Why Mathematics Is a Language

  • Math Tutorials
  • Pre Algebra & Algebra
  • Exponential Decay
  • Worksheets By Grade
  • Ph.D., Biomedical Sciences, University of Tennessee at Knoxville
  • B.A., Physics and Mathematics, Hastings College

Mathematics is called the language of science. Italian astronomer and physicist Galileo Galilei is attributed with the quote, " Mathematics is the language in which God has written the universe ." Most likely this quote is a summary of his statement in  Opere Il Saggiatore:

[The universe] cannot be read until we have learnt the language and become familiar with the characters in which it is written. It is written in mathematical language, and the letters are triangles, circles and other geometrical figures, without which means it is humanly impossible to comprehend a single word.

Yet, is mathematics truly a language, like English or Chinese? To answer the question, it helps to know what language is and how the vocabulary and grammar of mathematics are used to construct sentences.

Key Takeaways: Why Math is a Language

  • In order to be considered a language, a system of communication must have vocabulary, grammar, syntax, and people who use and understand it.
  • Mathematics meets this definition of a language. Linguists who don't consider math a language cite its use as a written rather than spoken form of communication.
  • Math is a universal language. The symbols and organization to form equations are the same in every country of the world.

What Is a Language?

There are multiple definitions of " language ." A language may be a system of words or codes used within a discipline. Language may refer to a system of communication using symbols or sounds. Linguist Noam Chomsky defined language as a set of sentences constructed using a finite set of elements. Some linguists believe language should be able to represent events and abstract concepts.

Whichever definition is used, a language contains the following components:

  • There must be a vocabulary of words or symbols.
  • Meaning must be attached to the words or symbols.
  • A language employs grammar , which is a set of rules that outline how vocabulary is used.
  • A syntax organizes symbols into linear structures or propositions.
  • A narrative or discourse consists of strings of syntactic propositions.
  • There must be (or have been) a group of people who use and understand the symbols.

Mathematics meets all of these requirements. The symbols, their meanings, syntax, and grammar are the same throughout the world. Mathematicians, scientists, and others use math to communicate concepts. Mathematics describes itself (a field called meta-mathematics), real-world phenomena, and abstract concepts.

Vocabulary, Grammar, and Syntax in Mathematics

The vocabulary of math draws from many different alphabets and includes symbols unique to math. A mathematical equation may be stated in words to form a sentence that has a noun and a verb, just like a sentence in a spoken language. For example:

3 + 5 = 8

could be stated as "Three added to five equals eight."

Breaking this down, nouns in math include:

  • Arabic numerals (0, 5, 123.7)
  • Fractions (1⁄4, 5⁄9, 2 1⁄3)
  • Variables (a, b, c, x, y, z)
  • Expressions (3x, x 2 , 4 + x)
  • Diagrams or visual elements (circle, angle, triangle, tensor, matrix)
  • Infinity (∞)
  • Imaginary numbers (i, -i)
  • The speed of light (c)

Verbs include symbols including:

  • Equalities or inequalities (=, <, >)
  • Actions such as addition, subtraction, multiplication, and division (+, -, x or *, ÷ or /)
  • Other operations (sin, cos, tan, sec)

If you try to perform a sentence diagram on a mathematical sentence, you'll find infinitives, conjunctions, adjectives, etc. As in other languages, the role played by a symbol depends on its context.

International Rules

Mathematics grammar and syntax, like vocabulary, are international. No matter what country you're from or what language you speak, the structure of the mathematical language is the same.

  • Formulas are read from left to right.
  • The Latin alphabet is used for parameters and variables. To some extent, the Greek alphabet is also used. Integers are usually drawn from i , j , k , l , m , n . Real numbers are represented by  a ,  b ,  c , α , β , γ. Complex numbers are indicated by w and z . Unknowns are x , y , z . Names of functions are usually f , g , h .
  • The Greek alphabet is used to represent specific concepts. For example, λ is used to indicate wavelength and ρ means density.
  • Parentheses and brackets indicate the order in which the symbols interact .
  • The way functions, integrals, and derivatives are phrased is uniform.

Language as a Teaching Tool

Understanding how mathematical sentences work is helpful when teaching or learning math. Students often find numbers and symbols intimidating, so putting an equation into a familiar language makes the subject more approachable. Basically, it's like translating a foreign language into a known one.

While students typically dislike word problems, extracting the nouns, verbs, and modifiers from a spoken/written language and translating them into a mathematical equation is a valuable skill to have. Word problems improve comprehension and increase problem-solving skills.

Because mathematics is the same all over the world, math can act as a universal language. A phrase or formula has the same meaning, regardless of another language that accompanies it. In this way, math helps people learn and communicate, even if other communication barriers exist.

The Argument Against Math as a Language

Not everyone agrees that mathematics is a language. Some definitions of "language" describe it as a spoken form of communication. Mathematics is a written form of communication. While it may be easy to read a simple addition statement aloud (e.g., 1 + 1 = 2), it's much harder to read other equations aloud (e.g., Maxwell's equations). Also, the spoken statements would be rendered in the speaker's native language, not a universal tongue.

However, sign language would also be disqualified based on this criterion. Most linguists accept sign language as a true language. There are a handful of dead languages that no one alive knows how to pronounce or even read anymore.

A strong case for mathematics as a language is that modern elementary-high school curricula uses techniques from language education for teaching mathematics. Educational psychologist Paul Riccomini and colleagues wrote that students learning mathematics require "a robust vocabulary knowledge base; flexibility; fluency and proficiency with numbers, symbols, words, and diagrams; and comprehension skills."

  • Ford, Alan, and F. David Peat. " The Role of Language in Science ." Foundations of Physics 18.12 (1988): 1233–42. 
  • Galilei, Galileo. "'The Assayer' ('Il Saggiatore' in Italian) (Rome, 1623)." The Controversy on the Comets of 1618 . Eds. Drake, Stillman and C. D. O'Malley. Philadelphia: University of Pennsylvania Press, 1960. 
  • Klima, Edward S., and Ursula Bellugi. "The Signs of Language. "Cambridge, MA: Harvard University Press, 1979. 
  • Riccomini, Paul J., et al. " The Language of Mathematics: The Importance of Teaching and Learning Mathematical Vocabulary ." Reading & Writing Quarterly 31.3 (2015): 235-52. Print.
  • 7 Steps to Math Success
  • First Grade Math: Word Problems
  • The Typical 10th Grade Math Curriculum
  • Two-Digit Multiplication Worksheets to Practice With
  • How to Use Math Journals in Class
  • Using Math Errors to Learn
  • Algebra Definition
  • Understanding the Factorial (!) in Mathematics and Statistics
  • What to Know About Business Math
  • Parentheses, Braces, and Brackets in Math
  • Algebra: Using Mathematical Symbols
  • Why Does Zero Factorial Equal One?
  • Algorithms in Mathematics and Beyond
  • Top Tips for Succeeding in Statistics Class
  • A Guide to Every Math Symbol and What It Represents
  • Basic Multiplication: Times Table Factors One Through 12

Advertisement

Mathematics: The only true universal language

By Martin Rees

11 February 2009

New Scientist. Science news and long reads from expert journalists, covering developments in science, technology, health and the environment on the website and the magazine.

