. [ Google Scholar ]
  • Humphrey Neil, Curran Andrew, Morris Elisabeth, Farrell Peter, Woods Kevin. Emotional Intelligence and Education: A Critical Review. Educational Psychology. 2007; 27 :235–54. doi: 10.1080/01443410601066735. [ CrossRef ] [ Google Scholar ]
  • International Institute for Competency Development 21st Century Skills 4Cs Labelization. 2021. [(accessed on 2 November 2022)]. Available online: https://icd-hr21.org/offers/21st-century-competencies/
  • Jackson Denise. Business Graduate Performance in Oral Communication Skills and Strategies for Improvement. The International Journal of Management Education. 2014; 12 :22–34. doi: 10.1016/j.ijme.2013.08.001. [ CrossRef ] [ Google Scholar ]
  • Jahn Gabriele, Schramm Matthias, Spiller Achim. The Reliability of Certification: Quality Labels as a Consumer Policy Tool. Journal of Consumer Policy. 2005; 28 :53–73. doi: 10.1007/s10603-004-7298-6. [ CrossRef ] [ Google Scholar ]
  • Jauk Emanuel, Benedek Mathias, Neubauer Aljoscha C. The Road to Creative Achievement: A Latent Variable Model of Ability and Personality Predictors. European Journal of Personality. 2014; 28 :95–105. doi: 10.1002/per.1941. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Joie-La Marle Chantal, Parmentier François, Coltel Morgane, Lubart Todd, Borteyrou Xavier. A Systematic Review of Soft Skills Taxonomies: Descriptive and Conceptual Work. 2022. [(accessed on 2 November 2022)]. Available online: [ CrossRef ]
  • Jones Stanley E., LeBaron Curtis D. Research on the Relationship between Verbal and Nonverbal Communication: Emerging Integrations. The Journal of Communication. 2002; 52 :499–521. doi: 10.1111/j.1460-2466.2002.tb02559.x. [ CrossRef ] [ Google Scholar ]
  • Kaendler Celia, Wiedmann Michael, Leuders Timo, Rummel Nikol, Spada Hans. Monitoring Student Interaction during Collaborative Learning: Design and Evaluation of a Training Program for Pre-Service Teachers. Psychology Learning & Teaching. 2016; 15 :44–64. doi: 10.1177/1475725716638010. [ CrossRef ] [ Google Scholar ]
  • Kahneman Daniel. A Perspective on Judgment and Choice: Mapping Bounded Rationality. The American Psychologist. 2003; 58 :697–720. doi: 10.1037/0003-066X.58.9.697. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Kahneman Daniel. Thinking, Fast and Slow. Macmillan; New York: 2011. [ Google Scholar ]
  • Karl Katherine A., Peluchette Joy V., Aghakhani Navid. Virtual Work Meetings during the COVID-19 Pandemic: The Good, Bad, and Ugly. Small Group Research. 2022; 53 :343–65. doi: 10.1177/10464964211015286. [ CrossRef ] [ Google Scholar ]
  • Keefer Kateryna V., Parker James D. A., Saklofske Donald H. The Springer Series on Human Exceptionality. Springer International Publishing; Cham: 2018. Three Decades of Emotional Intelligence Research: Perennial Issues, Emerging Trends, and Lessons Learned in Education: Introduction to Emotional Intelligence in Education; pp. 1–19. [ Google Scholar ]
  • Kemp Nenagh, Grieve Rachel. Face-to-Face or Face-to-Screen? Undergraduates’ Opinions and Test Performance in Classroom vs. Online Learning. Frontiers in Psychology. 2014; 5 :1278. doi: 10.3389/fpsyg.2014.01278. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Kimery Kathryn, McCord Mary. Third-Party Assurances: Mapping the Road to Trust in E-retailing. The Journal of Information Technology Theory and Application. 2002; 4 :63–82. [ Google Scholar ]
  • Kohn Nicholas W., Smith Steven M. Collaborative Fixation: Effects of Others’ Ideas on Brainstorming. Applied Cognitive Psychology. 2011; 25 :359–71. doi: 10.1002/acp.1699. [ CrossRef ] [ Google Scholar ]
  • Kowaltowski Doris C. C. K., Bianchi Giovana, de Paiva Valéria Teixeira. Methods That May Stimulate Creativity and Their Use in Architectural Design Education. International Journal of Technology and Design Education. 2010; 20 :453–76. doi: 10.1007/s10798-009-9102-z. [ CrossRef ] [ Google Scholar ]
  • Kruijver Irma P. M., Kerkstra Ada, Francke Anneke L., Bensing Jozien M., van de Wiel Harry B. M. Evaluation of Communication Training Programs in Nursing Care: A Review of the Literature. Patient Education and Counseling. 2000; 39 :129–45. doi: 10.1016/S0738-3991(99)00096-8. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Lai Emily R. Critical thinking: A literature review. Pearson’s Research Reports. 2011; 6 :40–41. doi: 10.25148/lawrev.11.2.3. [ CrossRef ] [ Google Scholar ]
  • Lamri Jérémy, Lubart Todd. Creativity and Its’ Relationships with 21st Century Skills in Job Performance. Kindai Management Review. 2021; 9 :75–91. [ Google Scholar ]
  • Lamri Jérémy, Barabel Michel, Meier Olivier, Lubart Todd. Le Défi Des Soft Skills: Comment les Développer au XXIe Siècle? Dunod; Paris: 2022. [ Google Scholar ]
  • Landa Rebecca J. Assessment of Social Communication Skills in Preschoolers: Assessing Social Communication Skills in Children. Mental Retardation and Developmental Disabilities Research Reviews. 2005; 11 :247–52. doi: 10.1002/mrdd.20079. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Lee Sang M., Choi Jeongil, Lee Sang-Gun. The impact of a third-party assurance seal in customer purchasing intention. Journal of Internet Commerce. 2004; 3 :33–51. doi: 10.1300/J179v03n02_03. [ CrossRef ] [ Google Scholar ]
