U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings

The PMC website is updating on October 15, 2024. Learn More or Try it out now .

  • Advanced Search
  • Journal List

Logo of f1000res

  • PMC9326241.1 ; 2021 Oct 26
  • ➤ PMC9326241.2; 2022 Jul 25

Autism spectrum disorder in architecture perspective: a review of the literature and bibliometric assessment of research indexed in Web of Science

Reham moniem ali.

1 Interior Design Department, College of Design, Imam Abdulrahman bin Faisal University, Saudi Arabia, Eastern Province, PO. 1982, Saudi Arabia

Hala A. El-Wakeel

Deema faisal al-saleh, mai ibrahim shukri, khadeeja m n ansari, associated data, underlying data.

Zenodo: Underlying data for 'autism spectrum disorder in architecture perspective: A review of the literature and bibliometric assessment of research indexed in Web of Science'. https://doi.org/10.5281/zenodo.5080242

Data are available under the terms of the Creative Commons Attribution 4.0 International license (CC-BY 4.0).

Version Changes

Revised. amendments from version 1.

The authors have conducted a more in-depth study by going through title by title, abstract, and keywords to identify the relevant papers in terms of architectural design and built environment perspective and added three more columns to the table no. 1 for the number of papers in architectural and in design in general with the total number of citations. This addition made a significant difference in version 2 of the paper from version 1.  Moreover, the authors have implemented the suggestions given by reviewers, in terms of extending the literature review by adding previous scientometric studies done on ASD research. The researchers have suggested a few emerging areas of the study and highlighted a few emerging and important keywords which were found missing. Overall, the study has been improved now with more extensive research output.

Peer Review Summary

Review dateReviewer name(s)Version reviewedReview status
Peter Kokol Approved
Hashem Hussein Al-Attas Approved
Peter Kokol Not Approved

An increasing number of scholarly publications on autism spectrum disorder (ASD) have urged researcher interest in this topic; however, there is still a lack of quantitative analysis. Therefore, this study aims to cover the knowledge gap between the amount of literature published on ASD research on architectural and designers' perspectives compared to the medical and psychological fields. The study has analyzed global research output on ASD from a designer's perspective to recognize this gap related to designing the physical environment. 

Methodology:

The bibliometric method was employed to analyze the published literature from 1992–to 2021. 812 papers were downloaded from the Web of Science for analysis based on annual growth of literature, prolific authors, authorship pattern, organizations, countries, international collaboration, and subject development by keywords and thematic map analyses. Various bibliometric and scientometric software was used to analyze the data, namely Bibexcel, Biblioshiny, and VOS viewer.

The812 research papers were published in 405 sources. 2019 appeared as a productive year (NP=101), and 2014 received the highest number of citations (TC=6634). Researchers preferred to publish as journal articles (NP=538; TC=24922). The University of Toronto, Canada, was identified as a productive institution with 42 publications and 5358 citations. The USA was the leading producing country with 433 publications, and most of the researchers published in the journal " Scientific Reports " (NP=16). The word autism (NP=257) and architecture (NP=165) were more frequently used keywords.

Conclusion:

The study identified a massive gap in the development of literature in ASD for architecture design and built environment perspective, the most important and trending keywords are missing, and the analyses also showed a lack of subject development. The authors have suggested areas and keywords for further research to fulfill the gap in the future.

Background study of ASD

ASD is a neurodevelopmental condition that affects children from a young age. It is marked by functional impairment in social communication, limited interests, selective attention, repetitive habits, as well as hypersensitivity to touch, vision, taste, or sound in certain people ( Remington et al. , 2009 ). Autistic disorder, high-functioning autism (HFA), Asperger syndrome (AS), pervasive developmental disorder-not otherwise specified (PDD-NOS), and atypical autism is all diagnostic terminology that has previously been employed. ASD is expected to affect one out of every 88 children in the United States, with one out of every 56 boys being affected. ( Taghizadeh et al. , 2015 ). The diagnosis rates for ASD have increased sharply worldwide in the last 40 years compared with other disabilities ( Centers for Disease Control and Prevention, 2022 )

Pallasmaa (2005) , diagnosed with ASD, said: 'I confront the city with my body.' The interaction between a person and their environment produces many physical and mental challenges for ASD. Therefore, the built environment is an important factor that significantly influences individuals' behavior directly and indirectly. ASD children are a special case, which should be defined to help them access space and inhabit it. Two issues must be considered to understand the impact of the environment on the development of one's life ( Horne, 1997 ):

  • 1-   The identification of the physical environment in its material and symbolic context.
  • 2-   The impact of the environment on one's behavior and how people perceive themselves and their surroundings.

Autistic people have difficulties in processing the information from the physical environment through their senses, especially the influence of environmental stressors like noise and clutter, and they are forced to exert more effort to understand it. The difficulty in understanding provokes frustration and erratic behavior.

Theoretical models of autism

Many human-environment interaction research conducted by environmental psychologists have focused on the environment's psychological factors rather than the physical setting. This section will clarify the relationship between autism and the environment.

1- Human ecosystem (HES)

In 1992, Guerin defined the Human ecosystem (HES) theory model in a learning environment to understand autistic behavior. The variables in this progress are related to the specific model components:

  • a.   HO, human organism: gender, age, number of children, and the level of diagnosing
  • b.   DE, designed environment: control of entry and exit (safety/security); classroom configuration and adaptability to make changes; lighting (artificial light/daylight); acoustics/noise; thermal comfort (temperature, humidity, ventilation, i.e. indoor air quality); wayfinding; building; FF&E (furnishings, fixtures, and equipment) materials and finishes (color, pattern) ( Kopec, 2012 ; Martin & Guerin, 2010 ).
  • c.   NE, natural environment: access to daylight and natural ventilation, as well as green space and/or water ( i.e . landscape elements).
  • d.   SE, social environment: visual, auditory, and physical communication method, as well as communication and interaction among children and caregivers in the same physical area.

Some researchers regarding the Nature of autism are convinced that autism is a pandemic of modern culture, with environmental factors at the roots such as pollution; researchers found early-life exposure to air pollution may be a risk factor for autism. ( Naviaux, 2012 ).

2- Performance prediction model (PPM)

The performance prediction model (PPM) describes the transactions between the users and their physical environment through the behavior. Also, understand how the physical environment affects user variables by observing behavior. In addition, clarify the interaction between the three components to lead to universal design principles. Even though this model is not explicitly created for ASD children, the research can be applied to users with different personal characteristics or functional abilities. This model consists of three main components (user variables, behavior, and environment). The variables in this progress are related to these specific components:

  • a.   User abilities: individual characteristics and functional abilities.
  • b.   Task outcome: behavior and experiential.
  • c.   Physical environment: physical characteristics, organization, and ambiance.
  • d.   Universal design: equitable use, flexibility in use, simple and intuitive, perceptible information, tolerance for error, low physical effort, and size and space for approach and use.

This model is used as a guide for the designer in designing different types of the physical environment for different users because it helps to categorize the users according to their characteristics, which are:

  • Cognitive abilities: include all complex mental function proses to make an action, for example, decision-making and planning ( ICF illustration library, 2021 )
  • Social and communication: include all components of the communication process with others by using different devices and methods to deliver or perceive massages ( World Health Organization, 2017 )
  • Sensory functions: includes touch, smell, visual, and hearing systems ( ICF illustration library, 2021 )
  • Mobility: the ability to manage body movements such as changing body position or location, carrying objects, and performing physical activities ( ICF illustration library, 2021 )

The characteristics of autism are varied in intensity, degree, and amount and manifest differently from person to person and over time. The common characteristics associated with ASD are loosely based on the DSM-5, common features of ASD, and PMM on ASD.

  • 1.   Cognitive abilities
  • 2.   Social and communication interaction
  • 3.   Sensory function
  • 4.   Activity performance

There is limited research on how environments may affect behavior and be designed to meet the needs of those with ASD. Also, there is a lack of information on the experience of spaces and perceptions by people with autism. Only two research have been found namely 'MEDIATE – a responsive environment designed for children with autism ( Gumtau et al. , 2005 ) and 'Could light colour and source change mood in children with autism? ( Hernandez Rivera, 2020 ).

3- Theoretical underpinnings of design

Interior designers concentrate on the design of the interior environment with the requirements of the person who will inhabit the space as the driving force behind all design decisions. Human factors, lighting, occupant wellbeing and performance, post-occupancy evaluation, research, theories about the relationship between human behavior and the https://discovery.ucl.ac.uk/id/eprint/10108977/7/Hernandez%20Rivera_10108977_Thesis_redacted.pdf designed environment, and universal design are among the ten knowledge areas covered by the 'Human Environment Needs: Research and Application' (HEN) category.

Experts on ASD consider the first six years of school, from preschool to sixth grade, important in reaching children and laying the groundwork for lifelong learning and general wellbeing. Even when daily activities are meticulously organized, classrooms attended by children with ASD or other children are highly dynamic, unpredictable environments. Because of this instability, examining the architecture of classroom space in schools where children with ASD attend from preschool to sixth grade is difficult. However, the framework identified by ( Guerin, 1992 ), which recognized the interaction of the human organism (HO), the BTE, the natural environment (NE), and the behavioral environment (BHE).

Autism spectrum disorder (ASD) is a complicated neurological disorder that, until now, has been inscrutable. The population of individuals on the spectrum worldwide is increasing due to the increased awareness. As their numbers grow, professionals in many fields started studying their ASD cases to provide them with a better life ( Hauptman et al. , 2019 ). Individuals on the spectrum are part of a growing population usually ignored in design despite the current tendency to create designs that focus on persons with special needs. There are binding recommendations and laws on designing buildings that respect physical disabilities, and the field is rich in design applications for physical needs ( Sánchez et al. , 2011 ). By contrast, there is utter indifference toward the person with mental health disabilities, even with guidelines for inclusion of children with physical impairment are used and successful, the inclusion of children with mental disabilities lags much behind ( Bilbo et al. , 2015 ) in their research mentioned that "the environment plays a role in human behavior" that greatly influenced the practice of interior architects designing people centers design. ASD children have sensory processing difficulties, which create challenges in understanding the surrounding environment, thus affecting their behaviors negatively ( Sánchez et al. , 2011 ). The built environment can cause extra confusion, which negatively impacts children with ASD due to the challenging developmental disorder of the ASD. Architects and interior architects are responsible for providing an inclusive built environment to improve the quality of life, especially for people with special needs ( Kopec, 2012 ), yet it is still relatively unnoticed by architects and designers as it's still excluded from building codes or design guidelines. Environmental and behavioral research has profoundly influenced the practice of interior architecture as it's vital to explore the environmental design for autism.

A vast amount of literature has been published on autism in medical and psychological journals over the years. However, few studies from an architectural perspective have been published even though the role of the sensory environment in autistic behavior has been an issue of debate since Leo Kanner first defined the disorder in 1943 ( Kanner, 1943 ). Recently, architects have become interested in finding out about the relationship between environment and autistic behavior to provide a suitable environment and support wellbeing.

Few interior designers and architects have yet started to define codes and guidelines such as Autism Planning and Design Guidelines 1.0 by Knowlton School of Architecture (2018) as a design solution for ASD to build autism-friendly surroundings that support users with ASD and prepare them to face other environments. The designer's approach usually compares children with ASD and without through their behaviors to find the differences in their needs in the environment ( Delmolino & Harris, 2012 ). Environmental and behavioral research has profoundly influenced architecture, and there is a growing need and trend toward user-centered and evidence-based design research to create an environment where people with ASD can thrive.