An alien’s description of the cosmos might teach us a thing or two about the nature of reality

(Image: Wolcott Henry/National Geographic/Getty)

IF WE ever establish contact with intelligent aliens living on a planet around a distant star, we would expect some problems communicating with them. As we are many light years away, our signals would take many years to reach them, so there would be no scope for snappy repartee. There could be an IQ gap and the aliens might be built from quite different chemistry.

Yet there would be much common ground too. They would be made of similar atoms to us. They could trace their origins back to the big bang 13.7 billion years ago, and they would share with us the universe’s future. However, the surest common culture would be mathematics.

Mathematics has been the language of science for thousands of years, and it is remarkably successful. In a famous essay, the great physicist Eugene Wigner wrote about the “unreasonable effectiveness of mathematics”. Most of us resonate with the perplexity expressed by Wigner, and also with Einstein’s dictum that “the most incomprehensible thing about the universe is that it is comprehensible”. We marvel at the fact that the universe is not anarchic – that atoms obey the same laws in distant galaxies as in the lab. The aliens would, like us, be astonished by the patterns in our shared cosmos and by the effectiveness of mathematics in describing those patterns.

Mathematics can point the way towards new discoveries in physics too. Most famously, British theorist Paul Dirac used pure mathematics to formulate an equation that led to…

Sign up to our weekly newsletter

Receive a weekly dose of discovery in your inbox! We'll also keep you up to date with New Scientist events and special offers.

To continue reading, subscribe today with our introductory offers

No commitment, cancel anytime*

Offer ends 10 September 2024.

*Cancel anytime within 14 days of payment to receive a refund on unserved issues.

Inclusive of applicable taxes (VAT)

Existing subscribers

More from New Scientist

Explore the latest news, articles and features

Light effects

Quantum holograms can send messages that disappear

A high-altitude balloon launched by the US Army Pacific in the Philippines in 2022 as part of an exercise to strenghten their cooperation

Why is the US military getting ready to launch new spy balloons?

Subscriber-only

mathematical language essay

Generative AI creates playable version of Doom game with no code

mathematical language essay

Does mpox cause lingering symptoms like long covid?

Popular articles.

Trending New Scientist articles

arXiv's Accessibility Forum starts next month!

Help | Advanced Search

Mathematics > History and Overview

Title: mathematics and language.

Abstract: This essay considers the special character of mathematical reasoning, and draws on observations from interactive theorem proving and the history of mathematics to clarify the nature of formal and informal mathematical language. It proposes that we view mathematics as a system of conventions and norms that is designed to help us make sense of the world and reason efficiently. Like any designed system, it can perform well or poorly, and the philosophy of mathematics has a role to play in helping us understand the general principles by which it serves its purposes well.
Subjects: History and Overview (math.HO)
classes: 00A30
Cite as: [math.HO]
  (or [math.HO] for this version)
  Focus to learn more arXiv-issued DOI via DataCite

Submission history

Access paper:.

  • Other Formats

References & Citations

  • Google Scholar
  • Semantic Scholar

BibTeX formatted citation

BibSonomy logo

Bibliographic and Citation Tools

Code, data and media associated with this article, recommenders and search tools.

  • Institution

arXivLabs: experimental projects with community collaborators

arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.

Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.

Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs .

Mathematics and language

Cite this chapter.

mathematical language essay

  • Jeremy Avigad 3  

1408 Accesses

3 Citations

This essay considers the special character of mathematical reasoning, and draws on observations from interactive theorem proving and the history of mathematics to clarify the nature of formal and informal mathematical language. It proposes that we view mathematics as a system of conventions and norms that is designed to help us make sense of the world and reason efficiently. Like any designed system, it can perform well or poorly, and the philosophy of mathematics has a role to play in helping us understand the general principles by which it serves its purposes well.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save.

  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
  • Available as EPUB and PDF
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
  • Durable hardcover edition

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

mathematical language essay

The Nature of Theorem Proving

mathematical language essay

Learning Logic and Proof with an Interactive Theorem Prover

mathematical language essay

Proofs as Objects

Author information, authors and affiliations.

Department of Philosophy, Carnegie Mellon University, Baker Hall 161, Pittsburgh, PA, 15213, USA

Jeremy Avigad

You can also search for this author in PubMed   Google Scholar

Corresponding author

Correspondence to Jeremy Avigad .

Editor information

Editors and affiliations.

Department of Computer Science, New York University, New York, New York, USA

Ernest Davis

Department of Applied Mathematics, Brown University, Providence, Rhode Island, USA

Philip J. Davis

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Avigad, J. (2015). Mathematics and language. In: Davis, E., Davis, P. (eds) Mathematics, Substance and Surmise. Springer, Cham. https://doi.org/10.1007/978-3-319-21473-3_12

Download citation

DOI : https://doi.org/10.1007/978-3-319-21473-3_12

Publisher Name : Springer, Cham

Print ISBN : 978-3-319-21472-6

Online ISBN : 978-3-319-21473-3

eBook Packages : Mathematics and Statistics Mathematics and Statistics (R0)

Share this chapter

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Publish with us

Policies and ethics

  • Find a journal
  • Track your research

Universe Today

Universe Today

Space and astronomy news

mathematical language essay

Mathematics: The Beautiful Language of the Universe

Let us discuss the very nature of the cosmos. What you may find in this discussion is not what you expect. Going into a conversation about the universe as a whole, you would imagine a story full of wondrous events such as stellar collapse, galactic collisions, strange occurrences with particles, and even cataclysmic eruptions of energy. You may be expecting a story stretching the breadth of time as we understand it, starting from the Big Bang and landing you here, your eyes soaking in the photons being emitted from your screen. Of course, the story is grand. But there is an additional side to this amazing assortment of events that oftentimes is overlooked; that is until you truly attempt to understand what is going on. Behind all of those fantastic realizations, there is a mechanism at work that allows for us to discover all that you enjoy learning about. That mechanism is mathematics, and without it the universe would still be shrouded in darkness. In this article, I will attempt to persuade you that math isn’t some arbitrary and sometimes pointless mental task that society makes it out to be, and instead show you that it is a language we use to communicate with the stars.