  • Lewis Arthur, Smith David. Defining Higher Order Thinking. Theory into Practice. 1993; 32 :131–37. doi: 10.1080/00405849309543588. [ CrossRef ] [ Google Scholar ]
  • Liu Ou Lydia, Frankel Lois, Roohr Katrina Crotts. Assessing Critical Thinking in Higher Education: Current State and Directions for next-Generation Assessment: Assessing Critical Thinking in Higher Education. ETS Research Report Series. 2014; 2014 :1–23. doi: 10.1002/ets2.12009. [ CrossRef ] [ Google Scholar ]
  • Lubart Todd. The 7 C’s of Creativity. The Journal of Creative Behavior. 2017; 51 :293–96. doi: 10.1002/jocb.190. [ CrossRef ] [ Google Scholar ]
  • Lubart Todd, Thornhill-Miller Branden. Creativity: An Overview of the 7C’s of Creative Thought. Heidelberg: Heidelberg University Publishing. 2019 doi: 10.17885/HEIUP.470.C6678. [ CrossRef ] [ Google Scholar ]
  • Lubart Todd, Barbot Baptiste, Besançon Maud. Creative Potential: Assessment Issues and the EPoC Battery/Potencial Creativo: Temas de Evaluación y Batería EPoC. Estudios de Psicologia. 2019; 40 :540–62. doi: 10.1080/02109395.2019.1656462. [ CrossRef ] [ Google Scholar ]
  • Lubart Todd, Zenasni Franck, Barbot Baptiste. Creative potential and its measurement. International Journal of Talent Development and Creativity. 2013; 1 :41–51. [ Google Scholar ]
  • Lubart Tubart, Thornhill-Miller Branden. Creativity in Law: Legal Professions and the Creative Profiler Approach. In: Masson Antoine, Robinson Gavin., editors. Mapping Legal Innovation: Trends and Perspectives. Springer International Publishing; Cham: 2021. pp. 1–19. [ CrossRef ] [ Google Scholar ]
  • Lubin Jeffrey, Hendrick Stephan, Thornhill-Miller Branden, Mercier Maxence, Lubart Todd. Creativity in Solution-Focused Brief Therapy Forthcoming.
  • Lucas Bill. Why We Need to Stop Talking about Twenty-First Century Skills. Centre for Strategic Education; Melbourne: 2019. [ Google Scholar ]
  • Lucas Bill. Creative Thinking in Schools across the World. The Global Institute of Creative Thinking; London: 2022. [ Google Scholar ]
  • Lucas Bill, Claxton Guy. Wider Skills for Learning: What Are They, How Can They Be Cultivated, How Could They Be Measured and Why Are They Important for Innovation? NESTA; London: 2009. [ Google Scholar ]
  • Malaby Thomas M. Beyond Play: A New Approach to Games. Games and Culture. 2007; 2 :95–113. doi: 10.1177/1555412007299434. [ CrossRef ] [ Google Scholar ]
  • Marin Lisa M., Halpern Diane F. Pedagogy for developing critical thinking in adolescents: Explicit instruction produces greatest gains. Thinking Skills and Creativity. 2011; 6 :1–13. doi: 10.1016/j.tsc.2010.08.002. [ CrossRef ] [ Google Scholar ]
  • Mathieu John E., Hollenbeck John R., van Knippenberg Daan, Ilgen Daniel R. A Century of Work Teams in the Journal of Applied Psychology. The Journal of Applied Psychology. 2017; 102 :452–67. doi: 10.1037/apl0000128. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Matthews Danielle. Pragmatic Development in First Language Acquisition. Amsterdam: John Benjamins Publishing Company. 2014 doi: 10.1075/tilar.10. [ CrossRef ] [ Google Scholar ]
  • McDonald Skye, Gowland Alison, Randall Rebekah, Fisher Alana, Osborne-Crowley Katie, Honan Cynthia. Cognitive Factors Underpinning Poor Expressive Communication Skills after Traumatic Brain Injury: Theory of Mind or Executive Function? Neuropsychology. 2014; 28 :801–11. doi: 10.1037/neu0000089. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Moore Brooke Noel, Parker Richard. Critical Thinking. 20th ed. McGraw-Hill Education; New York: 2016. [ Google Scholar ]
  • Morreale Sherwyn P., Valenzano Joseph M., Bauer Janessa A. Why Communication Education Is Important: A Third Study on the Centrality of the Discipline’s Content and Pedagogy. Communication Education. 2017; 66 :402–22. doi: 10.1080/03634523.2016.1265136. [ CrossRef ] [ Google Scholar ]
  • Mourad Maha. Quality Assurance as a Driver of Information Management Strategy: Stakeholders’ Perspectives in Higher Education. Journal of Enterprise Information Management. 2017; 30 :779–94. doi: 10.1108/JEIM-06-2016-0104. [ CrossRef ] [ Google Scholar ]
  • National Education Association . Preparing 21st Century Students for a Global Society: An Educator’s Guide to the “Four Cs”. National Education Association; Alexandria: 2011. [ Google Scholar ]
  • Nouri Jalal, Åkerfeldt Anna, Fors Uno, Selander Staffan. Assessing Collaborative Problem Solving Skills in Technology-Enhanced Learning Environments—The PISA Framework and Modes of Communication. International Journal of Emerging Technologies in Learning (IJET) 2017; 12 :163. doi: 10.3991/ijet.v12i04.6737. [ CrossRef ] [ Google Scholar ]