Few scientometric studies have been done to cover the knowledge gap in the ASD research, in that the authors considered examining the topic generally, such as Ozgur & Balci (2022) . They found that 'studies on autism have increased significantly in recent years. While approximately 150 studies were published annually in the early 80s, around 6000 studies were published in 2020. In this study, 59653 publications were retrieved, 63.69% of which were journal articles. The remaining publications were reviews, meeting abstracts, editorial materials, proceedings papers, etc. The primary language was English (96.70%) for the retrieved articles. Other languages like Spanish, French, German, Portuguese, Russian, Turkish, etc., were also encountered.

Sweileh et al. (2016) studied growth of ASD research from 2005 to 2014 and found a total of 18,490 articles were retrieved. The Journal of Autism and Developmental Disorders, with 48,416 citations and an average of 23.59 citations per article, was identified as the most prolific journal. The United States (US) (n = 8594; 46.48 %), the United Kingdom (n = 2430; 13.14 %) and Canada (n = 1077; 5.8 %) have been most productive countries. King's College London (UK) was found on the top of the list for producing literature and receiving citations. 50% of the highly cited articles were in molecular genetics, and the papers with more than 50 citations were published mainly by authors from USA, UK, and Canada.

The above general studies conclude that most literature is based on medical, biotechnology, and psychological perspectives. Most funding agencies are identified as medical institutions, and the US is the most contributing country to generating the literature. Most ASD research in article form and double and triple authorship has more consideration. The citation rate shows an increase in the trend, and the growth in ASD research literature in terms of medical and psychological are noted as a steady increase and are higher in this decade.

However, the development of ASD literature in the architectural field has not been found. Therefore, based on the scientometric analysis, the present study considers estimating and identifying the gaps in the available literature on ASD from the architectural perspective compared to the literature available from the other perspectives, such as medical and psychological.

Research questions

  • 1) What are the annual research trends and types of ASD research based on architectural design perspectives from 1992–to 2021?
  • 2) Which authors are the most prolific, and what is the authorship trend in autism research?
  • 4) What are the most relevant journals in journals in autism?
  • 5) What are the most important organizations and countries in autism?
  • 6) What are the most used keywords of autism in the field of architecture?
  • 7) What are the most global collaborative countries producing scientific literature on autism?
  • 8) What were the most cited documents and cited references in autism?
  • 9) What are the most influential funding agencies?

Research methodology

Statistical techniques are used to analyze different types of publications such as books, conferences, journal articles, etc ., known as bibliometrics. Scientometrics is the sub-field of bibliometrics that studies quantitative means of investigation, scholarly publishing practices, publishing trends, trend topics, etc . This study, therefore, applies the scientometric method to ASD in the architecture field to estimate the literature gap. The required literature on autism was retrieved from the Web of Science (as of 4 th June 2021). The following search query involved in the Web of Science database ( Clarivate Analytics, 2020 )

  • • TOPIC: "autism"
  • • Refined by: TOPIC: "architecture"
  • • Further refined by language: English
  • • Timespan: All years. Indexes: SCI-EXPANDED, SSCI, A&HCI, CPCI-S, CPCI-SSH, ESCI.

812 documents have been retrieved ( Figure 1 ) for final analysis during 1992–2021. All the research data was downloaded in BibTeX, Tab-Delimited (win), plain text, and analyzed with Microsoft Excel (RRID:SCR_016137; Google Sheets (RRID:SCR_017679) is an open access alternative) and Scientometric and bibliometrics tools, namely Bibexcel ( Persson et al. , 2009 ), Biblioshiny ( Aria & Cuccurullo, 2017 ), and VOSviewer ( van Eck & Waltman, 2010 ).

An external file that holds a picture, illustration, etc.
Object name is f1000research-10-135006-g0000.jpg

Results and discussion

From 1992 to 2021, 405 sources were contributed by 5088 authors with 812 papers in autism. Single authored documents were 61 papers; hence authors in autism produce more research in collaboration. The average number of years of publications is 5.74, the average number of citations per document 43.21, and the average number of citations per year per document 5.711. 36,654 references have been consulted to produce 812 research papers. The number of documents per author is 0.16, authors per document are 6.27, Co-authors per document is 8.16, and the collaboration index is 6.71.

Annual research growth and citation's structure in autism spectrum disorder during 1992–2021

The first research paper on autism was recorded in 1992 with 382 citations (no publication indexed in 1993, 1995, 1996, 1997, and 2003), similar results reported by ( Kumar et al. , 2021 ). Though the research output gradually increases, but shallow up until 2012. The autism research increased markedly after 2013, noticeably more than 50 papers appeared every year after 2013. The year 2019 was the most successful in term of the number of the article (NP=101), followed by the year 2016 and 2017, in which the second highest number of research papers published, coincidently the year 2018 and 2020 have equal number published articles (NP=84) and the year 2021 have 35 papers with 19 citations. The highest number of citations received in 2014 (TC=6634) for 53 publications, followed by the year 2011 (TC=4078) for 31 papers and the year 2010 (TC=3108, TP=34) ( Table 1 ).

YearArchitectureTCArt/DesignNPTCCitation sum within h-coreh-index
00013823821
0001000
000229292
00142352353
00031741743
0001000
00021261262
10051361364
00133303292
00075575536
000112196218810
1011862861413
2110221547152216
000343108300026
000314078400824
000312360230124
120512467223928
000536634630530
201582093181822
3171852549197227
1110851965139623
121841726124021
3401011451103516
1008428813910
0003519133

*NP=Number of Publications **TC=Total Number of Citations

The authors have scanned all these documents to pinpoint the exact number of research papers purely on architectural design perspective and found a quite low number also, some of it belongs to art and design, these numbers represent the actual gap in the literature, which authors intended to explore and found that gap is quite huge. See ( Table 1 ).

The first paper on ASD research based on a purely architectural design perspective was published in 2004 and then in 2008. These papers remain unrecognized since they didn't receive a single citation. After a gap of 5 years, another research published under the title "Autism and Architecture" by Segado VF and Segado TA in 2013 received 2 citations; then, in 2015, two research papers were published, again without citations. In 2016 three research papers were published, namely "Interaction Design in the Built Environment: Designing for the Universal User" with 2 citations, "Designed by the pupils, for the pupils: An autism-friendly school" with 7 citations, and "Autism-Friendly Architecture from the outside in and the inside out An explorative study based on autobiographies of autistic people" with 8 citations. In 2017 only one research published under the name "Toward an autism-friendly home environment" by Nagib W and Williams A received 11 citations. A single research in 2018 as, "Sensory Spaces: Sensory Learning - An experimental approach to educating future designers to design autism schools," by Love JS, published in ARCHNET-IJAR, received only 2 citations. Three research papers were published in 2019 under the title Quality of the built environment from the point of view of people with autism spectrum disorder", "The impact of color and light on children with autism in interior spaces from an architectural point of view," and "Studio teaching experiments- spatial transitioning for autism schools" begged 0, 1,1 citations respectively. During pandemic 2020, only one research was published and didn't receive citations, and in 2021 (continuing years) didn't notice any research. Therefore, only 16 ASD research papers were purely related to architectural design from 812 documents noted from 1992 to 2021, with as many as 11 citations. These number of documents and citations reveal that these research areas are not very popular amongst the researchers. Please refer to the recent growth in general ASD research ( Ozgur & Balci, 2022 ), as mentioned in the literature review.

Type of research papers

The journal articles (NP=537) were the most preferred form, which agrees with ( Rahaman et al. , 2021b ). The review found a second preferred form (NP=142), followed by proceedings papers (NP=71) and then meeting abstract (NP=17). Other documents were minor in the list, published only three papers each. On the other hand, the articles also received the highest number of total cations (24922), followed by review (TC=8916) ( Table 2 ). The research was purely based on an architectural perspective, mostly published as journal articles (13) and then as proceeding papers (3) out of 16. Please refer to ( Table 1 ) for the total number of pure architectural design research.

RankDocument typeNPTCCitation sum
within h-core
h-index
Article538249221672573
Review1428916708545
Proceeding’s paper71183927
Meeting abstract17000
Article Proceedings paper124364197
Review; book chapter83833815
Editorial material71621604
Article; early access71192
Review; early access4111
Book chapter355542
Letter321212

*NP=Number of Publication **TC=Total Number of Citations

Productive organization

It is evident that the top ten organizational productivity ranges between 25 to 42 publications ( Table 3 ). The University of Toronto is the leading organization in autism research (NP=42), followed by Vanderbilt University (NP=37), University of California, Los Angeles (NP=35), Yale University (NP=33), and Massachusetts General Hospital (NP=30). Harvard Medical School (NP=25) identified as the minor producer of research in the top ten list. Interestingly, most of the listed organization are in the USA (9 organizations), and one organization from Canada. Stanford University was the most cited organization (TC=6686) for 28 publications, followed by Yale University (TC=6059) for 33 research in autism.

RankAffiliationCountryNPTCCitation sum
within h-core
h-index
Univ TorontoCanada425358516222
Vanderbilt UnivUSA375529540727
Univ Calif Los AngelesUSA355302518423
Yale UnivUSA336059598722
Massachusetts Gen HospUSA304707461120
Univ Calif San FranciscoUSA304499444917
Stanford UnivUSA286686664319
Univ Calif San DiegoUSA272541247617
Hosp Sick ChildrenCanada264201413218
Harvard Med SchUSA25101395014

Productive country

Moreover, it is found that the top eight countries produced over 50 research papers ( Table 4 ). Only two countries have over 100 articles on autism. The USA had outstanding research output in autism with 433 publications and 27124 citations, followed by the UK (118 publications, 7569 citations), Canada (79 publications, 6816 citations), China (72 publications, 3339 citations), and France (60 publications, 3304 citations). This result parallels the previous scientometric analyses on ASD research, which says that the USA is highly active in producing ASD literature.

The analyses reveal that half of the research in autism contributed by the USA that received the highest number of citations (TC=27124) for 433 publications, followed by the UK with 7569 citations with 118 publications, and Canada with 6816 citations and 79 publications. Australia managed minimum citation (TC=2048) in the list with 46 publications.

RankCountryNPTCCitation sum
within h-core
h-index
USA433271241940976
UK1187569661237
Canada796816628131
Peoples R China723339297020
France603304302722
Germany595706542424
Italy593263293821
Netherlands554490421326
Australia462048185620
Sweden364499436820

The relevant sources in ASD

All the top ten sources have more than 12 publications; coincidentally, six sources ( American Journal of Human Genetics, American Journal of Medical Genetics Part B-Neuropsychiatric Genetics, Biological Psychiatry, Molecular Autism, Molecular Psychiatry, Neuron ) produced 12 publications each. Scientific Reports (Nature Publishing Group) was considered the most relevant source with 14 publications and 203 citations, followed by Nature Neuroscience (Nature Publishing Group) with 14 publications and 1986 citations and Human Molecular Genetics and Plos One with 13 publications each and 1015 and 371 citations, respectively. The analysis reveals that most of the sources belongs to the Q1 category (eight sources), and two in Q2 category. The highest impact factor journal in the list was Nature Neuroscience (JIF=20.07), followed by Neuron (JIF=14.41) and Molecular Psychiatry (JIF=12.38) ( Table 5 ). These results also revealed the gap in the development of the ASD research literature in terms of architectural design perspective. The top ten journals are again from genetic, molecular biology, and biological psychiatry; this top ten listing lags the source in the areas of architecture or architectural design. Hence, the authors have further explored the sources in which the 16 research papers purely on architectural design have been published. They found very few but popular sources in the field, namely, Archnet-IJAR International Journal of Architectural Research, International Journal of Arts and Technology, Housing Studies, Journal of Housing and the Built Environment, Journal of Intellectual Disability Research, Journal of Policy and Practice in Intellectual Disabilities, Advances in Human Factors, Sustainable Urban Planning, and Infrastructure.