We are currently bound to our solar system. This statement is actually better than it sounds, as being bound to our solar system is one major step up from being bound simply to our planet, as we were

before some very important minds elected to turn their geniuses toward the heavens. Before those like Galileo, who aimed his spyglass towards the sky, or Kepler discovering that planets move about the sun in ellipses, or Newton discovering a gravitational constant, mathematics was somewhat  limited, and our understanding of the universe rather ignorant. At its core, mathematics allows a species bound to its solar system to probe the depths of the cosmos from behind a desk. Now, in order to appreciate the wonder that is mathematics, we must first step back and briefly look at its beginnings and how it is integrally tied into our very existence.

Mathematics almost certainly came about from very early human tribes (predating Babylonian culture which is attributed to some of the first organized mathematics in recorded history), that may have used math as a way of keeping track of lunar or solar cycles, and keeping count of animals, food and/or people by leaders. It is as natural as when you are a young child and you can see that you have

Ancient Babylonian tablet displaying early mathematics

one toy plus one other toy, meaning you have more than one toy. As you get older, you develop the ability to see that 1+1=2, and thus simple arithmetic seems to be interwoven into our very nature. Those that profess that they don’t have a mind for math are sadly mistaken because just as we all have a mind for breathing, or blinking, we all have this innate ability to understand arithmetic. Mathematics is both a natural occurrence and a human designed system. It would appear that nature grants us this ability to recognize patterns in the form of arithmetic, and then we systematically construct more complex mathematical systems that aren’t obvious in nature but let us further communicate with nature.

All this aside, mathematics developed alongside of human development, and carried on similarly with each culture that was developing it simultaneously. It’s a wonderful observation to see that cultures that had no contact with one another were developing similar mathematical constructs without conversing. However, it wasn’t until mankind decidedly turned their mathematical wonder towards the sky that math truly began to develop in an astonishing way. It is by no mere coincidence that our scientific revolution was spurred by the development of more advanced mathematics built not to tally sheep or people, but rather to further our understandings of our place within the universe. Once Galileo began measuring the rates at which objects fell in an attempt to show mathematically that the mass of an object had little to do with the speed in which it fell, mankind’s future would forever be altered.

This is where the cosmic perspective ties in to our want to further our mathematical knowledge. If it were not for math, we would still think we were on one of a few planets orbiting a star amidst the backdrop of seemingly motionless lights. This is a rather bleak outlook today compared to what we now know

Johannes Kepler used mathematics to model his observations of the planets.

about the awesomely large universe we reside in. This idea of the universe motivating us to understand more about mathematics can be inscribed in how Johannes Kepler used what he observed the planets doing, and then applied mathematics to it to develop a fairly accurate model (and method for predicting planetary motion) of the solar system. This is one of many demonstrations that illustrate the importance of mathematics within our history, especially within astronomy and physics.

The story of mathematics becomes even more amazing as we push forward to one of the most advanced thinkers humanity has ever known. Sir Isaac Newton, when pondering the motions of Halley’s Comet, came to the realization that the math that had been used thus far to describe physical motion of massive

Isaac Newton

bodies, simply would not suffice if we were to ever understand anything beyond that of our seemingly limited celestial nook. In a show of pure brilliance that lends validity to my earlier statement about how we can take what we naturally have and then construct a more complex system upon it, Newton developed the Calculus in which this way of approaching moving bodies, he was able to accurately model the motion of not only Halley’s comet, but also any other heavenly body that moved across the sky.

In one instant, our entire universe opened up before us, unlocking almost unlimited abilities for us to converse with the cosmos as never before. Newton also expanded upon what Kepler started. Newton recognized that Kepler’s mathematical equation for planetary motion, Kepler’s 3rd Law ( P 2 =A 3 ), was purely based on empirical observation, and was only meant to measure what we observed within our solar system. Newton’s mathematical brilliance was in realizing that this basic equation could be made universal by applying a gravitational constant to the equation, in which gave birth to perhaps one of the most important equations to ever be derived by mankind; Newton’s Version of Kepler’s Third Law.

What Newton realized was that when things move in non-linear ways, using basic Algebra would not produce the correct answer. Herein lays one of the main differences between Algebra and Calculus. Algebra allows one to find the slope (rate of change) of straight lines (constant rate of change), whereas Calculus allows one to find the slope of curved lines (variable rate of change). There are obviously many more applications of Calculus than just this, but I am merely illustrating a fundamental difference between the two in order to show you just how revolutionary this new concept was. All at once, the motions of planets and other objects that orbit the sun became more accurately measurable, and thus we gained the ability to understand the universe a little deeper. Referring back to Netwon’s Version of Kepler’s Third Law, we were now able to apply (and still do) this incredible physics equation to almost anything that is orbiting something else. From this equation, we can determine the mass of either of the objects, the distance apart they are from each other, the force of gravity that is exerted between the two, and other physical qualities built from these simple calculations.

With his understanding of mathematics, Newton was able to derive the aforementioned gravitational constant for all objects in the universe ( G = 6.672×10 -11 N m 2 kg -2 ). This constant allowed him to unify astronomy and physics which then permitted predictions about how things moved in the universe. We could now measure the masses of planets (and the sun) more accurately, simply according to Newtonian physics (aptly named to honor just how important Newton was within physics and mathematics). We could now apply this newfound language to the cosmos, and begin coercing it to divulge its secrets. This was a defining moment for humanity, in that all of those things that prohibited our understandings prior to this new form of math were now at our fingertips, ready to be discovered. This is the brilliance of understanding Calculus, in that you are speaking the language of the stars.

There perhaps is no better illustration of the power that mathematics awarded us then in the discovery of the planet Neptune. Up until its discovery in September of 1846, planets were discovered simply by observing certain “stars” that were moving against the backdrop of all the other stars in odd ways. The term planet is Greek for “wanderer”, in that these peculiar stars wandered across the sky in noticeable patterns at different times of the year. Once the telescope was first turned upwards towards the sky by Galileo, these wanderers resolved into other worlds that appeared to be like ours. If fact, some of these worlds appeared to be little solar systems themselves, as Galileo discovered when he began recording the moons of Jupiter as they orbited around it.