  • O’Carroll Veronica, Owens Melissa, Sy Michael, El-Awaisi Alla, Xyrichis Andreas, Leigh Jacqueline, Nagraj Shobhana, Huber Marion, Hutchings Maggie, McFadyen Angus. Top Tips for Interprofessional Education and Collaborative Practice Research: A Guide for Students and Early Career Researchers. Journal of Interprofessional Care. 2021; 35 :328–33. doi: 10.1080/13561820.2020.1777092. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • OECD . PISA 2015 Assessment and Analytical Framework: Science, Reading, Mathematic, Financial Literacy and Collaborative Problem Solving. OECD Publishing; Paris: 2017. PISA 2015 collaborative problem-solving framework. [ CrossRef ] [ Google Scholar ]
  • OECD . Framework for the Assessment of Creative Thinking in PISA 2021: Third Draft. OECD; Paris: 2019a. [(accessed on 2 November 2022)]. Available online: https://www.oecd.org/pisa/publications/PISA-2021-creative-thinking-framework.pdf [ Google Scholar ]
  • OECD . Future of Education and Skills 2030: A Series of Concept Notes. OECD Learning Compass; Paris: 2019b. [(accessed on 2 November 2022)]. Available online: https://www.oecd.org/education/2030-project/teaching-and-learning/learning/learning-compass-2030/OECD_Learning_Compass_2030_Concept_Note_Series.pdf [ Google Scholar ]
  • Osborn A. F. Applied Imagination. Charles Scribner’s Sons; New York: 1953. [ Google Scholar ]
  • Parkinson Thomas L. The Role of Seals and Certifications of Approval in Consumer Decision-Making. The Journal of Consumer Affairs. 1975; 9 :1–14. doi: 10.1111/j.1745-6606.1975.tb00545.x. [ CrossRef ] [ Google Scholar ]
  • Partnership for 21st Century Skills . 21st Century Skills Education and Competitiveness: A Resource and Policy Guide. Partnership for 21st Century Skills; Tuscon: 2008. [ Google Scholar ]
  • Pasquinelli Elena, Bronner Gérald. Éduquer à l’esprit critique. Bases théoriques et indications pratiques pour l’enseignement et la formation. Ministère de l’Éducation Nationale, de la JEUNESSE et des Sports; Paris: 2021. Rapport du Conseil Scientifique de l’Éducation Nationale. [ Google Scholar ]
  • Pasquinelli Elena, Farina Mathieu, Bedel Audrey, Casati Roberto. Naturalizing Critical Thinking: Consequences for Education, Blueprint for Future Research in Cognitive Science. Mind, Brain and Education: The Official Journal of the International Mind, Brain, and Education Society. 2021; 15 :168–76. doi: 10.1111/mbe.12286. [ CrossRef ] [ Google Scholar ]
  • Paul Richard, Elder Linda. Critical thinking: The nature of critical and creative thought. Journal of Developmental Education. 2006; 30 :34–35. [ Google Scholar ]
  • Paulus Paul B., Yang Huei-Chuan. Idea Generation in Groups: A Basis for Creativity in Organizations. Organizational Behavior and Human Decision Processes. 2000; 82 :76–87. doi: 10.1006/obhd.2000.2888. [ CrossRef ] [ Google Scholar ]
  • Paulus Paul B., Kenworthy Jared B. Effective brainstorming. In: Paulus Paul B., Nijstad Bernard A., editors. The Oxford Handbook of Group Creativity and Innovation. Oxford University Press; New York: 2019. [ CrossRef ] [ Google Scholar ]
  • Paulus Paul B., Dzindolet Mary T. Social Influence Processes in Group Brainstorming. Journal of Personality and Social Psychology. 1993; 64 :575–86. doi: 10.1037/0022-3514.64.4.575. [ CrossRef ] [ Google Scholar ]
  • Paulus Paul B., Brown Vincent R. Toward More Creative and Innovative Group Idea Generation: A Cognitive-Social-Motivational Perspective of Brainstorming: Cognitive-Social-Motivational View of Brainstorming. Social and Personality Psychology Compass. 2007; 1 :248–65. doi: 10.1111/j.1751-9004.2007.00006.x. [ CrossRef ] [ Google Scholar ]
  • Peddle Monica, Bearman Margaret, Radomski Natalie, Mckenna Lisa, Nestel Debra. What Non-Technical Skills Competencies Are Addressed by Australian Standards Documents for Health Professionals Who Work in Secondary and Tertiary Clinical Settings? A Qualitative Comparative Analysis. BMJ Open. 2018; 8 :e020799. doi: 10.1136/bmjopen-2017-020799. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Peña-López Ismaël. PISA 2015 Results (Volume V): Collaborative Problem Solving. PISA, OECD Publishing; Paris: 2017. [ Google Scholar ]
  • Popil Inna. Promotion of Critical Thinking by Using Case Studies as Teaching Method. Nurse Education Today. 2011; 31 :204–7. doi: 10.1016/j.nedt.2010.06.002. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Pornpitakpan Chanthika. The Persuasiveness of Source Credibility: A Critical Review of Five Decades’ Evidence. Journal of Applied Social Psychology. 2004; 34 :243–81. doi: 10.1111/j.1559-1816.2004.tb02547.x. [ CrossRef ] [ Google Scholar ]
  • Possin Kevin. Critique of the Watson-Glaser Critical Thinking Appraisal Test: The More You Know, the Lower Your Score. Informal Logic. 2014; 34 :393–416. doi: 10.22329/il.v34i4.4141. [ CrossRef ] [ Google Scholar ]
  • Proctor Robert W., Dutta Addie. Skill Acquisition and Human Performance. Sage Publications, Inc.; Thousand Oaks: 1995. [ Google Scholar ]
  • Putman Vicky L., Paulus Paul B. Brainstorming, Brainstorming Rules and Decision Making. The Journal of Creative Behavior. 2009; 43 :29–40. doi: 10.1002/j.2162-6057.2009.tb01304.x. [ CrossRef ] [ Google Scholar ]
  • Reiman Joey. Success: The Original Handbook. Longstreet Press; Atlanta: 1992. [ Google Scholar ]
  • Ren Xuezhu, Tong Yan, Peng Peng, Wang Tengfei. Critical Thinking Predicts Academic Performance beyond General Cognitive Ability: Evidence from Adults and Children. Intelligence. 2020; 82 :101487. doi: 10.1016/j.intell.2020.101487. [ CrossRef ] [ Google Scholar ]