RankSourceJIFQCountryPublisherNPTCh_indexg_indexm_index
3.99Q1UKNature162039141.29
20.07Q1USANature14198611141.00
5.1Q1UKOxford University
Press
13101510130.83
2.74Q2USAPublic Library of
Science
133719130.75
10.5Q1USACell Press12109310120.67

3.38Q2USAWiley-Liss122938120.67
12.09Q1USAElsevier1243910120.77
5.86Q1USABMC122269120.82
12.38Q1USANature121290912
14.41Q1USACell Press12161211120.73

*NP=Number of Publication **TC=Total Number of Citations ***JIF=Journal impact factor ****Q=Quartile

Prolific authors

This analysis reveals that the article range of authors varied between nine and 12. Five authors (Devlin B, Geschwind DH, Scherer SW, State MW, and Wang Y) emerged as the most prolific authors with 13 publications each, 4383, 3409, 3338, 3662, and 333 citations, respectively. Buxbaum JD (Icahn School of Medicine at Mount Sinai) found as the second highest prolific author with 13 publications and 2970 citations, followed by Bourgeron T, Eichler EE, and Li Y with 11 publications and 2142, 1944, and 568 citations, respectively. Casanova MF (University of South Carolina School of Medicine) noted as the least contributed authors in the top ten list with nine publications and 361 citations. Devlin B (Mount Sinai School of Medicine) was the most cited author with 4383 citations for 13 publications, followed by Geschwind DH with 3409 citations for 13 publications, and Wang Y (Carnegie Mellon University) managed only 333 citations for 13 publications. The table also shows that the most prolific authors belong from the USA (7 authors), followed by Canada, France, and China. ( Table 6 ). It is also revealed that most of the authors belong to medicine and psychology; the authors from the field of architecture are missing from the top 10 list. There are 24 authors found contributing to ASD research in the field of architectural design, amongst them Tufvesson C; Tufvesson J, and Nagib W; Williams A contributing one paper and begged 11 citations, followed by Kinnaer M; Baumers S; Heylighen A (NP=1, TC=8), Mcallister K; Sloan S (NP=1, TC=7). The other authors with one paper received two citations are Segado Vazquez F; Segado Torres A; Dalton C; and Love JS. Shareef SS; Farivarsadri G received one citation for one paper, and the other nine authors didn't receive a citation.

RankAuthorAffiliationCountryNPTCh_indexg_indexm_index
Devlin BMount Sinai School of MedicineUSA13438312130.80
Geschwind DHUniversity of CaliforniaUSA13340912130.80
Scherer SWUniversity of TorontoCanada13333812130.80
State MWMount Sinai School of MedicineUSA13366212130.86
Wang YCarnegie Mellon UniversityUSA133339131.00
Buxbaum JDIcahn School of Medicine at Mount SinaiUSA12297010120.63
Bourgeron TUniversité de ParisFrance1121429110.60
Eichler EEUniversity of Washington,USA1119449110.75
Li YPeking UniversityChina115687111.17
Casanova MFUniversity of South Carolina School of MedicineUSA9361990.45

The pattern of authorship

The Figure 2 illustrated the pattern of authorship in autism literature. It was clear from the figure that the authorship pattern ranged from single to two hundred and forty-seven. The analysis reveals that collaborative research is more prominent among the research of autism over the study period. The top six authorship patterns produced over 50 publications in the field. Three authorship patterns (NP=123) contributed a maximum article in autism, followed by two authorship (NP=120), four authorship (NP=93), five authorship (NP=79), single authorship (NP=61), and six authorship (NP=56). The authorship of 27, 36, 38, 39, 40, 42, 46, 56, 58, 65, 67, 73, 86, 88, 118, 125, 146, and 247 each contributed only single publications in autism. The results also showed that two authorship patterns received the highest number of citations (TC=4775), followed by five authorship (TC=3296) and Three authorship (TC=3071). Rahaman conducted a similar type of authorship pattern analysis ( Rahaman et al. , 2021a ).

An external file that holds a picture, illustration, etc.
Object name is f1000research-10-135006-g0001.jpg

Mapping co-occurrence of all keywords (author and indexed)

Figure 3 shows analysis of all keywords used in autism research from 1992–to 2021. The results showed that 3848 keywords appeared in autism research. To map the co-occurrence of all the keywords, minimum of 15 occurrences of keywords were considered for analysis. Out of 3848 keywords, only 79 keywords met the thresholds, and all 79 selected keywords are clustered in Figure 3 with 1737 links and total link strength (5557). The size of the ball indicates a strong network of keywords, with each color representing a distinct cluster.

An external file that holds a picture, illustration, etc.
Object name is f1000research-10-135006-g0002.jpg

Cluster 1 comprises 31 keywords (abnormalities, activation, adolescents, adults, architecture Asperger-syndrome, autism, autism spectrum disorder, autism spectrum disorders, behavior, brain, childhood, children, classification, connectivity, cortex, diagnostic interview, fMRI, functional connectivity, high-functioning autism, human cerebral-cortex, meta-analysis, networks, organization, patterns, pervasive developmental disorders, sleep, spectrum disorder, spectrum disorders, white-matter, and young-children).

Cluster 2 has 22 keywords (association, bipolar disorder, copy number variation, disorder, genes, genetic architecture, genetics, genome-wide association, heritability, identification, individuals, linkage, mutations, phenotype, prevalence, psychiatric-disorders, reveals, risk, schizophrenia, spectrum, susceptibility, and variants).

Cluster 3 includes 19 keywords (brain-development, copy number variants, copy-number variation, de-novo mutations, disease, disorders, epilepsy, evolution, expression, gene, intellectual disability, mechanisms, mental-retardation, network, neurodevelopmental disorders, neurons, prefrontal cortex, protein, and structural variation).

Cluster 4 has seven keywords (fragile x syndrome, fragile-x-syndrome, gene-expression, mental-retardation protein, mouse model, rett-syndrome, and synaptic plasticity).

The top ten keywords were autism (frequency=257), architecture (165), autism spectrum disorder (127), children (123), schizophrenia (92), autism spectrum disorders (91), de-novo mutations (86), Risk (73), brain (59) and expression (freq.=55) had weighty number of occurrence with strong total link strength.

Each cluster is based on the theme, which shows the various aspect of the subject and its development. The themes special for architecture or design or built environment are missing to track the development of the subject.

The authors have found a few trendy keywords are missing here, such as acoustics, acoustical control, spatial sequencing, escape spaces, compartmentalization, natural light, fluorescent light, snoezelen, sensory environment, multisensory, neutral sensory, hypersensitive, hyposensitive, sensory trigger, sensory zoning, stimulus level, overstimulating, transition, transition spaces, safety, audio, auditory, auditory processing, distraction, interactive, tactile, tactile sense, altered senses.

Thematic map by title

Figure 4 shows four alternative typologies of themes that can be visualized using a thematic map. The thematic parameter is considered the title selected for the field, the minimum number of words selected is 80, and Unigram is selected for the graph.

An external file that holds a picture, illustration, etc.
Object name is f1000research-10-135006-g0003.jpg

The basic theme: Autism spectrum which represented by cluster 1 (autism, spectrum, disorder, children, brain, network, functional, connectivity, based, analysis, sleep, neural, developmental, learning, networks, structural, reveals, system, approach, design, matter, review, robot, resting, control, developing and white).

The motor theme: architecture human in cluster 2 (architecture, human, gene, syndrome, social, development, cortical, protein, autistic, model, synaptic, fragile, neuronal, cognitive, ASD, altered, behavior, mental, mice, role, cortex, expression, function, visual, cell, mouse, processing, and activity.

Niche theme: genetic disorder placed in cluster 3 (disorders, genetic, variants, risk, schizophrenia, neurodevelopmental, genes, psychiatric, rare, common, de, genetics, novo, genomic, related, mutations, copy, disease, mechanisms, and sequencing).

Emerging or declining theme: study genome represented by cluster 4 (study, genome, association, wide and evidence).

Most cited research papers in autism

The top ten papers ( Table 7 ) have more than 300 citations, published between 2007 and2015. "Large-scale brain networks and psychopathology: a unifying triple network model" (2011) by Menon V, published in Trends Cogn Sci was the topmost cited paper (1425 citations) ( Menon, 2011 ), followed by "Synaptic, transcriptional and chromatin genes disrupted in autism" (2014) by De Rubeis S, appeared in " Nature " (1220 citations) ( De Rubeis et al. , 2014 ), "The contribution of de novo coding mutations to autism spectrum disorder" (2014) by Iossifov I, published in Nature (1118 citations) ( Iossifov et al. , 2014 ), "Mapping autism risk loci using genetic linkage and chromosomal rearrangements" (2007) by Szatmari (999 citations) ( Szatmari et al. , 2007 ). "Dendritic spine pathology in neuropsychiatric disorders" (2011) by Penzes (838 citations) ( Penzes et al. , 2011 ), and "A genome-wide scan for common alleles affecting risk for autism" was the least cited paper among the top ten (393 citations) ( Anney et al. , 2010 ). It was noticeable that half of the top ten cited papers were published by Nature Publishing Group. The article entitled "Synaptic, transcriptional and chromatin genes disrupted in autism" ( De Rubeis et al. , 2014 ) has the highest total citations per year (152.50).

RankTitleAuthorYarSourceTCTC/YearN/TC
Large-scale brain networks and psychopathology: a
unifying triple network model ( )
Menon V2011Trends Cogn
Sci
1425129.5510.83
Synaptic, transcriptional and chromatin genes disrupted in
autism ( ., 2014)
De Rubeis S2014Nature1220152.509.75
The contribution of de novo coding mutations to autism
spectrum disorder ( ., 2014)
Iossifov I2014Nature1118139.758.93
Mapping autism risk loci using genetic linkage and
chromosomal rearrangements ( ., 2007)
Szatmari P2007Nature Genet99966.605.00
Dendritic spine pathology in neuropsychiatric disorders
( ., 2011)
Penzes2011Nat Neurosci83876.186.37
The autism brain imaging data exchange: towards a
large-scale evaluation of the intrinsic brain architecture in
autism ( ., 2014)
Di Martino A2014Mol Psychiatr76996.136.14
Insights into Autism Spectrum Disorder Genomic
Architecture and Biology from 71 Risk Loci ( ., 2015)
Sanders Sj2015Neuron56380.4315.60
Most genetic risk for autism resides with common
variation ( ., 2014)
Gaugler T2014Nature Genet54267.754.33
Mapping Early Brain Development in Autism (
., 2007)
Courchesne E2007Neuron48532.332.43
A genome-wide scan for common alleles affecting risk for
autism ( ., 2010)
Anney R2010Hum Mol
Genet
39332.754.30

*N/TC=Normalized total citation

The papers that are well received in architecture or architectural design are not listed here due to a lack of citations than the papers in the other fields; hence, the ASD research in the given fields is less prevalent. The most cited papers in the architectural field are: ' The building process as a tool towards an all-inclusive school. A Swedish example focusing on children with defined concentration difficulties such as ADHD, Autism, and Down's Syndrome (2009) and 'Toward an Autism-friendly home environment' (2017) received 11 citations each. ' Autism-friendly architecture from the outside in and the inside out: An explorative study based on autobiographies of Autistic people' (2016) received eight citations, and 'Designed by the pupils, for the pupils: An Autism-friendly school' (2016) got seven citations.