After Newton presented his physics equations to the world, mathematicians were ready and excited to begin applying them to what we had been keeping track of for years. It was as if we were thirsty for the knowledge, and finally someone turned on the faucet. We began measuring the motions of the planets and gaining more accurate models for how they behaved. We used these equations to approximate the mass of the Sun. We were able to make remarkable predictions that were validated time and again simply by observation. What we were doing was unprecedented, as we were using mathematics to make almost impossible to know predictions that you would think we could never make without actually going to these planets, and then using actual observation to prove the math correct. However, what we also did was begin to figure out some odd discrepancies with certain things. Uranus, for instance, was behaving not as it should according to Newton’s laws.

What makes the discovery of Neptune so wonderful was the manner in which it was discovered. What Newton had done was uncover a deeper language of the cosmos, in which the universe was able to reveal more to us. And this is exactly what happened when we applied this language to the orbit of Uranus. The manner in which Uranus orbited was curious and did not fit what it should have if it was the only planet that far out from the sun. Looking at the numbers, there had to be something else out there perturbing its orbit. Now, before Newton’s mathematical insights and laws, we would have had no reason to suspect anything was wrong in what we observed. Uranus orbited in the way Uranus orbited; it was just how it was. But, again revisiting that notion of mathematics being an ever increasing dialogue with the universe, once we asked the question in the right format, we realized that there really must be something else beyond what we couldn’t see. This is the beauty of mathematics writ large; an ongoing conversation with the universe in which more than we may expect is revealed.

It came to a French mathematician Urbain Le Verrier who sat down and painstakingly worked through the mathematical equations of the orbit of Uranus. What he was doing was using Newton’s mathematical equations backwards, realizing that there must be an object out there beyond the orbit of Uranus that was also orbiting the sun,

French mathematician who discovered the planet Neptune by using only mathematics

and then looking to apply the right mass and distance that this unseen object required for perturbing the orbit of Uranus in the way we were observing it was. This was phenomenal, as we were using parchment and ink to find a planet that nobody had ever actually observed. What he found was that an object, soon to be Neptune, had to be orbiting at a specific distance from the sun, with the specific mass that would cause the irregularities in the orbital path of Uranus. Confident of his mathematical calculations, he took his numbers to the New Berlin Observatory, where the astronomer Johann Gottfried Galle looked exactly where Verrier’s calculations told him to look, and there lay the 8th and final planet of our solar system, less than 1 degree off from where Verrier’s calculations said for him to look. What had just happened was an incredible confirmation of Newton’s gravitational theory and proved that his mathematics were correct.

Are There Oceans on Neptune

These types of mathematical insights continued on long after Newton. Eventually, we began to learn much more about the universe with the advent of better technology (brought about by advances in mathematics). As we moved into the 20th century, quantum theory began to take shape, and we soon realized that Newtonian physics and mathematics seemed to hold no sway over what we observed on the quantum level. In another momentous event in human history, yet again brought forth by the advancement in mathematics, Albert Einstein unveiled his theories of General and Special Relativity, which was a new way to look not only at gravity, but

Einstein's Relativity, yet another momentous advancement for humanity brought forth from an ongoing mathematical dialogue. Image via Pixabay.

also on energy and the universe in general. What Einstein’s mathematics did was allow for us to yet again uncover an even deeper dialogue with the universe, in which we began to understand its origins.

Continuing this trend of advancing our understandings, what we have realized is that now there are two sects of physics that do not entirely align. Newtonian or “classical” physics, that works extraordinarily well with the very large (motions of planets, galaxies, etc…) and quantum physics that explains the extremely small (the interactions of sub-atomic particles, light, etc…). Currently, these two areas of physics are not in alignment, much like two different dialects of a language. They are similar and they both work, but they are not easily reconcilable with one another. One of the greatest challenges we face today is attempting to create a mathematical grand “theory of everything” which either unites the laws in the quantum world with that of the macroscopic world, or to work to explain everything solely in terms of quantum mechanics. This is no easy task, but we are striving forward nonetheless.

As you can see, mathematics is more than just a set of vague equations and complex rules that you are required to memorize. Mathematics is the language of the universe, and in learning this language, you are opening yourself up the core mechanisms by which the cosmos operates. It is the same as traveling to a new land, and slowly picking up on the native language so that you may begin to learn from them. This mathematical endeavor is what allows us, a species bound to our solar system, to explore the depths of the universe. As of now, there simply is no way for us to travel to the center of our galaxy and observe the supermassive black hole there to visually confirm its existence. There is no way for us to venture out into a Dark Nebula and watch in real time a star being born. Yet, through mathematics, we are able to understand how these things exist and work. When you set about to learn math, you are not only expanding your mind, but you are connecting with the universe on a fundamental level. You can, from your desk, explore the awesome physics at the event horizon of a black hole, or bear witness to the destructive fury behind a supernova. All of those things that I mentioned at the beginning of this article come into focus through mathematics. The grand story of the universe is written in mathematics, and our ability to translate those numbers into the events that we all love to learn about is nothing short of amazing. So remember, when you are presented with the opportunity to learn math, accept every bit of it because math connects us to the stars.

We are connected to the universe through mathematics...

Share this:

  • Click to share on Facebook (Opens in new window)
  • Click to share on Twitter (Opens in new window)
  • Click to share on Reddit (Opens in new window)

18 Replies to “Mathematics: The Beautiful Language of the Universe”

I certainly agree that mathematics can be used to accurately describe many observations. However, there has been a colossal misuse of math today. It has been used to create reality instead of describe it. The best examples are the mathematical creation of dark matter and black holes. Neither of these concepts has ever been observed and they defy confirmation. They are merely mathematical constructs. What brought about the need for these constructs? The fact that astrophysicists and cosmologists have ruled that gravity must be the driving force for galaxy formation. When it was determined that gravity had insufficent forces to cause galaxy formation and maintain galactic structure the need for other forces (unseen and unknown, of course) was apparent. And oila, we have dark matter and black holes. Even with these add-ons intended to salvage gravity-based theories there are still inadequate forces. The use of math to salvage failed theories has led the field of cosmology down a dead end road. Only now with the newest technology and advances in radio telescopes do we see the real forces behind star and galaxy formation. Massive magnetic fields are now detected surrounding “black holes” which are now more correctly being referred to as galactic centers. It is becoming more likely that these centers are super dense plasmoids. There are galactic sized magnetic fields surrounding galaxies as well. Intergalactic electric currents (“rivers of hydrogen”) connecting stars and galaxies have been identified and it is likely that these currents are associated with equally vast magnetic fields. At Los Alamos National Lab, Anthony Pratt used plasma, magnetic fields and electric current to demonstrate spiral galaxy formation in his plasma physics lab. AND these lab induced “spiral galaxies” had the necessary velocities to maintain their shape. Black holes and dark matter were not required. These observations could be and were mathematically described. It seems that we may be leaving the age of Newton and entering the age of Faraday and Tesla. Progress can now be made in cosmology towards rational explanations of observations without the need for imaginary mathematical constructs. The use of the failed gravity based theories to explain the newest observations has resulted in “mysteries” and contradictions. When observed with consideration given to electromagnetic principles the mysteries disappear. I think the presentation by Donald Scott to NASA at the Goddard Colloquia on Engineering in 2009 is a good starting point for one to review the contributions that can be made to the field of cosmology by electrical engineers and plasma physicists. There are many that he references in this presentation that have done ground breaking work in the fields of electromagnetism and plasma physics that can be directly applied to the latest observations from radio telescopes. This work can clearly be used to explain “confounding mysteries” that exist in the field of cosmology. Without knowledge of a “Z pinch”, astrophysicists are left guessing about routine electrical events. Math can then be used to confirm these observations and electromagnetic based explanations. Science fiction can then be left to the novelists.