  • Renard Marie-Christine. Quality Certification, Regulation and Power in Fair Trade. Journal of Rural Studies. 2005; 21 :419–31. doi: 10.1016/j.jrurstud.2005.09.002. [ CrossRef ] [ Google Scholar ]
  • Restout Emilie. Labels RSE: Un décryptage des entreprises labellisées en France. Goodwill Management. 2020. [(accessed on 2 November 2022)]. Available online: https://goodwill-management.com/labels-rse-decryptage-entreprises-labellisees/
  • Rhodes Mel. An Analysis of Creativity. The Phi Delta Kappan. 1961; 42 :305–10. [ Google Scholar ]
  • Rider Elizabeth A., Keefer Constance H. Communication Skills Competencies: Definitions and a Teaching Toolbox: Communication. Medical Education. 2006; 40 :624–29. doi: 10.1111/j.1365-2929.2006.02500.x. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Riemer Marc J. Communication Skills for the 21st Century Engineer. Global Journal of Engineering Education. 2007; 11 :89. [ Google Scholar ]
  • Rietzschel Eric F., Nijstad Bernard A., Stroebe Wolfgang. Productivity Is Not Enough: A Comparison of Interactive and Nominal Brainstorming Groups on Idea Generation and Selection. Journal of Experimental Social Psychology. 2006; 42 :244–51. doi: 10.1016/j.jesp.2005.04.005. [ CrossRef ] [ Google Scholar ]
  • Ross David. Why the Four Cs Will Become the Foundation of Human-AI Interface. 2018. [(accessed on 2 November 2022)]. Available online: https://www.gettingsmart.com/2018/03/04/why-the-4cs-will-become-the-foundation-of-human-ai-interface/
  • Rothermich Kathrin. Social Communication Across the Lifespan: The Influence of Empathy [Preprint] SocArXiv. 2020 doi: 10.31235/osf.io/adgmy. [ CrossRef ] [ Google Scholar ]
  • Rusdin Norazlin Mohd, Ali Siti Rahaimah. Practice of Fostering 4Cs Skills in Teaching and Learning. International Journal of Academic Research in Business and Social Sciences. 2019; 9 :1021–35. doi: 10.6007/IJARBSS/v9-i6/6063. [ CrossRef ] [ Google Scholar ]
  • Rychen Dominique Simone, Hersch Salganik Laura., editors. Key Competencies for a Successful Life and a Well-Functioning Society. Hogrefe and Huber; Cambridge: 2003. [ Google Scholar ]
  • Sahin Mehmet Can. Instructional Design Principles for 21st Century Learning Skills. Procedia, Social and Behavioral Sciences. 2009; 1 :1464–68. doi: 10.1016/j.sbspro.2009.01.258. [ CrossRef ] [ Google Scholar ]
  • Salas Eduardo, Stagl Kevin C., Burke C. Shawn. International Review of Industrial and Organizational Psychology. John Wiley & Sons, Ltd.; Chichester: 2004. 25 Years of Team Effectiveness in Organizations: Research Themes and Emerging Needs; pp. 47–91. [ CrossRef ] [ Google Scholar ]
  • Salas Eduardo, Shuffler Marissa L., Thayer Amanda L., Bedwell Wendy L., Lazzara Elizabeth H. Understanding and Improving Teamwork in Organizations: A Scientifically Based Practical Guide. Human Resource Management. 2015; 54 :599–622. doi: 10.1002/hrm.21628. [ CrossRef ] [ Google Scholar ]
  • Salmi Jamil. The Tertiary Education Imperative: Knowledge, Skills and Values for Development. Springer; Cham: 2017. [ Google Scholar ]
  • Samani Sanaz Ahmadpoor, Rasid Siti Zaleha Binti Abdul, bt Sofian Saudah. A Workplace to Support Creativity. Industrial Engineering & Management Systems. 2014; 13 :414–20. doi: 10.7232/iems.2014.13.4.414. [ CrossRef ] [ Google Scholar ]
  • Saroyan Alenoush. Fostering Creativity and Critical Thinking in University Teaching and Learning: Considerations for Academics and Their Professional Learning. OECD; Paris: 2022. [ CrossRef ] [ Google Scholar ]
  • Sasmita Jumiati, Suki Norazah Mohd. Young consumers’ insights on brand equity: Effects of brand association, brand loyalty, brand awareness, and brand image. International Journal of Retail & Distribution Management. 2015; 43 :276–92. doi: 10.1108/IJRDM-02-2014-0024. [ CrossRef ] [ Google Scholar ]
  • Schlegel Claudia, Woermann Ulrich, Shaha Maya, Rethans Jan-Joost, van der Vleuten Cees. Effects of Communication Training on Real Practice Performance: A Role-Play Module versus a Standardized Patient Module. The Journal of Nursing Education. 2012; 51 :16–22. doi: 10.3928/01484834-20111116-02. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Schleicher Andreas. Why Creativity and Creative Teaching and Learning Matter Today and for Tomorrow’s World. GloCT in Collaboration with OECD CERI; Paris: 2022. Creativity in Education Summit 2022. [ Google Scholar ]
  • Schneider Bertrand, Sharma Kshitij, Cuendet Sebastien, Zufferey Guillaume, Dillenbourg Pierre, Pea Roy. Leveraging Mobile Eye-Trackers to Capture Joint Visual Attention in Co-Located Collaborative Learning Groups. International Journal of Computer-Supported Collaborative Learning. 2018; 13 :241–61. doi: 10.1007/s11412-018-9281-2. [ CrossRef ] [ Google Scholar ]
  • Schultz David M. Eloquent Science: A course to improve scientific and communication skills; Paper presented at the 19th Symposium on Education; Altanta, GA, USA. January 18–21; 2010. [ Google Scholar ]
  • Scialabba George. Mindplay. Harvard Magazine. 1984; 16 :19. [ Google Scholar ]