Most Cited references in autism research

Table 8 explained the most top ten cited references in autism research. It is clear from the table that all listed references received more than 50 citations. Article entitled "Insights into Autism Spectrum Disorder Genomic Architecture and Biology from 71 Risk Loci" (2015) by Sanders SJ, appeared in 'Neuron' was the most cited (TC=92) reference in autism research ( Sanders et al. , 2015 ), followed by an article named 'Synaptic, transcriptional and chromatin genes disrupted in autism (2014) by De Rubeis S with 91 citations ( De Rubeis et al. , 2014 ), 'and 'The contribution of de novo coding mutations to autism spectrum disorder' (2014) by Lossifov I with 91 citations and appeared in the journal Nature ( Iossifov et al. , 2014 ). The cited references 'De novo gene disruptions in children on the autistic spectrum (2012) by Iossifov I published in 'NEURON' was the most diminutive receiver of citation with 61 TC ( Iossifov et al. , 2012 ). However, the top ten listed references belong to the biotechnology, genetic architecture, and medicinal aspects; the gap identified here is the lack of ASD study on architectural in terms of designer perspective.

RankTitleAuthorYearSourceTC
Insights into Autism Spectrum Disorder Genomic Architecture
and Biology from 71 Risk Loci ( ., 2015)
Sanders SJ2015NEURON92
Synaptic, transcriptional and chromatin genes disrupted in
autism ( ., 2014)
De Rubeis S2014Nature91
The contribution of de novo coding mutations to autism
spectrum disorder ( ., 2014)
Iossifov I2014Nature91
Strong association of de novo copy number mutations with
autism ( ., 2007)
Sebat J2007Science79
Functional impact of global rare copy number variation in autism
spectrum disorders ( ., 2010)
Pinto D2010Nature77
De novo mutations revealed by whole-exome sequencing are
strongly associated with autism ( ., 2012)
Sanders SJ2012Nature73
Sporadic autism exomes reveal a highly interconnected protein
network of de novo mutations ( ., 2012)
O'roak BJ2012Nature70
Structural variation of chromosomes in autism spectrum
disorder ( ., 2008)
Marshall CR2008AM J HUM GENET69
Patterns and rates of exonic de novo mutations in autism
spectrum disorders ( ., 2012)
Neale BM2012Nature68
De novo gene disruptions in children on the autistic spectrum
( ., 2012)
Iossifov I2012NEURON61

Highly influential funding agencies

There are only four funding agencies from the top 10 list which funded more than 100 research papers ( Table 9 ). National Institutes of Health renowned as leading funding agency (313 publications, 23087 citations), followed by the United States Department of Human Health Services (313 publications, 22759 citations), the National Institute of Mental Health (182 publications, 16164 citations), European Commission (111 publications, 8476 citations), and National Institute of Child Health Human Development (66 publications, 7927 citations). The Wellcome Trust appeared as the least influential funding agency among the top ten (36 publications, 3959 citations). The USA was dominant in the top ten list (six funding agencies), followed by the UK (three funding agencies) and one agency from the EU.

RankFunding agenciesCountryNP% Of 812TC
National Institutes of HealthUSA31338.54723087
United States Department of Health Human ServicesUSA31338.54722759
National Institute of Mental HealthUSA18222.41416164
European CommissionEU11113.678476
National Institute of Child Health Human DevelopmentUSA668.1287927
National Institute of Neurological Disorders StrokeUSA627.6357101
National Institute of General Medical SciencesUSA506.1582827
UK Research InnovationUK506.1584947
Medical Research Council UKUK485.9115097
Wellcome TrustUK364.4333959

It is to be noted that all funding agencies belong to the health and medicine except one that is the 'UK Research Innovation,' which is a good sign for the researcher belonging to the field of innovation, architecture, design, and creativity to apply for a funded research/projects.

Country collaboration in autism

The most dominant country collaborations were the USA and United Kingdom (51 publications), followed by the USA and Canada (43 publications), the USA and China (38 publications), the USA and Italy (26 publications), and the USA and the Netherlands (26 publications). The USA with Sweden collaboration (19 publications) was listed at the bottom of the top ten list. It was interesting to show that the USA collaborated with nine countries (the UK, Canada, China, Italy, the Netherlands, Germany, France, Australia, and Sweden). The UK followed this with two countries (the USA and Canada). ( Figure 5 ).

An external file that holds a picture, illustration, etc.
Object name is f1000research-10-135006-g0004.jpg

This bibliometric study has been proposed to cover the knowledge gap between the amount of literature that has been published on autism in medical and psychological journals over the years and the published research with the architectural and design approach. However, no other bibliometric analysis has been done from 1992 to 2021 that comprehensively evaluates and summarizes the literature, progress, and future directions of this key sub-area of ASD research. The results are eye-opening since only 16 out of 812 papers retrieved are purely relevant to the architectural and designers' perspective. The other papers are medicine, psychology, biotechnology, ICT, computer software design, etc.

The keywords and thematic analyses identified the huge missing gap since all are too generic, therefore, the authors have identified a few missing keywords, which leads them to suggest that more ASD research needs to be done in terms of built environment characteristics, negative sensory experiences, and conducive design features.

The literature review indicated that the performance prediction model (PPM) needs more research since, for over 2 decades, only 2 projects (cited in literature review) focused on describing the transactions between the users and their physical environment through the behavior. It also suggested that designers need to work more in defining codes and guideline to build autism-friendly environment to support people with ASD. The top ten analyses of the country, institution and funding agencies show that the USA is highly active in producing ASD research. Stanford University is noted as the most cited organization might be due to its own program for Autism research, extending a good platform for the researchers in this field. The 'UK Research Innovation' is the only funding agency to provide opportunities to researchers in design and innovation.This research also leads researchers to discover the most influential publications, authors, and journals in this field.

Here are a few noteworthy emerging trends (the missing gap in this study) in ASD research where researchers in the field of architectural design and built environment can dwell in are; acoustical control, spatial sequencing, escape spaces, compartmentalization, snoezelen, sensory environment, sensory zoning, overstimulation, transition spaces, safety, auditory processing, tactile sense, altered senses .

Data availability

[version 2; peer review: 2 approved]

Funding Statement

The author(s) declared that no grants were involved in supporting this work.

  • Anney R, Klei L, Pinto D, et al.: A genome-wide scan for common alleles affecting risk for autism. Hum Mol Genet. 2010; 19 ( 20 ):4072–4082. 10.1093/hmg/ddq307 [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Aria M, Cuccurullo C: bibliometrix : An R-tool for comprehensive science mapping analysis. J Informetr. 2017; 11 ( 4 ):959–975. 10.1016/j.joi.2017.08.007 [ CrossRef ] [ Google Scholar ]
  • Bilbo SD, Nevison CD, Parker W: A model for the induction of autism in the ecosystem of the human body: the anatomy of a modern pandemic? Microb Ecol Heal Dis. 2015; 26 :26253. 10.3402/mehd.v26.26253 [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Centers for Disease Control and Prevention: Data & Statistics on Autism Spectrum Disorder . Autism Spectrum Disorder (ASD).2022; [cited 2022 Jun 10]. Reference Source [ Google Scholar ]
  • Clarivate Analytics: Web of Science. 2020. Reference Source [ Google Scholar ]
  • Courchesne E, Pierce K, Schumann CM, et al.: Mapping Early Brain Development in Autism. Neuron. 2007; 56 ( 2 ):399–413. 10.1016/j.neuron.2007.10.016 [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • De Rubeis S, He X, Goldberg AP, et al.: Synaptic, transcriptional and chromatin genes disrupted in autism. Nature. 2014; 515 ( 7526 ):209–215. 10.1038/nature13772 [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Delmolino L, Harris SL: Matching Children on the Autism Spectrum to Classrooms: A Guide for Parents and Professionals. J Autism Dev Disord. 2012; 42 ( 6 ):1197–1204. 10.1007/s10803-011-1298-6 [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Di Martino A, Yan CG, Li Q, et al.: The autism brain imaging data exchange: towards a large-scale evaluation of the intrinsic brain architecture in autism. Mol Psychiatry. 2014; 19 ( 6 ):659–667. 10.1038/mp.2013.78 [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Gaugler T, Klei L, Sanders SJ, et al.: Most genetic risk for autism resides with common variation. Nat Genet. 2014; 46 ( 8 ):881–885. 10.1038/ng.3039 [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Guerin B: BEHAVIOR ANALYSIS AND SOCIAL PSYCHOLOGY: A REVIEW OF LANA’S ASSUMPTIONS OF SOCIAL PSYCHOLOGY†. J Exp Anal Behav. 1992; 58 ( 3 ):589–604. 10.1901/jeab.1992.58-589 [ CrossRef ] [ Google Scholar ]
  • Gumtau S, Newland P, Creed C, et al.: MEDIATE - a responsive environment designed for children with autism . In: Accessible Design in the Digital World Conference .2005;1–8. 10.14236/ewic/AD2005.14 [ CrossRef ] [ Google Scholar ]
  • Hauptman M, Stierman B, Woolf AD: Children With Autism Spectrum Disorder and Lead Poisoning: Diagnostic Challenges and Management Complexities. Clin Pediatr (Phila). 2019; 58 ( 6 ):605–612. 10.1177/0009922819839237 [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Hernandez Rivera N: Could light colour and source change mood in children with autism? Doctoral thesis, UCL (University College London).2020. Reference Source [ Google Scholar ]
  • Horne R: Representations of medication and treatment: Advances in theory and measurement. In: Perceptions of Health & Illness. London: Psychology Press,1997;520. Reference Source [ Google Scholar ]
  • ICF illustration library: ICF illustration library .2021. Reference Source [ Google Scholar ]
  • Iossifov I, O’Roak BJ, Sanders SJ, et al.: The contribution of de novo coding mutations to autism spectrum disorder. Nature. 2014; 515 ( 7526 ):216–221. 10.1038/nature13908 [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Iossifov I, Ronemus M, Levy D, et al.: De novo gene disruptions in children on the autistic spectrum. Neuron. 2012; 74 ( 2 ):285–299. 10.1016/j.neuron.2012.04.009 [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Kanner L: Autistic disturbances of affective contact. Nervous Child. 1943; 2 :217–250. Reference Source [ PubMed ] [ Google Scholar ]
  • Knowlton School of Architecture: Autism Planning and Design Guidelines 1.0 . The Ohio State University;2018;234. Reference Source [ Google Scholar ]
  • Kopec DA: Environmental psychology for design. Fairchild Books. learning-therapy cluster.jpg.2012. [ Google Scholar ]
  • Kumar S, Joshi M, Rahaman MS, et al.: Research Productivity on Human Migration in the Himalayan Region during 1947-2019: A Bibliometric Study. Library Philosophy and Practice (e-Journal). 2021;4909. Reference Source [ Google Scholar ]
  • Marshall CR, Noor A, Vincent JB, et al.: Structural variation of chromosomes in autism spectrum disorder. Am J Hum Genet. 2008; 82 ( 2 ):477–488. 10.1016/j.ajhg.2007.12.009 [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Martin CS, Guerin D: The interior design profession’s body of knowledge and its relationship to health: safety: and welfare. Council for Interior Design Accreditation.2010. Reference Source [ Google Scholar ]
  • Menon V: Large-scale brain networks and psychopathology: a unifying triple network model. Trends Cogn Sci. 2011; 15 ( 10 ):483–506. 10.1016/j.tics.2011.08.003 [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Naviaux R: ASD & Ecosystem . Autism Research institute.2012. Reference Source [ Google Scholar ]
  • Neale BM, Kou Y, Liu L, et al.: Patterns and rates of exonic de novo mutations in autism spectrum disorders. Nature. 2012; 485 ( 7397 ):242–245. 10.1038/nature11011 [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • O’Roak BJ, Vives L, Girirajan S, et al.: Sporadic autism exomes reveal a highly interconnected protein network of de novo mutations. Nature. 2012; 485 ( 7397 ):246–250. 10.1038/nature10989 [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Ozgur EG, Balci S: The Evolution of Autism: A Bibliometric Analysis. Acta Medica Nicomedia. 2022; 5 ( 1 ):1–7. Reference Source [ Google Scholar ]
  • Pallasmaa J: The Eyes of the Skin: Architecture and the Senses . John Wiley & Sons.2005. Reference Source [ Google Scholar ]
  • Penzes P, Cahill ME, Jones KA, et al.: Dendritic spine pathology in neuropsychiatric disorders. Nat Neurosci. 2011; 14 ( 3 ):285–293. 10.1038/nn.2741 [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Persson O, Danell R, Schneider JW: How to use Bibexcel for various types of bibliometric analysis . In: Celebrating scholarly communication studies: A Festschrift for Olle Persson at his 60th Birthday . ed. F Åström, R Danell, B Larsen, J Schneider. International Society for Scientometrics and Informetrics.2009. Reference Source [ Google Scholar ]
  • Pinto D, Pagnamenta AT, Klei L, et al.: Functional impact of global rare copy number variation in autism spectrum disorders. Nature. 2010; 466 ( 7304 ):368–372. 10.1038/nature09146 [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Rahaman MS, Abdel Magid IM, Ahmad S, et al.: Scientometric Profile of the Imam Abdulrahman Bin Faisal University : A leading University of Eastern Province, Saudi Arabia. Libr philos pract. 2021a;1–23. Reference Source [ Google Scholar ]
  • Rahaman MS, Kumar S, Ansari KMN, et al.: Twenty-five years of global research publications trends of novel coronavirus: A scientometrics assessment. Libr philos pract. 2021b;1–17. Reference Source [ Google Scholar ]
  • Remington A, Swettenham J, Campbell R, et al.: Selective Attention and Perceptual Load in Autism Spectrum Disorder. Psychol Sci. 2009; 20 ( 11 ):1388–93. 10.1111/j.1467-9280.2009.02454.x [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Sánchez PA, Vázquez FS, Serrano LA: Tourism and the Built Environment. Architectural Tourism. 2011;7–56. 10.1007/978-3-658-06024-4_2 [ CrossRef ] [ Google Scholar ]
  • Sanders SJ, He X, Willsey AJ, et al.: Insights into Autism Spectrum Disorder Genomic Architecture and Biology from 71 Risk Loci. Neuron. 2015; 87 ( 6 ):1215–1233. 10.1016/j.neuron.2015.09.016 [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Sanders SJ, Murtha MT, Gupta AR, et al.: De novo mutations revealed by whole-exome sequencing are strongly associated with autism. Nature. 2012; 485 ( 7397 ):237–241. 10.1038/nature10945 [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Sebat J, Lakshmi B, Malhotra D, et al.: Strong association of de novo copy number mutations with autism. Science (New York, N.Y.). 2007; 316 ( 5823 ):445–449. 10.1126/science.1138659 [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Sweileh WM, Al-Jabi SW, Sawalha AF, et al.: Bibliometric profile of the global scientific research on autism spectrum disorders. Springerplus. 2016; 5 ( 1 ):1480. 10.1186/s40064-016-3165-6 [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Szatmari P, Paterson AD, Zwaigenbaum L, et al.: Mapping autism risk loci using genetic linkage and chromosomal rearrangements. Nature Genetics. 2007; 39 ( 3 ):319–328. 10.1038/ng1985 [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Taghizadeh N, Davidson A, Williams K, et al.: Autism spectrum disorder (ASD) and its perioperative management. Paediatr Anaesth. 2015; 25 ( 11 ):1076–1084. 10.1111/pan.12732 [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • van Eck NJ, Waltman L: Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics. 2010; 84 ( 2 ):523–538. 10.1007/s11192-009-0146-3 [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • World Health Organization: WHO Strategic Communications Framework . World Health Organization,2017;56. Reference Source [ Google Scholar ]