No. It’s not.

Nope, the electric universe still does not exist.

I recommend public lectures at Canadian Institute for Theoretical Astrophysics which are available on youtube here: http://www.youtube.com/user/citaseminars They have more than a dozen talks about astronomical magnetic fields. I think it has been a neglected topic because it has been hard to observe. But nowadays it is possible to map large scale magnetic field lines by observing the polarization of photons (something like that). But I never heard anyone of them talk about how that could somehow replace gravity or dark matter or affecting the rotation of galaxies. There is indeed an “electric universe” of sorts, but it does not conflict with established physics. Dark matter is carefully mapped. Black holes are observed.

Me and… me and my very, very small but tight-knit internet community knows more… more about outer space stuff than all the outer space science guys out there and… and… and I’m just a-gonna keep… keep a-coming back here and letting you all know over and over and over and over again because it shows the whole wide WORLD how much more smarter I am than… than all of you guys put toGETHer! ….Ya…! You’ll see…. You’ll ALL see someday. You WATCH!

Typical misconception. Dark matter was not just conjured up by some mathematician one day as a whim. It was postulated as a way of explaining observations, and only after all other hypotheses failed for one reason after another. That includes all weird appeals to magnetic or electric fields.

Scientists do not use mathematics to “create reality”, but to describe what they see.

I appreciate the awesome article. Thank you for your military also.

I second that.

Very clear and informing article. Congratulations to its author. But I cannot agree with readers comments based on the “Electric Universe” theory. That theory has no serious base and is not supported by correct math, not even by a thorough understanding of electromagnetic theory. Not to mention that the existence of singularities has nothing to do with the gravitational stability of galaxies.

Oh, they don’t care about being wrong. They just feel that they need something for themselves to believe in.

“Mathematics is the language of the universe”

This is actually not true.

The universe has a completely different language that mathematics. But mathematics is generic enough to be uses to describe and predict simplified models (e.g. 4 forces) of this universe. Mathematics can also be used to describe pure fictional worlds like used in gaming.

It is up to experiments to determine what mathematical formulas really exists in this universe and which are fictional.

But math is just logic. Physical reality is logical. Math looks generic because math in and of itself uses numbers and anonymous variables like “x”, precisely for the purpose of allowing maximum degrees of freedom. But once you use measured physical entities and use them mathematically, then math reveals what is true about the physical reality beyond what was measured. Even if you logically use physically impossible symbols, like negative numbers, during the calculation.

Great Article! And no buts about it.

This is an excellent article!

Galileo wrote, “La mathematca è l’ alfabeto nel quale DIO ha scritto l’ universo.” “Mathematics is the alphabet in which God wrote the universe. The alphabet, not the language.

Some scientists marvel at how mathematical the universe seems to be. But the nature of the universe does not necessarily flow from the mathematics. Mathematics is very flexible and the mathematics is chosen to fit the observations. Once a good fit is found it is then tested to see if it makes valid predictions. We must not assume the underlying nature of the universe is mathematical. Mathematics is just very powerful in representing it. The randomness of some quantum mechanical events may be the point where mathematics fails to mirror the real nature of the universe.

Maybe math might not be the problem but the user?

Reality is Reality twist it any way you want if it makes you happy but that does Not make it Real 🙂 Amen

Nice article, but once again as previously stated, without physically observing something in its true mult dimension universe we live in,the mathematical principles used to describe our cosmos are at the reins of the observer, thus allowing personal beliefs and persuasion. Truth be told that just because one mathematical model fits one answer doesnt mean that theres only one answer but rather there can still be multi answers of movement for that particular mathematical model. For example how and why do we teach and continue to believe facts that mathematical models used to describe movements in our galaxy and solar system in a 2 dimensional platform when we know we live in a multi dimension universe and galaxy. Just cause those mathematical principles fit those porpotions doesnt exclude milti answers in fact its much easier to fit a complex mathematical principle in a multi dimension into a simple 2 dimensional model than it is to do the opposite, which brings us to the reality that jyst like history, change is a constant and to solely rely on one apparatus like math to hold as absolute truth is just as ignorant as believing that the world is flat just cause its the simplest answer. We need to stop believing that theres only one way. Our current knowledge of the cosmos is still very immature and new discoveries everday are changing past theories that mathematical principles used worked but now have to be changed. As long as people want be self rightous and ego centric and so fixated on past theories thought to be true and excepted and take offense to new ways, then we are just Like the Roman Church that drove us into the dark ages and blocked our current knowledge from existed. Please people who consist of our scientific astronomy fans, stop repeating the mistakes of the past and stop being so fixated on your own views as right and CHANGE your mind to be accepting to change because thats the only way truths will be unveiled and we can progressive forward. I think its sad that a website named universetoday can be so self rightous on their views and be willingly to accept only mathematical principles and models as absolute truths kniwing that history as always proven this wrong.

Comments are closed.

Math Essay Ideas for Students: Exploring Mathematical Concepts

Are you a student who's been tasked with writing a math essay? Don't fret! While math may seem like an abstract and daunting subject, it's actually full of fascinating concepts waiting to be explored. In this article, we'll delve into some exciting math essay ideas that will not only pique your interest but also impress your teachers. So grab your pens and calculators, and let's dive into the world of mathematics!

  • The Beauty of Fibonacci Sequence

Have you ever wondered why sunflowers, pinecones, and even galaxies exhibit a mesmerizing spiral pattern? It's all thanks to the Fibonacci sequence! Explore the origin, properties, and real-world applications of this remarkable mathematical sequence. Discuss how it manifests in nature, art, and even financial markets. Unveil the hidden beauty behind these numbers and show how they shape the world around us.