  • Scott Ginamarie, Leritz Lyle E., Mumford Michael D. The Effectiveness of Creativity Training: A Quantitative Review. Creativity Research Journal. 2004; 16 :361–88. doi: 10.1080/10400410409534549. [ CrossRef ] [ Google Scholar ]
  • Sigafoos Jeff, Schlosser Ralf W., Green Vanessa A., O’Reilly Mark, Lancioni Giulio E. Communication and Social Skills Assessment. In: Matson Johnny L., editor. Clinical Assessment and Intervention for Autism Spectrum Disorders. Elsevier; Amsterdam: 2008. pp. 165–92. [ CrossRef ] [ Google Scholar ]
  • Simonton Dean Keith. Creativity from a Historiometric Perspective. In: Sternberg Robert J., editor. Handbook of Creativity. Cambridge University Press; Cambridge: 1999. pp. 116–34. [ CrossRef ] [ Google Scholar ]
  • Singh Pallavi, Bala Hillol, Dey Bidit Lal, Filieri Raffaele. Enforced Remote Working: The Impact of Digital Platform-Induced Stress and Remote Working Experience on Technology Exhaustion and Subjective Wellbeing. Journal of Business Research. 2022; 151 :269–86. doi: 10.1016/j.jbusres.2022.07.002. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Spada Hans, Meier Anne, Rummel Nikol, Hauser Sabine. Proceedings of the 2005 Conference on Computer Support for Collaborative Learning Learning 2005: The next 10 Years!—CSCL’05, Taipei, Taiwan, May 30–June 4. Association for Computational Linguistics; Morristown: 2005. A New Method to Assess the Quality of Collaborative Process in CSCL. [ Google Scholar ]
  • Spitzberg Brian H. Methods of interpersonal skill assessment. In: Greene John O., Burleson Brant R., editors. The Handbook of Communication and Social Interaction Skills. Lawrence Erlbaum Associates; Mahwah: 2003. [ Google Scholar ]
  • Sternberg Robert. Intelligence, Wisdom, and Creativity: Three Is Better than One. Educational Psychologist. 1986; 21 :175–90. doi: 10.1207/s15326985ep2103_2. [ CrossRef ] [ Google Scholar ]
  • Sternberg Robert J., Funke Joachim. The Psychology of Human Thought: An Introduction. Heidelberg University Publishing (heiUP); Heidelberg: 2019. [ CrossRef ] [ Google Scholar ]
  • Sursock Andrée. Quality assurance and rankings: Some European lessons. In: Hazelkorn Ellen, Mihut Georgiana., editors. Research Handbook on University Rankings. Edward Elgar Publishing; Cheltenham: 2021. pp. 185–96. [ CrossRef ] [ Google Scholar ]
  • Sursock Andrée, Vettori Oliver. Qualitätskultur. Ein Blick in Die Gelebte Praxis der Hochschulen. Agency for Quality Assurance and Accreditation; Vienna: 2017. [(accessed on 2 November 2022)]. Quo vadis, quality culture? Theses from different perspectives; pp. 13–18. Available online: https://www.aq.ac.at/de/ueber-uns/publikationen/sonstige-publikationen.php [ Google Scholar ]
  • Sutter Éric. Certification et Labellisation: Un Problème de Confiance. Bref Panorama de La Situation Actuelle. Documentaliste-Sciences de l Information. 2005; 42 :284–90. doi: 10.3917/docsi.424.0284. [ CrossRef ] [ Google Scholar ]
  • Taddei François. Training Creative and Collaborative Knowledge-Builders: A Major Challenge for 21st Century Education. OCDE; Paris: 2009. [ Google Scholar ]
  • Thomas Keith, Lok Beatrice. Teaching Critical Thinking: An Operational Framework. In: Davies Martin, Barnett Ronald., editors. The Palgrave Handbook of Critical Thinking in Higher Education. Palgrave Macmillan US; New York: 2015. pp. 93–105. [ CrossRef ] [ Google Scholar ]
  • Thompson Jeri. Measuring Student Success Skills: A Review of the Literature on Complex Communication. National Center for the Improvement of Educational Assessment; Dover: 2020. [ Google Scholar ]
  • Thorndahl Kathrine L., Stentoft Diana. Thinking Critically about Critical Thinking and Problem-Based Learning in Higher Education: A Scoping Review. Interdisciplinary Journal of Problem-Based Learning 14. 2020 doi: 10.14434/ijpbl.v14i1.28773. [ CrossRef ] [ Google Scholar ]
  • Thornhill-Miller Branden. ‘Crea-Critical-Collab-ication’: A Dynamic Interactionist Model of the 4Cs (Creativity, Critical Thinking, Collaboration and Communication) 2021. [(accessed on 2 November 2022)]. Available online: http://thornhill-miller.com/newWordpress/index.php/current-research/
  • Thornhill-Miller Branden, Dupont Jean-Marc. Virtual Reality and the Enhancement of Creativity and Innovation: Underrecognized Potential Among Converging Technologies? Journal for Cognitive Education and Psychology. 2016; 15 :102–21. doi: 10.1891/1945-8959.15.1.102. [ CrossRef ] [ Google Scholar ]
  • Thornhill-Miller Branden, Millican Peter. The Common-Core/Diversity Dilemma: Revisions of Humean Thought, New Empirical Research, and the Limits of Rational Religious Belief. European Journal for Philosophy of Religion. 2015; 7 :1–49. doi: 10.24204/ejpr.v7i1.128. [ CrossRef ] [ Google Scholar ]
  • Tomasello Michael. Constructing a Language: A Usage-Based Theory of Language Acquisition. Harvard University Press; Cambridge: 2005. [ CrossRef ] [ Google Scholar ]
  • Uribe-Enciso Olga Lucía, Uribe-Enciso Diana Sofía, Vargas-Daza María Del Pilar. Pensamiento Crítico y Su Importancia En La Educación: Algunas Reflexiones. Rastros Rostros. 2017; 19 doi: 10.16925/ra.v19i34.2144. [ CrossRef ] [ Google Scholar ]