Reviewer response for version 2

Peter kokol.

1 Faculty of Electrical Engineering and Computer Science, University of Maribor, Maribor, Slovenia

Authors answered to my comments, and I would like to approve the article.

Is the work clearly and accurately presented and does it cite the current literature?

If applicable, is the statistical analysis and its interpretation appropriate?

Not applicable

Are all the source data underlying the results available to ensure full reproducibility?

Is the study design appropriate and is the work technically sound?

Are the conclusions drawn adequately supported by the results?

Are sufficient details of methods and analysis provided to allow replication by others?

Reviewer Expertise:

I confirm that I have read this submission and believe that I have an appropriate level of expertise to confirm that it is of an acceptable scientific standard.

Reviewer response for version 1

Hashem hussein al-attas.

1 Deanship of Library Affairs, King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia

The authors have collected an exclusive dataset from Web of Science using quantitative methodology. The bibliometric method to map the global research publication on autism spectrum disorder in architecture perspective, definitely contributes to the field and other researchers. It can help them decide the most productive country, journals, organization, pattern of authorship, most important author keywords, research themes, and new international collaboration. The analyses, results, and interpretation display interesting and beneficial data. Moreover, quality of the text is good. There are a few unnecessary capitalizations in the sentences, but ignorable. Overall the paper represents valuable information regarding autism spectrum disorder in architecture research.

I have enough knowledge in the field of bibliometric and scientometric studies.

The authors performed an interesting bibliometric study. They focused mainly on quantitative aspects of the research on autism-related architectural design. However, the paper should be amended in some aspects to make it more informative for readers and to make the study repeatable.

First, the introduction and the literature review should be extended with a description of bibliometrics, evidence of its successful use (and the reason why they selected bibliometrics as a knowledge synthesis method), the bibliometrics tools used should be shortly described and their use in the study stated more clearly. There are already some bibliometrics studies on autism and other disabilities already published, authors should point to them in the literature review and connect their research to already performed studies (they should also compare their results to results of similar studies in the discussion section).

  • In the results section, they should point out which bibliometric tool was used to produce them. The results should also be extended with qualitative aspects, actually, the discussion is mostly missing. What is the meaning of the results, who can use them, and for what purpose. In the conclusion, authors mention that research gaps, research directions could be derived from their results, but the readers could benefit much more if the authors themselves will reveal hot topics, gaps, directions, etc. Authors should describe revealed clusters from keywords analysis in more detail. They should use thematic or content analysis to name and describe clusters, point to relevant literature, etc.

Computer science, bibliometrics, machine learning, health informatics

I confirm that I have read this submission and believe that I have an appropriate level of expertise to state that I do not consider it to be of an acceptable scientific standard, for reasons outlined above.

Deema Al-Saleh

Imam Abdulrahman bin Faisal University , Saudi Arabia

  • Comment of reviewer: The authors performed an interesting bibliometric study. They focused mainly on quantitative aspects of the research on autism-related architectural design. However, the paper should be amended in some aspects to make it more informative for readers and to make the study repeatable.

Authors Response : Done, the authors have worked more on the dataset and amended the annual literature growth table 1 to compare the literature growth in general with literature growth from the architectural and designers' perspective.

  • Comment of reviewer: First, the introduction and the literature review should be extended with a description of bibliometrics, evidence of its successful use (and the reason why they selected bibliometrics as a knowledge synthesis method), the bibliometrics tools used should be shortly described and their use in the study stated more clearly. There are already some bibliometrics studies on autism and other disabilities already published, authors should point to them in the literature review and connect their research to already performed studies (they should also compare their results to results of similar studies in the discussion section).

Authors Response : Done, the introduction and the literature review have been extended and previous bibliometric studies included and compared the results.

Authors Response : Done, all the issues raised have been addressed.

  •   DalSpace Home
  • Faculty of Graduate Studies Online Theses

A Day in the Life: Live/Work Architecture Utilizing Autism-Based Inclusive Design

Thumbnail

  • Inclusive Design
  • Autism Spectrum Disorder
  • Normalization
  • Architecture
  • Yarmouth Nova Scotia

Collections

Architecture for Autism: Autism ASPECTSS™ in School Design

U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings
  • My Bibliography
  • Collections
  • Citation manager

Save citation to file

Email citation, add to collections.

  • Create a new collection
  • Add to an existing collection

Add to My Bibliography

Your saved search, create a file for external citation management software, your rss feed.

  • Search in PubMed
  • Search in NLM Catalog
  • Add to Search

Architecture for Children With Autism Spectrum Disorder and Their Therapists

Affiliation.

  • 1 12346The University of Texas at San Antonio, San Antonio, TX, USA.
  • PMID: 34006129
  • DOI: 10.1177/19375867211012489

Objectives: The objective of this study is to identify an architectural design framework that can be applied to create adaptable, transformative therapy rooms that benefit children with autism and their therapists.

Background: Previous research suggests that environment shapes and influences human behavior. However, there remains a lack of evidence of effective design for pediatric rehabilitation therapy rooms. This study specifically focuses on how the design of the therapy room influences the patient's level of comfort and participation as well as the therapists' quality and efficiency of treatment to improve the overall therapeutic experience.

Method: Two different surveys were conducted to improve the design of a therapeutic room based on professional therapist experiences. A grounded theory approach was employed to identify specific codes and categories.

Results: The result of this study is an architectural framework based on specific design tenets and their properties that not only can be utilized by architects and interior designers for building a new therapy center but could also be used for remodeling existing therapy rooms.

Keywords: architectural framework; autism; cognitive disabilities; environment and behavior; evidence-based design; flexible design; healthcare architecture; inclusive learning environment; pediatric therapy; spatial layout; staff safety; treatment room.

PubMed Disclaimer

Similar articles

  • Exploring psychosocial experiences of behavior therapists dealing with children having autism spectrum disorder. Shahid S, Javed F, Iqbal MN, Rafiq M. Shahid S, et al. Clin Child Psychol Psychiatry. 2024 Jan;29(1):274-286. doi: 10.1177/13591045231209363. Epub 2023 Oct 21. Clin Child Psychol Psychiatry. 2024. PMID: 37864339
  • Designing Beyond the Americans With Disabilities Act (ADA): Creating an Autism-Friendly Vocational Center. Clouse JR, Wood-Nartker J, Rice FA. Clouse JR, et al. HERD. 2020 Jul;13(3):215-229. doi: 10.1177/1937586719888502. Epub 2019 Dec 30. HERD. 2020. PMID: 31884824
  • Pivotal response treatment: A study into the relationship between therapist characteristics and fidelity of implementation. Verschuur R, Huskens B, Korzilius H, Bakker L, Snijder M, Didden R. Verschuur R, et al. Autism. 2020 Feb;24(2):499-514. doi: 10.1177/1362361319876213. Epub 2019 Sep 20. Autism. 2020. PMID: 31538812 Free PMC article.
  • Considerations of the built environment for autistic individuals: A review of the literature. Black MH, McGarry S, Churchill L, D'Arcy E, Dalgleish J, Nash I, Jones A, Tse TY, Gibson J, Bölte S, Girdler S. Black MH, et al. Autism. 2022 Nov;26(8):1904-1915. doi: 10.1177/13623613221102753. Epub 2022 Jun 13. Autism. 2022. PMID: 35695710 Review.
  • [ADI-R and ADOS and the differential diagnosis of autism spectrum disorders: Interests, limits and openings]. Frigaux A, Evrard R, Lighezzolo-Alnot J. Frigaux A, et al. Encephale. 2019 Nov;45(5):441-448. doi: 10.1016/j.encep.2019.07.002. Epub 2019 Sep 5. Encephale. 2019. PMID: 31495549 Review. French.
  • Healthy Dwelling: Design of Biophilic Interior Environments Fostering Self-Care Practices for People Living with Migraines, Chronic Pain, and Depression. Huntsman DD, Bulaj G. Huntsman DD, et al. Int J Environ Res Public Health. 2022 Feb 16;19(4):2248. doi: 10.3390/ijerph19042248. Int J Environ Res Public Health. 2022. PMID: 35206441 Free PMC article.
  • Search in MeSH

Related information

Linkout - more resources, full text sources.

  • Ovid Technologies, Inc.