  • The Mathematics of Music

Did you know that music and mathematics go hand in hand? Dive into the relationship between these two seemingly unrelated fields and develop your writing skills . Explore the connection between harmonics, frequencies, and mathematical ratios. Analyze how musical scales are constructed and why certain combinations of notes create pleasant melodies while others may sound dissonant. Explore the fascinating world where numbers and melodies intertwine.

  • The Geometry of Architecture

Architects have been using mathematical principles for centuries to create awe-inspiring structures. Explore the geometric concepts that underpin iconic architectural designs. From the symmetry of the Parthenon to the intricate tessellations in Islamic art, mathematics plays a crucial role in creating visually stunning buildings. Discuss the mathematical principles architects employ and how they enhance the functionality and aesthetics of their designs.

  • Fractals: Nature's Infinite Complexity

Step into the mesmerizing world of fractals, where infinite complexity arises from simple patterns. Did you know that the famous Mandelbrot set , a classic example of a fractal, has been studied extensively and generated using computers? In fact, it is estimated that the Mandelbrot set requires billions of calculations to generate just a single image! This showcases the computational power and mathematical precision involved in exploring the beauty of fractal geometry.

Explore the beauty and intricacy of fractal geometry, from the famous Mandelbrot set to the Sierpinski triangle. Discuss the self-similarity and infinite iteration that define fractals and how they can be found in natural phenomena such as coastlines, clouds, and even in the structure of our lungs. Examine how fractal mathematics is applied in computer graphics, art, and the study of chaotic systems. Let the captivating world of fractals unfold before your eyes.

  • The Game Theory Revolution

Game theory isn't just about playing games; it's a powerful tool used in various fields, from economics to biology. Dive into the world of strategic decision-making and explore how game theory helps us understand human behavior and predict outcomes. Discuss in your essay classic games like The Prisoner's Dilemma and examine how mathematical models can shed light on complex social interactions. Explore the cutting-edge applications of game theory in diverse fields, such as cybersecurity and evolutionary biology. If you still have difficulties choosing an idea for a math essay, find a reliable expert online. Ask them to write me an essay or provide any other academic assistance with your math assignments.

  • Chaos Theory and the Butterfly Effect

While writing an essay, explore the fascinating world of chaos theory and how small changes can lead to big consequences. Discuss the famous Butterfly Effect and how it exemplifies the sensitive dependence on initial conditions. Delve into the mathematical principles behind chaotic systems and their applications in weather forecasting, population dynamics, and cryptography. Unravel the hidden order within apparent randomness and showcase the far-reaching implications of chaos theory.

  • The Mathematics Behind Cryptography

In an increasingly digital world, cryptography plays a vital role in ensuring secure communication and data protection. Did you know that the global cybersecurity market is projected to reach a staggering $248.26 billion by 2023? This statistic emphasizes the growing importance of cryptography in safeguarding sensitive information.

Explore the mathematical foundations of cryptography and how it allows for the creation of unbreakable codes and encryption algorithms. Discuss the concepts of prime numbers, modular arithmetic, and public-key cryptography. Delve into the fascinating history of cryptography, from ancient times to modern-day encryption methods. In your essay, highlight the importance of mathematics in safeguarding sensitive information and the ongoing challenges faced by cryptographers.

General Education

Writing a math essay doesn't have to be a daunting task. By choosing a captivating topic and exploring the various mathematical concepts, you can turn your essay into a fascinating journey of discovery. Whether you're uncovering the beauty of the Fibonacci sequence, exploring the mathematical underpinnings of music, or delving into the game theory revolution, there's a world of possibilities waiting to be explored. So embrace the power of mathematics and let your creativity shine through your words!

Remember, these are just a few math essay ideas to get you started. Feel free to explore other mathematical concepts that ignite your curiosity. The world of mathematics is vast, and each concept has its own unique story to tell. So go ahead, unleash your inner mathematician, and embark on an exciting journey through the captivating realm of mathematical ideas!

Tobi Columb, a math expert, is a dedicated educator and explorer. He is deeply fascinated by the infinite possibilities of mathematics. Tobi's mission is to equip his students with the tools needed to excel in the realm of numbers. He also advocates for the benefits of a gluten-free lifestyle for students and people of all ages. Join Tobi on his transformative journey of mathematical mastery and holistic well-being.

Related Calculators

In case you have any suggestion, or if you would like to report a broken solver/calculator, please do not hesitate to contact us .

log in to your account

Reset password.

mathematical language essay

45,000+ students realised their study abroad dream with us. Take the first step today

Meet top uk universities from the comfort of your home, here’s your new year gift, one app for all your, study abroad needs, start your journey, track your progress, grow with the community and so much more.

mathematical language essay

Verification Code

An OTP has been sent to your registered mobile no. Please verify

mathematical language essay

Thanks for your comment !

Our team will review it before it's shown to our readers.

Leverage Edu

  • School Education /

Essay on Importance of Mathematics in our Daily Life in 100, 200, and 350 words.

mathematical language essay

  • Updated on  
  • Dec 22, 2023

Essay on Importance of Mathematics in our Daily Life

Mathematics is one of the core aspects of education. Without mathematics, several subjects would cease to exist. It’s applied in the science fields of physics, chemistry, and even biology as well. In commerce accountancy, business statistics and analytics all revolve around mathematics. But what we fail to see is that not only in the field of education but our lives also revolve around it. There is a major role that mathematics plays in our lives. Regardless of where we are, or what we are doing, mathematics is forever persistent. Let’s see how maths is there in our lives via our blog essay on importance of mathematics in our daily life. 

Table of Contents

  • 1 Essay on Importance of Mathematics in our Daily life in 100 words 
  • 2 Essay on Importance of Mathematics in our Daily life in 200 words
  • 3 Essay on Importance of Mathematics in our Daily Life in 350 words

Essay on Importance of Mathematics in our Daily life in 100 words 

Mathematics is a powerful aspect even in our day-to-day life. If you are a cook, the measurements of spices have mathematics in them. If you are a doctor, the composition of medicines that make you provide prescription is made by mathematics. Even if you are going out for just some groceries, the scale that is used for weighing them has maths, and the quantity like ‘dozen apples’ has maths in it. No matter the task, one way or another it revolves around mathematics. Everywhere we go, whatever we do, has maths in it. We just don’t realize that. Maybe from now on, we will, as mathematics is an important aspect of our daily life.