  • van der Vleuten Cees, van den Eertwegh Valerie, Giroldi Esther. Assessment of Communication Skills. Patient Education and Counseling. 2019; 102 :2110–13. doi: 10.1016/j.pec.2019.07.007. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • van Klink Marcel R., Boon Jo. Competencies: The triumph of a fuzzy concept. International Journal of Human Resources Development and Management. 2003; 3 :125–37. doi: 10.1504/IJHRDM.2003.002415. [ CrossRef ] [ Google Scholar ]
  • van Laar Ester, Van Deursen Alexander J. A. M., Van Dijk Jan A. G. M., de Haan Jos. The Relation between 21st-Century Skills and Digital Skills: A Systematic Literature Review. Computers in Human Behavior. 2017; 72 :577–88. doi: 10.1016/j.chb.2017.03.010. [ CrossRef ] [ Google Scholar ]
  • van Rosmalen Peter, Boyle Elizabeth A., Nadolski Rob, van der Baaren John, Fernández-Manjón Baltasar, MacArthur Ewan, Pennanen Tiina, Manea Madalina, Star Kam. Lecture Notes in Computer Science. Springer International Publishing; Cham: 2014. Acquiring 21st Century Skills: Gaining Insight into the Design and Applicability of a Serious Game with 4C-ID; pp. 327–34. [ CrossRef ] [ Google Scholar ]
  • Vincent-Lancrin Stéphan, González-Sancho Carlos, Bouckaert Mathias, de Luca Federico, Fernández-Barrerra Meritxell, Jacotin Gwénaël, Urgel Joaquin, Vidal Quentin. Fostering Students’ Creativity and Critical Thinking: What It Means in School. OECD Publishing; Paris: 2019. [ CrossRef ] [ Google Scholar ]
  • Voogt Joke, Roblin Natalie Pareja. A Comparative Analysis of International Frameworks for 21st Century Competences: Implications for National Curriculum Policies. Journal of Curriculum Studies. 2012; 44 :299–321. doi: 10.1080/00220272.2012.668938. [ CrossRef ] [ Google Scholar ]
  • Waizenegger Lena, McKenna Brad, Cai Wenjie, Bendz Taino. An Affordance Perspective of Team Collaboration and Enforced Working from Home during COVID-19. European Journal of Information Systems: An Official Journal of the Operational Research Society. 2020; 29 :429–42. doi: 10.1080/0960085X.2020.1800417. [ CrossRef ] [ Google Scholar ]
  • Watson Goodwin. Watson-Glaser Critical Thinking Appraisal. Psychological Corporation; San Antonio: 1980. [ Google Scholar ]
  • Watson Goodwin, Glaser Edwin M. Technical Manual and User’s Guide. Pearson; Kansas City: 2010. Watson-Glaser TM II critical thinking appraisal. [ Google Scholar ]
  • Weick Karl E. The collapse of sensemaking in organizations: The Mann Gulch disaster. Administrative Science Quarterly. 1993; 38 :628–52. doi: 10.2307/2393339. [ CrossRef ] [ Google Scholar ]
  • West Richard F., Toplak Maggie E., Stanovich Keith E. Heuristics and Biases as Measures of Critical Thinking: Associations with Cognitive Ability and Thinking Dispositions. Journal of Educational Psychology. 2008; 100 :930–41. doi: 10.1037/a0012842. [ CrossRef ] [ Google Scholar ]
  • Whitmore Paul G. What are soft skills; Paper presented at the CONARC Soft Skills Conference; Fort Bliss, TX, USA. December 12–13; 1972. pp. 12–13. [ Google Scholar ]
  • Willingham Daniel T. Critical Thinking: Why Is It so Hard to Teach? Arts Education Policy Review. 2008; 109 :21–32. doi: 10.3200/AEPR.109.4.21-32. [ CrossRef ] [ Google Scholar ]
  • Wilson Sarah Beth, Varma-Nelson Pratibha. Small Groups, Significant Impact: A Review of Peer-Led Team Learning Research with Implications for STEM Education Researchers and Faculty. Journal of Chemical Education. 2016; 93 :1686–702. doi: 10.1021/acs.jchemed.5b00862. [ CrossRef ] [ Google Scholar ]
  • Winterton Jonathan, Deist Françoise Delamare-Le, Stringfellow Emma. Typology of Knowledge, Skills and Competences: Clarification of the Concept and Prototype. Office for Official Publications of the European Communities; Luxembourg: 2006. [ Google Scholar ]
  • World Economic Forum . New Vision for Education: Unlocking the Potential of Technology. World Economic Forum; Geneva: 2015. [ Google Scholar ]
  • World Economic Forum The Future of Jobs Report 2020. 2020. [(accessed on 2 November 2022)]. Available online: https://www.weforum.org/reports/the-future-of-jobs-report-2020
  • World Health Organization . Framework for Action on Interprofessional Education and Collaborative Practice. World Health Organization; Geneva: 2010. No. WHO/HRH/HPN/10.3. [ PubMed ] [ Google Scholar ]
  • Yue Meng, Zhang Meng, Zhang Chunmei, Jin Changde. The Effectiveness of Concept Mapping on Development of Critical Thinking in Nursing Education: A Systematic Review and Meta-Analysis. Nurse Education Today. 2017; 52 :87–94. doi: 10.1016/j.nedt.2017.02.018. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Zielke Stephan, Dobbelstein Thomas. Customers’ Willingness to Purchase New Store Brands. Journal of Product & Brand Management. 2007; 16 :112–21. doi: 10.1108/10610420710739982. [ CrossRef ] [ Google Scholar ]
  • Zlatić Lidija, Bjekić Dragana, Marinković Snežana, Bojović Milevica. Development of Teacher Communication Competence. Procedia, Social and Behavioral Sciences. 2014; 116 :606–10. doi: 10.1016/j.sbspro.2014.01.265. [ CrossRef ] [ Google Scholar ]