Other Literature Sources

  • scite Smart Citations
  • MedlinePlus Consumer Health Information
  • MedlinePlus Health Information

full text provider logo

  • Citation Manager

NCBI Literature Resources

MeSH PMC Bookshelf Disclaimer

The PubMed wordmark and PubMed logo are registered trademarks of the U.S. Department of Health and Human Services (HHS). Unauthorized use of these marks is strictly prohibited.

Academia.edu no longer supports Internet Explorer.

To browse Academia.edu and the wider internet faster and more securely, please take a few seconds to  upgrade your browser .

Enter the email address you signed up with and we'll email you a reset link.

  • We're Hiring!
  • Help Center

First page of “ARCHITECTURE FOR AUTISM: Autism ASPECTSS™ in School Design”

Download Free PDF

ARCHITECTURE FOR AUTISM: Autism ASPECTSS™ in School Design

Profile image of Magda Mostafa

2014, International Journal of Architectural Research Archnet Ijar

Free related PDFs Related papers

Journal of ASIAN behavioural studies, 2019

thesis on autism architecture

Athens Journal of Architecture, 2022

The research in the following paper is developed in collaboration with the noprofit organization "Università per i Disturbi dello Spettro Autistico" (UDSA), active on the issue of the role of surrounding environment in the educational process of neuro-atypical young adults. Even though, wide range of population is diagnosed with Autism Spectrum Disorder (ASD), the literature primarily refers to childhood period of neuro-atypical individuals. The study explores how Architecture could help young adults with ASD to become more independent and discover their capabilities reducing environmental obstacles. The Autism Spectrum presents a wide range of cases and hues that does not permit the use of general guidelines for the design process, on the contrary, it requires taking into consideration the variety of attitude toward the surrounding environment. Therefore, the paper interrogates the methodological framework of Architecture to tackle the complexity of the design challenge with a trans-disciplinary approach; a variety of figures, outside architecture discipline, were involved in the research. An adaptive method has been used, based more on Greek idea of metis, the ability to take advantage of circumstances rather than using the Platonic notion of "eidos", which referred to a determined pattern, to face the multifaceted aspects of the phenomenon. 1 The study resulted in an Architectural project for The University of Autism Spectrum Disorder, in which the strategy of Gradient defines the spaces based on their intensity, activity and frequency. By considering weaknesses and insufficiency that has emerged during the research period, this paper proposes a lucid theory of the design process integrated with contradictory aspects of the spectrum.

Autism and Architecture: The Importance of a Gradual Spatial Transition Cover Page

Lately many researchers have done in relation to the link between architecture and autism or the autism likely environments which show that architecture could be effective in the states of the children suffering from autism disorders. The education center for the autism children need special spaces for education and treatment. Surveys in many Asian countries show that most of the care centers of the children suffering from autism are created by the changing the use of the spaces like houses or are created by adding some temporary walls to the spaces in spite of that the surveys show that environment affect treatment of these children. So, it is tried in this study to concentrate accurately on the autism child and also study the designing process of the elite educational spaces in the world. Then we will try to reach a suitable algorithm special for these children. The data gathering tools for this study are questionnaire, interview and close and direct contact with the autism children and interviewing their parents and related responsible people in different environments like rehabilitation centers for the autism children dependent to the Welfare Organization. In addition using questionnaire was for recording the behavior, movements and child relations with the people around. And when the identification stage of the research audience (the Autism child) ends it is tried finally to present suitable spatial and physical ideas for designing the educational spaces and to achieve health specially creativeness.

School Architecture for Autism Children Cover Page

International Journal of Environmental Research and Public Health, 2021

Built environment design can be considered as an influential factor in the quality of life of people with autism spectrum disorder (ASD). This scoping review provides an overview of the current available literature on the relationship between people with ASD and built environment in the specific field of the design of autism-friendly spaces. The literature review allowed the identification of three main factors to be considered when designing for people with ASD—the sensory quality, the intelligibility, and the predictability of the built environment—and, for each of them, a description of the spatial requirements that have been recognized as fundamental according to the specific spatial needs of people with ASD.

Built Environment Design and People with Autism Spectrum Disorder (ASD): A Scoping Review Cover Page

IQD- issue 65, 2021

An estimated 1.5% of the world’s population, approximately 120 million individuals, exist somewhere on the broad spectrum of autism. For far too long this spectrum, despite its diversity and nuance, was viewed as a monolithic, pathologized condition, to be cured or treated, rather than better understood or even celebrated as an identity and an alternative, but equally valid perceptual model of the world around us. This position has since shifted to a more strength based identity first position, and as the peak cohort of individuals first diagnosed when awareness was growing in the early 2000s are now reaching adulthood, self-advocacy has become an important and increasingly heard voice in the community. But architecture must listen. I believe no one has the right to exist more comfortably, safely or effectively in space than anyone else, and it is our responsibility as architects to create the built landscape that affords this comfort, safety and efficacy to everyone- the entire spectrum of the human condition. The small collection of works included here strive to present design pathways to achieving that goal, and hopefully shift that perspective to stretch our understanding of the human condition- to be more inclusive, honest and reflective of the reality of our diverse and rich humanity. #IQDMagazine https://iqd.it/en/

Autism Design and Architecture For All: Architecture for a Differently Abled World Cover Page

“ICAR 2015: Re[search] through architecture”, 26-27 March 2015, 2015

Autism is regarded as the most severe psychiatric syndrome of early childhood. Because the disease cannot be fully treated, the autistic child becomes the autistic adult, its condition depending on the severity of the syndrome and mostly on the treatment process. Since any person will spend about 75% of his life as an adult, the task of autism treatment is to prepare children to gain independence and to insure integration into society. As a result, people with autism need to be prepared at the earliest age to interact with other children and integrate into the public school system, which will determine a mental development similar to normal people. [1] By doing this, autistic and non-autistic will learn similar sets of skills which will later facilitate their integration. Also, because they will get in contact with autistic children at an early age, non-autistic people will have a clearer understanding of autism and therefore be able to easily integrate them in work and social activities later in life. [2] Present design methods for autism treatment centers concentrate either on skill development (Sensory Design Theory) [3] or rigid adaptation to day-to-day circumstances (Neuro-Typical Approach) [4] without paying much attention to future autism integration. The paper focuses on analysing architectural methods that should be implemented in autism treatment institutions in order to facilitate the transition between the therapy environment and public education circumstances. The study establishes the difference between integration and assimilation of people with autism and refines present design approaches in order to achieve a more efficient integration process. Also, the study aims to improve the design methods that are presently used in treatment facilities, in order to make a better connection with post-therapy situations by introducing variation of sensory stimulation in the therapy spaces as well as interaction spaces for autistic and non-autistic peers inside autism treatment centers. [1] Frith, Uta (2003) – Autism: Explaining the Enigma 2nd edition, Oxford, (Blackwell) [2] Russo N, Foxe JJ, Brandwein AB, Altschuler T, Gomes H, Molholm S. (2010 Oct) – Multisensory processing in children with autism: high-density electrical mapping of auditory-somatosensory integration, Autism Research Journal, International Society for Autism Research [3] Mostafa, M (2014) - ARCHITECTURE FOR AUTISM: Autism ASPECTS în School Design, International Journal of Architectural Research, Volume 8 [4] Henry, Christopher N. (2011 Nov) "Designing for Autism: The ‘Neuro-Typical’ Approach", ArchDaily

Architecture for Autism. Improving Designs for Autistic Integration Cover Page

Asian Journal of Behavioural Studies

Autism is a lifelong handicap that affects their social skills, repetitive behaviors, speech, and nonverbal communication, as well as by unique strengths and differences. Knowing them as a unique person, designated learning environment should consider the sensory issues to overcome their needs. However, designers are lack of awareness in terms of sensory design during their design stage. The objective is to identify the sensory design of the classroom environment, while the paper aims to develop the Design Criteria Checklist of sensory design for Autism Centre. The result of the study highlighted factors that relate to the quality physical learning environment.Keywords: Autism; sensory design, physical learning environment; design criteria checklist;eISSN 2398-4295 © 2018. The Authors. Published for AMER ABRA cE-Bs by e-International Publishing House, Ltd., UK. This is an open-access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). Peer–revi...

The Effects of Sensory Design on Autistic Children Cover Page

International Journal of Architectural Research: ArchNet-IJAR

The objective of this paper is to demonstrate the application of the Autism ASPECTSS™ Design Index in the Post-Occupancy Evaluation of existing learning environments for children along the autism spectrum. First published in 2014 this index outlines 7 design criteria that have been hypothesized to support environments conducive of learning for children with autism spectrum disorder (ASD). Using the index as a framework, this paper outlines a case study of a Post-Occupancy Evaluation (POE) of an existing pre-K-8th grade public charter purpose-built school for children on the autism spectrum. The tools used for the evaluation were: the ASPECTSS scoring of the school through a survey of teachers and administrators; on-site behavioral in-class observation; and focus groups of parents, teachers, staff and administrators. The results informed a design retro-fit proposal that strived to assess any ASPECTSS compliance issues and implement the index across the learning spaces, therapy spaces...

Designing for Autism: An Aspectss™ Post-Occupancy Evaluation of Learning Environments Cover Page

LUMEN TCA 2014 Conference 21-22 November 2014, Targoviste (http://conferinta.info/) As autism is becoming a more severe issue for society since its discovery in the mid ‘40s1, the scientific community is on an endless quest for answers. Although sensory sensitiveness for people with autism is still a debate among specialists, more and more studies show the link between the major autistic disabilities and perception.2 As the theory begins to gain ground, it also begins to receive interest from the architecture community. Since architects are held responsible for creating environments, a few theories have emerged regarding architecture for people with autism. In accordance with treatment plans, two major design approaches have been created, both based on the perception issues of people with autism, and also possessing features almost opposite to one another. While Sensory Design Approach focuses on creating a controlled sensory environment that makes autistic people feel comfortable, therefore facilitating skill acquirement, the Neuro-Typical Approach is centered on direct integration to different typical urban and public situations. The paper concentrates on the analysis of both design methods and examines which of the two would give the best results in the long term. This means that the main purpose should be integration into society and the ability of people with autism to lead an independent life. Also, the study represents a research for an architectural, urban, social and educational program that preceded an experimental architectural model that best suites the conditions and needs of people with autism. [1] Frith, Uta (2003) - Autism: Explaining the Enigma 2nd edition, Oxford, (Blackwell). [2] Russo N, Foxe JJ, Brandwein AB, Altschuler T, Gomes H, Molholm S. (2010 Oct) - Multisensory processing in children with autism: high-density electrical mapping of auditory-somatosensory integration, Autism research

Design Approach for Autism Treatment Centers  Cover Page

One in every 150 children is estimated to fall within the autistic spectrum, regardless of socio-cultural and economic aspects, with a 4:1 prevalence of males over females (ADDM, 2007). Architecture, as a profession, is responsible for creating environments that accommodate the needs of all types of users. Special needs individuals should not be exempt from such accommodation. Despite this high incidence of autism, there are yet to be developed architectural design guidelines catering specifically to the scope of autistic needs. The primary goal of this research is to correct this exclusion by developing a preliminary framework of architectural design guidelines for autism. This will be done through a two phase study. The first phase will determine, through a questionnaire of first hand caregivers of autistic children, the impact of architectural design elements on autistic behaviour, to determine the most influential. The second phase, based on the findings of the first, will test the conclusive highest ranking architectural elements in an intervention study on autistic children in their school environment. Specific behavioural indicators, namely attention span, response time and behavioural temperament, will be tracked to determine each child's progress pre and post intervention, for a control and study group. This study concludes in outlining the findings of both phases of the study, the first being the determination of the most influential architectural design elements on autistic behaviour, according to the sample surveyed. The second group of findings outlines design strategies for autism in three points. The first is the presentation of a " sensory design matrix " which matches architectural elements with autistic sensory issues and is used to generate suggested design guidelines. The second is the presentation of these hypothetical guidelines, two of which are tested in the presented study. These guidelines are presented as possible interventions for further testing. The third is a group of specific design guidelines resultant from the intervention study. It is hoped that these will provide a basis for the further development of autistic specific design standards, and take us one step further towards more conducive environments for autistic individuals.