Also Read:- Importance of Internet

Essay on Importance of Mathematics in our Daily life in 200 words

Mathematics, as a subject, is one of the most important subjects in our lives. Irrespective of the field, mathematics is essential in it. Be it physics, chemistry, accounts, etc. mathematics is there. The use of mathematics proceeds in our daily life to a major extent. It will be correct to say that it has become a vital part of us. Imagining our lives without it would be like a boat without a sail. It will be a shock to know that we constantly use mathematics even without realising the same. 

From making instalments to dialling basic phone numbers it all revolves around mathematics. 

Let’s take an example from our daily life. In the scenario of going out shopping, we take an estimate of hours. Even while buying just simple groceries, we take into account the weight of vegetables for scaling, weighing them on the scale and then counting the cash to give to the cashier. We don’t even realise it and we are already counting numbers and doing calculations. 

Without mathematics and numbers, none of this would be possible.

Hence we can say that mathematics helps us make better choices, more calculated ones throughout our day and hence make our lives simpler. 

Also Read:-   My Aim in Life

Also Read: How to Prepare for UPSC in 6 Months?

Essay on Importance of Mathematics in our Daily Life in 350 words

Mathematics is what we call a backbone, a backbone of science. Without it, human life would be extremely difficult to imagine. We cannot live even a single day without making use of mathematics in our daily lives. Without mathematics, human progress would come to a halt. 

Maths helps us with our finances. It helps us calculate our daily, monthly as well as yearly expenses. It teaches us how to divide and prioritise our expenses. Its knowledge is essential for investing money too. We can only invest money in property, bank schemes, the stock market, mutual funds, etc. only when we calculate the figures. Let’s take an example from the basic routine of a day. Let’s assume we have to make tea for ourselves. Without mathematics, we wouldn’t be able to calculate how many teaspoons of sugar we need, how many cups of milk and water we have to put in, etc. and if these mentioned calculations aren’t made, how would one be able to prepare tea? 

In such a way, mathematics is used to decide the portions of food, ingredients, etc. Mathematics teaches us logical reasoning and helps us develop problem-solving skills. It also improves our analytical thinking and reasoning ability. To stay in shape, mathematics helps by calculating the number of calories and keeping the account of the same. It helps us in deciding the portion of our meals. It will be impossible to think of sports without mathematics. For instance, in cricket, run economy, run rate, strike rate, overs bowled, overs left, number of wickets, bowling average, etc. are calculated. It also helps in predicting the result of the match. When we are on the road and driving, mathetics help us keep account of our speeds, the distance we have travelled, the amount of fuel left, when should we refuel our vehicles, etc. 

We can go on and on about how mathematics is involved in our daily lives. In conclusion, we can say that the universe revolves around mathematics. It encompasses everything and without it, we cannot imagine our lives. 

Also Read:- Essay on Pollution

Ans: Mathematics is a powerful aspect even in our day-to-day life. If you are a cook, the measurements of spices have mathematics in them. If you are a doctor, the composition of medicines that make you provide prescription is made by mathematics. Even if you are going out for just some groceries, the scale that is used for weighing them has maths, and the quantity like ‘dozen apples’ has maths in it. No matter the task, one way or another it revolves around mathematics. Everywhere we go, whatever we do, has maths in it. We just don’t realize that. Maybe from now on, we will, as mathematics is an important aspect of our daily life.

Ans: Mathematics, as a subject, is one of the most important subjects in our lives. Irrespective of the field, mathematics is essential in it. Be it physics, chemistry, accounts, etc. mathematics is there. The use of mathematics proceeds in our daily life to a major extent. It will be correct to say that it has become a vital part of us. Imagining our lives without it would be like a boat without a sail. It will be a shock to know that we constantly use mathematics even without realising the same.  From making instalments to dialling basic phone numbers it all revolves around mathematics. Let’s take an example from our daily life. In the scenario of going out shopping, we take an estimate of hours. Even while buying just simple groceries, we take into account the weight of vegetables for scaling, weighing them on the scale and then counting the cash to give to the cashier. We don’t even realise it and we are already counting numbers and doing calculations. Without mathematics and numbers, none of this would be possible. Hence we can say that mathematics helps us make better choices, more calculated ones throughout our day and hence make our lives simpler.  

Ans: Archimedes is considered the father of mathematics.

Related Reads:

Hope you find this information useful. For more information on such informative topics for your school, visit our essay writing and follow Leverage Edu.

' src=

Deepansh Gautam

Leave a Reply Cancel reply

Save my name, email, and website in this browser for the next time I comment.

Contact no. *

mathematical language essay

Connect With Us

45,000+ students realised their study abroad dream with us. take the first step today..

mathematical language essay

Resend OTP in

mathematical language essay

Need help with?

Study abroad.

UK, Canada, US & More

IELTS, GRE, GMAT & More

Scholarship, Loans & Forex

Country Preference

New Zealand

Which English test are you planning to take?

Which academic test are you planning to take.

Not Sure yet

When are you planning to take the exam?

Already booked my exam slot

Within 2 Months

Want to learn about the test

Which Degree do you wish to pursue?

When do you want to start studying abroad.

January 2024

September 2024

What is your budget to study abroad?

mathematical language essay

How would you describe this article ?

Please rate this article

We would like to hear more.

Have something on your mind?

mathematical language essay

Make your study abroad dream a reality in January 2022 with

mathematical language essay

India's Biggest Virtual University Fair

mathematical language essay

Essex Direct Admission Day

Why attend .

mathematical language essay

Don't Miss Out

IMAGES

  1. Formal Mathematical Language and Its Importance

    mathematical language essay

  2. The Nature of Mathematics Free Essay Example

    mathematical language essay

  3. SETS MMW NOTES MODULE 2

    mathematical language essay

  4. Characteristics of Mathematical Language

    mathematical language essay

  5. Mathematics is a Language Essay

    mathematical language essay

  6. Mathematical Language

    mathematical language essay

VIDEO

  1. Mathematical Language GEMATH Made with Clipchamp

  2. Writing Mathematical Language as an Expression or a Sentence

  3. Mathematical Language box : A math project Work by Grade 10 students ( Batch 2081 ) Thesis School

  4. Importance of English language

  5. MATHEMATICAL LANGUAGE AND SYMBOLS part 2

  6. LESSON 2

COMMENTS

  1. Why Mathematics Is a Language

    Mathematics is called the language of science. Italian astronomer and physicist Galileo Galilei is attributed with the quote, "Mathematics is the language in which God has written the universe."Most likely this quote is a summary of his statement in Opere Il Saggiatore: [The universe] cannot be read until we have learnt the language and become familiar with the characters in which it is written.