IMAGES

  1. Critical & Creative Thinking, MA (Ethics & Values)

    ethics creative and critical thinking

  2. Critical Thinking And Ethics Essay

    ethics creative and critical thinking

  3. Critical Thinking And Ethics Essay

    ethics creative and critical thinking

  4. Critical Thinking Definition, Skills, and Examples

    ethics creative and critical thinking

  5. why is Importance of Critical Thinking Skills in Education

    ethics creative and critical thinking

  6. 6 Ways to Improve Critical Thinking at Work

    ethics creative and critical thinking

VIDEO

  1. Creative & critical thinking- Assignment 1.2

  2. Creative & Critical Thinking At M J Public School Center dt 7/5/23

  3. Part 1: Creative & Critical Thinking From Islamic Perspective

  4. Top Critical Thinking Skills

  5. Creative Thinking VS Critical Thinking

  6. Critical thinking Vs Creative think explained

COMMENTS

  1. Creativity and Ethics: The Relationship of Creative and Ethical Problem

    Abstract. Students of creativity have long been interested in the relationship between creativity and deviant behaviors such as criminality, mental disease, and unethical behavior. In the present study we wished to examine the relationship between creative thinking skills and ethical decision-making among scientists.

  2. Critical Thinking

    Critical Thinking. Critical thinking is a widely accepted educational goal. Its definition is contested, but the competing definitions can be understood as differing conceptions of the same basic concept: careful thinking directed to a goal. Conceptions differ with respect to the scope of such thinking, the type of goal, the criteria and norms ...

  3. Critical Thinking

    Critical Theory refers to a way of doing philosophy that involves a moral critique of culture. A "critical" theory, in this sense, is a theory that attempts to disprove or discredit a widely held or influential idea or way of thinking in society. Thus, critical race theorists and critical gender theorists offer critiques of traditional ...

  4. Critical Thinking, Creativity, Ethical Reasoning: A Unity of Opposites

    Critical, creative, and ethical thinking working together are intellectually more powerful than any one of these forms in isolation. This is especially obvious if one contemplates the opposites of any of the three combined with the other two. Thus, consider the implications of thought that derive from one of the following combinations.

  5. Creatively and Critically Challenging Assumptions

    Critical thinking and creative thinking are two related and yet distinct constructs. The core connection is they both start by challenging assumptions. After all, assumptions are simply the implicit starting point of our reasoning process, and starting points can and often do lead us astray and prevent us from solving important and difficult ...

  6. Bridging critical thinking and transformative learning: The role of

    In recent decades, approaches to critical thinking have generally taken a practical turn, pivoting away from more abstract accounts - such as emphasizing the logical relations that hold between statements (Ennis, 1964) - and moving toward an emphasis on belief and action.According to the definition that Robert Ennis (2018) has been advocating for the last few decades, critical thinking is ...