AN ARCHITECTURE FOR AUTISM: CONCEPTS OF DESIGN INTERVENTION FOR THE AUTISTIC USER Cover Page

Loading Preview

Sorry, preview is currently unavailable. You can download the paper by clicking the button above.

Environment-Behaviour Proceedings Journal

Preliminary Study on Sensory Design for Autism Centre Cover Page

F1000Research

Autism spectrum disorder in architecture perspective: a review of the literature and bibliometric assessment of research indexed in Web of Science Cover Page

F1000Research, 2021

Autism spectrum disorder in architecture perspective: a review of the literature and bibliometric assessment of research indexed in Web of Science [version 1; peer review: awaiting peer review Cover Page

International Journal of Arts and Technology, 2019

The impact of colour and light on children with autism in interior spaces from an architectural point of view Cover Page

Environment-Behaviour Proceedings Journal, 2018

A Review of Sensory Design Physical Learning Environment for Autism Centre in Malaysia Cover Page

International Journal of Architectural Engineering and Urban Planning , 2024

Designing Autism-Friendly Schools: Bridging the Perspectives of Children with ASD and the Perspectives of Adult Stakeholders Cover Page

Archnet-IJAR : International Journal of Architectural Research, 2018

SENSORY SPACES: SENSORY LEARNING – AN EXPERIMENTAL APPROACH TO EDUCATING FUTURE DESIGNERS TO DESIGN AUTISM SCHOOLS Cover Page

Related topics

  •   We're Hiring!
  •   Help Center
  • Find new research papers in:
  • Health Sciences
  • Earth Sciences
  • Cognitive Science
  • Mathematics
  • Computer Science
  • Academia ©2024
  • Hispanoamérica
  • Work at ArchDaily
  • Terms of Use
  • Privacy Policy
  • Cookie Policy

Designing for Autism: More Able Not Less Disabled

  • Written by Christopher N. Henry
  • Published on December 07, 2011

Imagine meeting with a client and writing down only their limitations and dislikes. Now, return to your office and base your design on that criterion alone. How can any architect create an inspiring and meaningful design out of that? Yet, this is how many architects design for people with Autism Spectrum Disorders (ASD). The focus is on what individuals with autism cannot do rather than what they can. Such a negative approach seems misguided and unnecessary. Architects should make people more able not less disabled. It is a subtle distinction, but an important one.

At Bittersweet Farms , a residential and vocational facility for adults with autism, each staff member is required to know the likes, abilities, dislikes, and disabilities of each person with whom they work. The emphasis, however, is on the likes and abilities. Each support plan lists an individual’s likes before his or her dislikes, and staff are asked to learn them in that order. This emphasis guards against an apparent tendency to focus on what people with disabilities cannot do rather than what they can. Perhaps this tendency arises out of honest intentions to avoid all possible harm, but Bittersweet sees it as counterproductive.

For example, one individual at Bittersweet becomes irritated when he is over prompted to do something. So what? This doesn’t help staff members get him ready for bed or motivated to go to work in the morning. For that they need to know what he likes and how he is best supported. This particular individual loves singing musicals, roller blading, hiking, and doing art. Instead of being in constant fear of prompting him, staff members can say, “Do you want to sing a musical number and then get ready for bed,” or “Would you like to roller blade before or after we do the laundry?” If he ever does get frustrated staff members know how to redirect him toward things he enjoys. If staff members only know what he doesn’t like then they will be left scrambling for helpful solutions when he eventually, as we all do, becomes upset. Perhaps architects could learn something from this empowering approach.

Contrast Bittersweet Farm’s approach with Westlake Reed Leskosky ’s design criteria for the Debra Ann November Wing of the Lerner School for Autism at Cleveland Clinic Children’s Hospital Center for Autism:

  • Limit stimulation and prevent distractions
  • Minimize the use of grids, busy patterns, and bold colors in building materials
  • Provide spaces for one-on-one student-teacher activities
  • Control clutter, while still allowing children to make autonomous choices
  • Provide adequate built-in storage to limit exposure of educational materials not in use
  • Control Acoustics
  • Design air-conditioning systems to minimize machine noise and air noise
  • Provide acoustic separation between rooms
  • Provide proper indoor air quality and temperature control
  • HVAC systems to be multizone VAV system with filtration and adequate air changes
  • Prevent injury
  • Eliminate sharp corners and projections from surfaces
  • Provide resilient surfaces
  • Minimize perceived flicker from lighting sources
  • Provide lighting sources that do not create a distraction
  • Provide window treatments
  • Provide durability
  • Use impact- and stain-resistant materials.

These are all legitimate concerns that should not be ignored. The autism community benefits greatly from Westlake Reed Leskosky ’s thoughtful approach, and a critique of the criteria should not take away from their efforts. However, only two positive assertions can possibly be teased out of these criteria: spaces for one-on-one student-teacher activities, and allowing children to make autonomous choices. The first is a programming issue that can hardly be considered a positive. The second is only a caveat to a negative. The rest revolve around control and prevention—a worst-case scenario approach. This is not dissimilar from the criteria of other sensory sensitive and ‘neuro-typical’ designs. (The worst-case for the former is overstimulation while the latter is poor generalize skills.)

Trying to protect against every single possible risk is not an effective way to go about designing any environment. Bad things happen, even with the strongest preventive measures. What’s more, bad things can result from our best efforts to prevent them. Architects need to research both what limits and enables individuals with autism. For example, some individuals with autism appear to be great visual learners. Many educational programs for autism use a mixture of visual aids such as picture schedules, picture exchange communication books (PECs), sign language, and visual stories displaying tasks such as using the bathroom. Architects could aid this ability by using visual design strategies that give pertinent information about a building’s organization and function. Perhaps these visual cues could help individuals transition from one area or task throughout their day. How exactly this can be done is debatable, and needs to be more thoroughly researched (for debate on autism design see here , here , and here ). What matters here is the mindset. Under a positive approach the architect’s primary role is to make individuals more able not less disabled.

Rather than limiting visual distractions the focus turns to enhancing the visual experience. What visual supports can individuals use to reorient themselves when they become disoriented? Likewise, minimizing perceived flickering from light sources might be necessary, but what about the lighting design can help individuals anticipate the progression of their day? Rather than decreasing visual stimulation it might be the case, in some instances, that architects should increase visual stimulation, depending on the type and context. By only asking what distracts or over stimulates individuals, architects will miss opportunities to empower and inspire individuals.

More importantly, an enabling design approach is not dependent on abilities specific to autism. For many, autism can be an extremely challenging experience. The most severe manifestations of autism can result in abnormal brain development significant enough to make the most understanding environment exceedingly challenging. Some individuals may have extreme learning difficulties, no clear verbal communication, self-injurious behaviors and other complicating conditions. Yet, every person has value and abilities that can be encouraged and appreciated. Architects do not need to take a negative design approach.

Natural lighting, for example, can be extremely beneficial regardless of a person’s autism. Architects can either focus solely on the possible negative effects of natural lighting, or they can celebrate the positive ones while acknowledging the negative ones. In the former architects try to suppress daylight while in the latter they try to sculpt it (see note for why this might matter). It is the difference between the Bittersweet staff knowing only what bothers an individual and knowing what motivates him.

Admittedly, the idea of making individuals more able is not readily translated into design checklists; it is more a state of mind. I don’t know exactly how this subtle distinction will shape future autism designs, but I imagine them being far more inspiring and motivating than ones predicated on a worst-case scenario. Individuals with autism deserve a positive design approach not because of their autism, but because that is how everyone should be treated.

If you enjoyed this article check out more by Christopher N. Henry here .

Christopher Henry has been researching, writing, and consulting on autism design since 2005. He has conducted post-occupancy evaluations of autism schools, homes and clinics in Denmark, England, and the US. Christopher also spent 9-months working direct-care at Bittersweet Farms, a residential and vocational facility for adults with autism. He currently runs Autism Design Consultants , where you can find more information about autism design.

Just to be clear the person, Aaron Fotheringham , in the video does not have autism. It challenges the idea that someone like Aaron is disabled because he uses a wheelchair. It is not meant to downplay the difficulties people like Aaron face, but to compel people to see the whole person not just the wheelchair. Might not be the perfect demonstration, but I still found it inspirational.

I would like to extend a special thanks to the staff and participants at Bittersweet Farms that helped inspire this article.

I am tempted to speculate that this holds true for other disabilities, but I am not as familiar with other disabilities, and therefore cannot say so with confidence.

The idea of more able not less disabled is a spin on William McDonough and Michael Braungart’s sustainable design philosophy in Cradle-to-Cradle, do more good not less bad.

Another huge emphasis is on choice. Rather than saying, “After doing laundry we can go roller blading,” the individual is given a choice of when they would like to do it. Again, a subtle distinction but an important one.

Libassi, Philip. “Formulating a plan: Developing the Debra November Wing of the Lerner School for Autism at Cleveland Clinic Children’s Hospital Center for Autism,” Healthcare Design. Vol. 9 No. 7 July 2009 p. 47-55.

Think of the mass screening of infants for neuroblastoma at six months of age. It caused a great deal of harm without any apparent reduction in death rates. See: Evan, Imogen, Hazel Thorton, Iain Chalmers, Paul Glaziou and Ben Goldacre. Testing Treatments: Better Research for Better Healthcare. Kindle Location 828-859.

Shah, Amitta and Uta Frith, “An Islet of Ability in Autistic Children: A Research Note,” Journal of Child Psychology and Psychiatry 24 (1983): 613-20.

Amitta Shah’s and Uta Frith’s research into the human mind established back in 1983 that people with autism possess an innate acuity for detail. They challenged twenty autistic children, twenty neuro-typical children, and twenty children with learning disabilities to an Embedded Figure Task. The object of such a task is to correctly identify a previously displayed shape, like a skewed rectangle, embedded in a picture of an object like a baby carriage. The children with autism did remarkably well in comparison to the other children, and they even almost outperformed the experimenters. They averaged 21 correct answers out of 25 compared to the meager 15 out 25 for both other groups of children.

For anecdotal inspiration see:

Grandin, Temple. ‘My experiences with visual thinking, sensory problems and communication difficulties.’ Centre for the study of Autism. www.autism.org/temple/visual.html

Grandin, Temple. Emergence. New York: Warner Books, 2005.

Baghdadli, A., Pascal, C., Grisi, S., & Aussilloux, C. “Risk factors for self-injurious behaviors among 222 young children with autistic disorders.” Journal of Intellectual Disability Research, 47, 2003, 622-627.

Epilepsy can also an issue for some individuals with autism see: Hara, Hitoshi. “Autism and epilepsy: A retrospective follow-up study,” Brain & Development. Volume 29, No. 8 2007, p. 486-490.

For a great overview of autism see: Frith, Uta, Autism: Explaining the Enigma 2nd edition, Oxford, (Blackwell) 2003.

Professor Mark Rea from Rensselaer Polytechnic Institute’s Lighting Research Center found morning daylight exposure to be the primary stimulus for regulating the circadian rhythms of day-shift healthcare staff at a neonatal intensive care unit. Adequate exposure led to improved daytime alertness, cognitive performance, and nighttime sleep quality. See: Rea, Mark. “Lighting for Caregivers in the Neonatal Intensive Care Unit.” Clinical Perinatology 31:229-242. 2004.