  2. On Mathematical Language: Characteristics, Semiosis and

    Here mathematics will be considered as a multimodal semiotic process integrating language, images, and mathematical symbolism to create knowledge. The integration of the linguistic, visual, and symbolic systems leads to the semantic development of mathematics beyond the limits of other forms of communication.

  3. Mathematics: The only true universal language

    Mathematics has been the language of science for thousands of years, and it is remarkably successful. In a famous essay, the great physicist Eugene Wigner wrote about the "unreasonable ...

  4. Language of mathematics

    Language of mathematics. The language of mathematics or mathematical language is an extension of the natural language (for example English) that is used in mathematics and in science for expressing results (scientific laws, theorems, proofs, logical deductions, etc.) with concision, precision and unambiguity.

  5. PDF 1. THE LANGUAGE OF MATHEMATICS

    the language of mathematics The language of mathematics makes it easy to express the kinds of thoughts that mathematicians like to express. It is: precise (able to make very ne distinctions); concise (able to say things brie y); powerful (able to express complex thoughts with relative ease). The language of mathematics can be learned, but ...

  6. PDF A Guide to Writing Mathematics

    Use language precisely and correctly. Make sure that the words you use really mean what you think they mean. Mathematics requires very precise use of language. Another thing to avoid is overuse of the word \it". Mathematical papers with a lot of pronouns like \it" and \that" tend to be hard to read. It is often hard for the reader

  7. PDF TEN SIMPLE RULES FOR MATHEMATICAL WRITING

    4 Ten Simple Rules, D. P. Bertsekas WHAT IS DIFFERENT ABOUT MATH WRITING? • Math writing blends twolanguages (natural and math) - Natural language is rich and allows for ambiguity - Math language is concise and must be unambiguous • Math writing requires slowreading - Often expresses complex ideas - Often must be read and pondered several times - Often is used as reference

  8. The Language of Mathematics

    The mathematical language I have described above, on the other hand, is far from empty. On the most basic level, it is the prerequisite to mathematical communication, in the same way that French language is an obvious prerequisite to communication in a French cultural context. ... Take, for example, this essay: I am able to discuss mathematics ...

  9. PDF The language and grammar of mathematics

    The same is true of mathematical language. Up to a point, one can do and speak mathematics without knowing how to classify the different sorts of words one is using, but many of the sentences of advanced mathematics have a complicated struc-ture that is much easier to understand if one knows a few basic terms of mathematical grammar. The

  10. [1505.07238] Mathematics and language

    Download PDF Abstract: This essay considers the special character of mathematical reasoning, and draws on observations from interactive theorem proving and the history of mathematics to clarify the nature of formal and informal mathematical language. It proposes that we view mathematics as a system of conventions and norms that is designed to help us make sense of the world and reason efficiently.

  11. (PDF) The Language of Mathematics: The Importance of Teaching and

    (2015) The Language of Mathematics: The Importance of Teaching and Learning Mathematical Vocabulary, Reading & Writing Quarterly , 31:3, 235-252, DOI: 10.1080/10573569.2015.1030995

  12. Mathematics and language

    Abstract. This essay considers the special character of mathematical reasoning, and draws on observations from interactive theorem proving and the history of mathematics to clarify the nature of formal and informal mathematical language. It proposes that we view mathematics as a system of conventions and norms that is designed to help us make ...

  13. Learning language and mathematics: A perspective from Linguistics and

    The purpose of this Article Collection is to consider how the journal has treated the research topic of language and mathematics for the past three decades. Table 1 summarizes the 18 research articles (authored by researchers in seven countries) that address this topic directly and have been published in Linguistics and Education from 1988 to 2018. The references are given in order of the date ...

  14. Mathematical Language and Symbols

    Mathematical Language and Mathematical Symbols . Mathematical language is a system used in the field of mathematics to communicate mathematical ideas, concepts, and theories among people. It is distinct and unique from the usual language most people are used to and is used to communicate abstract, logical ideas.

  15. Mathematics As A Mathematics Language

    Mathematics as language has the following characteristics: Precise - ability to create very fine distinctions; Concise - ability to say things briefly; Powerful - ability to express complex thoughts with relative ease. Just like any other foreign language, mathematics requires effort to learn and understand how the language is used.

  16. Guide for Writing in Mathematics

    Using "I" in a reflective paper is generally appropriate, and for other types of writing, "we" may be used occasionally. Writing in mathematics should be careful of tense. When describing facts, use present tense (facts are true). When describing experiments or methods, use past tense (experiments were conducted).

  17. Mathematics: The Beautiful Language of the Universe

    With his understanding of mathematics, Newton was able to derive the aforementioned gravitational constant for all objects in the universe ( G = 6.672×10-11 N m 2 kg-2).This constant allowed him ...

  18. Language and Mathematics: Bridging between Natural Language and

    In the solution of mathematical word problems, problems that are accompanied by text, there is a need to bridge between mathematical language that requires an awareness of the mathematical ...

  19. PDF Why the Book of Nature is Written in the Language of Mathematics

    motion. Proportions are expressed by numbers or, as the essay proposes, even identical to real numbers. It is argued that this view is still relevant to modern physics and helps us understand why physical laws are mathematical. 1 The "Unreasonable" Effectiveness of Mathematics Why is mathematics so successful in describing the natural world?

  20. Math Essay Ideas for Students: Exploring Mathematical Concepts

    Discuss in your essay classic games like The Prisoner's Dilemma and examine how mathematical models can shed light on complex social interactions. Explore the cutting-edge applications of game theory in diverse fields, such as cybersecurity and evolutionary biology. If you still have difficulties choosing an idea for a math essay, find a ...

  21. PDF Mathematics and English, Two Languages: Teachers' Views

    1.3 The Language of Mathematics Galileo Galilei said that: "Mathematics is the language with which God has written the universe."(Note 1) It is the language of numbers, symbols notations and grammar. Using numbers and mathematical symbols, one can write "words" and "sentences". When appropriate, several "sentences" together ...

  22. PDF 1. THE LANGUAGE OF MATHEMATICS

    the language of mathematics The language of mathematics makes it easy to express the kinds of thoughts that mathematicians like to express. It is: precise (able to make very ne distinctions); concise (able to say things brie y); powerful (able to express complex thoughts with relative ease). The language of mathematics can be learned, but ...

  23. Essay on Importance of Mathematics in our Daily Life in 100, 200, and

    Essay on Importance of Mathematics in our Daily life in 200 words. Mathematics, as a subject, is one of the most important subjects in our lives. Irrespective of the field, mathematics is essential in it. Be it physics, chemistry, accounts, etc. mathematics is there. The use of mathematics proceeds in our daily life to a major extent.