  7. PDF THE THINKER'S GUIDE TO ETHICAL REASONING

    system, practice, rule, or law is ethical. To be skilled at ethical reasoning means to develop a conscience not subservient to fluctuating social conventio. s, theological systems, or unethical laws. Consistently sound reasoning in any domain of thought presupposes practice in reasoni.

  8. PDF Critical Thinking: Ethical Reasoning and Fairminded Thinking, Part I

    ning and Fairminded Thinking, Part IBy Richard Paul and Linda ElderThe development of ethical reasoning abilities is vitally impor. ant—both for living an ethical life and creating an ethical world. In columns over the last s. veral years we have focused on the foundations of critical thinking. In this and the next few columns, we set ou.

  9. Critical Thinking, Creativity, Ethical Reasoning: A ...

    In this chapter, we argue for an intimate interrelationship between critical thinking, creative thinking and ethical reasoning. Indeed we argue for an underlying unity between them. We begin by ...

  10. PDF Critical Thinking: Ethical Reasoning as Essential to Fairminded

    Critical Thinking: ning as Essential to Fairminded Critical Thinking, Part IIIBy Richard Paul and Linda ElderIn the last two co. mns we introduced the idea of ethical reasoning and discussed its importance to educ. ion. We dealt with the problem of ego-centric thinking as a barrier to ethical reasoning. And we focused on the importance of ...

  11. PDF Ethical Reflection as a Part of Creative Problem-solving

    In this chapter, we will argue that reecting broadly on morality and social responsibility from the beginning is essential to creative problem-solving. en we will identify problems in the teaching and implementation of crea -tive problem-solving and design thinking based on our work with engineering students.

  12. Critical Thinking Activities and the Enhancement of Ethical Awareness

    Specifically, this article has explored the ethical nature of critical thinking activities and assignments designed to have students question their own (often taken-for-granted) moral assumptions and interrogate their own (often unexamined) moral identities. Using the philosophy of ethics of Emmanuel Levinas, Kenneth Burke's concept of 'the ...

  13. Critical & Creative Thinking in Research

    Sep 5, 2018. by Janet Salmons, PhD Research Community Manager for Sage Research Methods Community. Critical thinking and creative thinking are distinctly different, but highly interconnected. Nowhere is the symbiotic relationship of creative and critical thinking more apparent than in the practices inherent to research design, conduct, and ...

  14. a guide to creative and critical thinking

    Creative thinking is often contrasted with critical thinking. However, the two certainly have their overlaps. Thinking creatively often requires exploring new possibilities, finding unique angles, and using unconventional solutions. Critical thinking is more focused on a logical and rational process of evaluating that which exists already.

  15. What is Ethics?

    Ethics is more than just fact-learning, or a "history of ideas". It is different from chemistry, mathematics, languages, theology etc. It is unique. Sure, it is important to learn some facts, and learn what others believed, but a successful student needs to do more than simply regurgitate information.

  16. What Are Critical Thinking Skills and Why Are They Important?

    According to the University of the People in California, having critical thinking skills is important because they are [1]: Universal. Crucial for the economy. Essential for improving language and presentation skills. Very helpful in promoting creativity. Important for self-reflection.

  17. How Is Critical Thinking Different From Ethical Thinking?

    Ethical thinking and critical thinking are both important and it helps to understand how we need to use them together to make decisions. Critical thinking helps us narrow our choices. Ethical thinking includes values as a filter to guide us to a choice that is ethical. Using critical thinking, we may discover an opportunity to exploit a ...

  18. Creative Thinking vs. Critical Thinking

    It emphasizes logical reasoning, evidence-based thinking, and the ability to identify biases and fallacies. While creative thinking focuses on generating ideas, critical thinking focuses on evaluating and refining those ideas. Both thinking processes are essential for problem-solving, decision-making, and personal growth.

  19. Chapter 7: Critical and Creative Thinking

    Integrate critical and creative thinking in the process of problem-solving; Critical and Creative Thinking. ... open to change, probing, organized, and ethical, your challenge or problem will be less of a hurdle, and you'll be in a good position to find intelligent solutions. The steps outlined in this checklist will help you adhere to these ...

  20. PDF Asking Good Questions: Case Studies in Ethics and Critical Thinking: A

    ethics. We teach the course in a "team-teaching" format where we, the instructors, teach. collaboratively as a model for collaborative learning. We emphasize the importance of both written and spoken communication about ethical. issues and we encourage and require creative and critical thinking about ethical issues.

  21. Critical & Creative Thinking, MA (Ethics & Values)

    The online Master of Arts (MA) in Critical & Creative Thinking with a concentration in Ethics & Values degree program, students discover the manner in which our ethics and values impinge on the rest of our lives. Students will apply a wide variety of theories and methodologies from philosophy, religious studies, and political science in the ...

  22. Standards of Critical Thinking

    Clarity is an important standard of critical thought. Clarity of communication is one aspect of this. We must be clear in how we communicate our thoughts, beliefs, and reasons for those beliefs ...

  23. Creativity, Critical Thinking, Communication, and Collaboration

    In addition to suggesting the portmanteau of "crea-critical thinking" as a new term to describe the overlap of much of the creative and critical thinking processes, the title of this model, "Crea-Critical-Collab-ication", is a verbal representation of the fluid four-way interrelationship between the 4Cs visually represented in Figure 2 ...

  24. Fostering Critical Thinking Skills: Comparative Creative Projects in

    Including project-based learning (PjBL) in general education classes can serve a dual purpose for the general education instructor: first, well-designed project-based assignments allow students to practice many of the cognitive and metacognitive skills associated with critical thinking, and, second, they enable students to connect the material ...