Several studies suggest that individuals with autism may need more exposure to these changing light cycles not less. The studies’ authors hypothesize that the commonly reported abnormal sleeping patterns among individuals with autism result from disrupted sleep/wake cycles. Using parents reports and an actigraphy—a device that measures an individual’s motor activity while asleep—one study found that the sleep quality of all 69 children with an ASD diagnosis seemed to be compromised when compared to typical sleep values.

See: Richdale, Amanda L. and Margot R. Prior. “The sleep/wake rhythm in children with autism,” European Child & Adolescent Psychiatry. Springer Berlin V. 4 N. 3 July 1995 175-186. Hare Dougal Julian, Steven Jones, Kate Evershed. “A comparative study of circadian rhythm functioning and sleep in people with Asperger syndrome,” Autism V. 10 No. 6 p. 565-575 2006. Wiggs, Wiggs, Gregory Stores. “Sleep patterns and sleep disorders in children with autistic spectrum disorders: insights using parent report and actigraphy.” Developmental Medicine & Child Neurology. V. 46 Issue 6 p. 372-380 2004.

Still, other studies suggest that the sleep patterns are no different than those found in typical developing children. Two studies in particular suggest that the reported sleep abnormalities can be explained by parental over-sensitivities to the sleep disturbances of their autistic children. When measured objectively the researchers could not find significant differences in the sleep patterns of children with autism when compared to children with General Mental Retardation and children without a developmental diagnosis. However, the parents of children with autism reported sleep abnormalities more often than those parents of the control group. Thus it was the parents’ perception of their child’s sleeping difficulties and quality that was the cause for concern in both studies. Another study also concluded that the difficulties with falling asleep were not a result of autism, but could be explained by earlier bedtimes for those with autism when compared with the bedtimes of the control group.

See: Hering, Eli, Rachel Epstein, Sarit Elroy, Daisy R. Iancu and Nathanel Zelnik. “Sleeping Patterns in Autistic Children.” Journal of Autism and Developmental Disorders. V. 29 No. 2 p. 143-147 1999. Allik, Hiie, Jan-Olov Larsson and Hans Smedje. “Sleep Patterns of School-Age Children with Asperger Syndrome or High-functioning Autism.” Journal of Autism and Developmental Disorders. V. 36 No. 5 July 2006 p. 585-595.

With these conflicting studies architects cannot claim they can improve autistic symptoms by reinforcing circadian rhythms. Nonetheless, based on all other research, if architects create static environments blocking access to the changing light cycles and disrupting an individual’s circadian rhythm then architects could, unknowingly, be inducing sleep problems that might not exist in the first place. Additionally, we should not forget that such environments will also negatively influence staff performance. (Note, these concerns regarding natural lighting do not necessarily pertain to the Lerner School. I am unaware of the natural light levels at the Lerner School. They do, however, pertain to other autism design that take a worst-case scenario approach.) For more debate on lighting issues see Henry, Christopher N. “ Designing For Autism: Lighting ” Archdaily.com October 19, 2011.

thesis on autism architecture

  • Sustainability

世界上最受欢迎的建筑网站现已推出你的母语版本!

想浏览archdaily中国吗, you've started following your first account, did you know.

You'll now receive updates based on what you follow! Personalize your stream and start following your favorite authors, offices and users.

Architecture for autism: Autism aspectss™ in school design

  • CC BY-NC-ND 4.0

Magda Mostafa at Progressive Architects

  • Progressive Architects

Abstract and Figures

Sensory Design Matrix (Source: Author).

Discover the world's research

  • 25+ million members
  • 160+ million publication pages
  • 2.3+ billion citations

Bakhtiar Bahrami

  • Nasrin M H Nejad
  • Marjan Doaee

Mohammad Ghomeishi

  • Claudia Iovița
  • Lara Schießl
  • Fernanda Caldas

Antje Orgassa

  • Marloes de Lange
  • Jose Mulder
  • Luiza Amorim Costa Moreira

Cláudia Arcipreste

  • Khyathi Rachakonda
  • Tarun Kumar
  • Micol Rispoli
  • Tomás Criado
  • ArchNet-IJAR

Magda Mostafa

  • Min-Lan Tsai

L Stan Leung

  • Bruce D Grannemann
  • Jennifer L Schroeder

Temple Grandin

  • Carl H. Delacato

Geraldine Dawson

  • Francis D. K. Ching
  • Meena O'Neill
  • Robert S. P. Jones
  • Recruit researchers
  • Join for free
  • Login Email Tip: Most researchers use their institutional email address as their ResearchGate login Password Forgot password? Keep me logged in Log in or Continue with Google Welcome back! Please log in. Email · Hint Tip: Most researchers use their institutional email address as their ResearchGate login Password Forgot password? Keep me logged in Log in or Continue with Google No account? Sign up

IMAGES

  1. Architecture of Autism by Maria Valdes

    thesis on autism architecture

  2. Rehabilitation center for autism architecture thesis :: Behance

    thesis on autism architecture

  3. SCHOOL OF AUTISM || ARCHITECTURAL THESIS || RISHABH JAIN

    thesis on autism architecture

  4. Autism-aware design

    thesis on autism architecture

  5. [PDF] Architecture for Autism

    thesis on autism architecture

  6. (PDF) Architecture for Autism. Improving Designs for Autistic Integration

    thesis on autism architecture

VIDEO

  1. #thesis #students #architecture #ai #reels #csa #interiordesign #topuniversity

  2. Three Minute Thesis (3MT) 2011

  3. Autism Valenzuela Center

  4. Architecture Thesis Topics: Sustainability #architecture #thesis #thesisproject #design #school

  5. AUTISM CARE CENTER, ARCHITECTURE FINAL YEAR PROJECT 2021

  6. Dyuthi

COMMENTS

  1. Autism spectrum disorder in architecture perspective: a review of the literature and bibliometric assessment of research indexed in Web of Science

    Three research papers were published in 2019 under the title Quality of the built environment from the point of view of people with autism spectrum disorder", "The impact of color and light on children with autism in interior spaces from an architectural point of view," and "Studio teaching experiments- spatial transitioning for autism schools ...

  2. Center for Autistic Children an Architectural Intervention

    This is to certify that the thesis titled "CENTER FOR AUTISTIC. CHILDREN: AN ARCHITECTURAL INTERVENTION" has been. submitted by SRIVANI MANCHALA (1090100096) towards partial. fulfilment of the ...

  3. (PDF) An An Architecture for Autism: Concepts of ...

    Abstract. One in every 150 children is estimated to fall within. the autistic spectrum, regardless of socio-cultural. and economic aspects, with a 4:1 prevalence of. males over females (ADDM, 2007 ...

  4. An architecture for autism: Concepts of design intervention for the

    Frith, Uta (2003) - Autism: Explaining the Enigma 2nd edition, Oxford, (Blackwell) [2] Russo N, Foxe JJ, Brandwein AB, Altschuler T, Gomes H, Molholm S. (2010 Oct) - Multisensory processing in children with autism: high-density electrical mapping of auditory-somatosensory integration, Autism Research Journal, International Society for ...

  5. Architecture for Children With Autism Spectrum Disorder and Their

    The objective of this study is to identify an architectural design framework that can be applied to create adaptable, transformative therapy rooms that benefit children with autism and their therapists.

  6. (PDF) Autism Design and Architecture For All: Architecture for a

    Autism Design and Architecture For All: Architecture for a Differently Abled World. December 2021. Publisher: IQD. ISBN: 1970-9250. Authors: Magda Mostafa. Progressive Architects. References (8)

  7. A Day in the Life: Live/Work Architecture Utilizing Autism-Based

    This thesis explores architectural implications of autism spectrum disorder (ASD) and tests design strategies in a live/work complex on the waterfront of Yarmouth, Nova Scotia. Manifestations of ASD differ enormously between cases, so establishing comprehensive design principles is a challenge.

  8. Considerations of the built environment for autistic individuals: A

    Center for autistic children: An architectural intervention [Master's thesis, Department of Architecture, School of Planning and Architecture, Vijayawada]. ... An architecture for autism: Concepts of design intervention for the autistic user. International Journal of Architectural Research, 2(1), 189-211. Google Scholar. Mostafa M. (2010 ...

  9. Neurodiversity in Architecture

    Abstract: This thesis establishes a foundational understanding of current autism-friendly design approaches and conceptualizes new methods in research and design. Early on in the research an intimate connection between architecture and occupant wellness is established. Which is then applied from the perspective of occupancy driven design tactics.

  10. An Architecture for Autism: Concepts of Design Intervention for the

    Architecture, as a profession, is responsible for creating environments that accommodate the needs of all types of users. Special needs individuals should not be exempt from such accommodation. Despite this high incidence of autism, there are yet to be developed architectural design guidelines catering specifically to the scope of autistic needs.

  11. Architecture for Autism: Autism ASPECTSS in School Design

    Architecture for Autism: Autism ASPECTSS in School Design. Type. journal article. Year. 2014. Architecture, as a science, deals with the manipulation of the physical environment to facilitate certain functions and elicit intended behavior. This environment is comprised primarily of sensory elements- textures, colors, patterns, acoustics etc. In ...

  12. (PDF) Architecture for Autism. Improving Designs for Autistic

    An Architecture for Autism: Concepts of Design Intervention for the Autistic User, Archnet-IJAR: International Journal of Architectural Research [8] Mostafa, M. (2003). Accommodating Autistic Behaviour în Design through Modification of the Architectural Environment, Doctoral Dissertation, Department of Architectural Engineering, Cairo ...

  13. AN ARCHITECTURE FOR AUTISM: CONCEPTS OF DESIGN INTERVENTION ...

    Architecture and Autism Recent research has indicated that autism is growing at almost epidemic proportions (Hill & Frith, 2003) and (Fombonne, 2005). Despite its overwhelming incidence, autism is by and large ignored by the architectural community, excluded from building codes and guidelines, even those developed specifically for special

  14. Architecture for Autism. Improving Designs for Autistic Integration

    Urbanism (ROMANIA) [email protected]. Abstract. Autism is regarded as the most severe psychiatric syndrome of early childhood. Because the. disease cannot be fully treated, the autistic ...

  15. Architecture for Children With Autism Spectrum Disorder and Their

    Objectives: The objective of this study is to identify an architectural design framework that can be applied to create adaptable, transformative therapy rooms that benefit children with autism and their therapists. Background: Previous research suggests that environment shapes and influences human behavior. However, there remains a lack of evidence of effective design for pediatric ...

  16. ARCHITECTURE FOR AUTISM: Autism ASPECTSS™ in School Design

    AUTISM, ARCHITECTURE AND BEHAVIOUR Sensory Design Theory is based on the concept of the sensory environment as a major roleplayer in the process of perception and behavior development. ... (2002). Design Guidelines of a Therapeutic Garden for Autistic Children, MLA thesis dissertation, Department of Landscape Architecture, Louisiana State ...

  17. Social Sensory Architecture for Children with Autism

    News Architecture News Michigan University of Michigan architecture for autism Social Sensory Architectures adtopic-accessibility Cite: Christele Harrouk. "Social Sensory Architecture for Children ...

  18. Designing for Autism: More Able Not Less Disabled

    Clinical Perinatology 31:229-242. 2004. Several studies suggest that individuals with autism may need more exposure to these changing light cycles not less. The studies' authors hypothesize that ...

  19. Autism is associated with in vivo changes in gray matter neurite

    INTRODUCTION. Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by core symptomatology of restricted interests, impaired social communication, and repetitive patterns of behavior (American Psychiatric Association & American Psychiatric Association, 2013).ASD symptomatology has been associated with differences in brain structure (Alemany et al., 2021).

  20. Architecture for autism: Autism aspectss™ in school design

    addressing architecture for autism (Henry, 2012) and is the basis of the presentation of the case study design project in th is pape r - the new Advance Education Center , Qattameya - Cairo, Egypt,