• - Google Chrome

Intended for healthcare professionals

  • My email alerts
  • BMA member login
  • Username * Password * Forgot your log in details? Need to activate BMA Member Log In Log in via OpenAthens Log in via your institution

Home

Search form

  • Advanced search
  • Search responses
  • Search blogs
  • Research in medical...

Research in medical education: three decades of progress

  • Related content
  • Peer review
  • Geoff Norman ( norman{at}mcmaster.ca ) , professor
  • Department of Clinical Epidemiology and Biostatistics, McMaster University, Hamilton, ON, Canada L8N 3Z5
  • Correspondence to: G Norman

The specialty of research in medical education began just over three decades ago with a small group of clinicians and educational researchers at the medical school in Buffalo, New York. Since that time it has expanded worldwide. This paper is a personal reflection on how this research has informed our understanding of learning, teaching, and assessment in medicine.

Summary points

Research in medical education has contributed substantially to understanding the learning process

The educational community is becoming aware of the importance of evidence in educational decision making

Areas of major development include basic research on the nature of medical expertise, problem based learning, performance assessment, and continuing education and assessment of practising physicians

Measuring progress

In medicine, indicators of scientific progress might be measured by objective indicators such as death from cardiovascular disease. In education such “hard” evidence may be lacking for several reasons. Firstly, paradoxically, real differences in educational strategies may not be reflected in outcomes, such as licensing examination performance, simply because students are highly motivated and are not blinded to the intervention, so will compensate for any defects in the curriculum. 1 – 5 Secondly, a curriculum is not like a drug, which can be given at standard doses, but instead contains many components, delivered with variable quality by different teachers. Finally, the time between learning and important outcomes may be so long that the effects of the curriculum are obscured—although not always. 6

Use of evidence in educational decision making

Perhaps the most important evidence of progress in the discipline is that we are now more likely than before to demand evidence to guide educational decision making. Before 1970 important educational advances were largely adopted by persuasion and politics; since that time changes are more likely to be initiated or accompanied by evidence. Although this may sound circular, it represents tangible recognition of the contributions that research can make to the practice of education.

Specific areas of progress

Beyond this cultural change, the following broad domains have seen real progress: basic research in the acquisition of expertise, problem based learning, advances in assessment methods, and continuing education, recertification, and relicensure.

Basic research in the acquisition of expertise

In the early 1970s basic research into the nature of clinical reasoning pursued the hypothesis that expert clinicians were distinguished by the possession of general “clinical problem solving” skills. This was wrong; what emerged was that expertise lay predominantly in the knowledge, both formal and experiential, that the expert brought to the problem. 7 8

This finding resulted in a new direction of inquiry, and a new generation of researchers attempted to uncover the ways that expert clinicians organise medical knowledge in their minds, using research strategies derived from cognitive psychology. 9 10 Although the fruits of these labours are not yet ripe, the research has moved from purely descriptive research to experimental studies directed at a better understanding of the process and theory based interventions that promise to improve the effectiveness of instruction. 11

Problem based learning

Problem based learning developed at McMaster University in the late 1960s, driven by a desire to construct a medical school that was more humane than one that used the traditional, lecture based approach. Since that time an extensive body of evidence has emerged about its effectiveness. 2 – 5 12 If the evaluation is restricted to the central educational outcomes such as performance on licensing examinations, few differences are found. 2 3 This should not be a surprise—most students will do whatever is necessary to compensate for any perceived weakness in a curriculum. 13 However, in terms of the original goal of creating a humane learning environment, problem based learning is an unqualified success. 3 4

Advances in assessment methods

Arguably the most dramatic advances have occurred in approaches to assessment. Thirty years ago assessment was dominated by written tests—essays in Europe and multiple choice questions in North America. When performance assessment did occur, as in specialty certification, the traditional viva dominated. Moreover, there was a paucity of evidence about the strengths and weaknesses of various approaches.

(Credit: TOPHAM PICTUREPOINT)

Medical education, 1960s-style

That has all changed. In the 1970s there was a proliferation of simulation approaches to assessing higher skills like problem solving. These developments were accompanied by careful research, largely stimulated by the licensing and certification bodies in the United States. Content specificity has been a major finding of this research—the correlation of the various measures of skills across problems was typically in the range of 0.1 to 0.3, 14 so many samples of behaviour were necessary to obtain stable, thus reliable, measurement. It is a direct consequence of content specificity that the objective structured clinical examination, 15 with its multiple samples of performance, has come to dominate performance assessment and has led to an extensive literature regarding the impact of various elements such as ratings of simulated patients versus physician observers.

Additional educational resources

Useful websites.

Queen's University, Ontario, Canada ( http://meds.queensu.ca/medicine/pbl/pblhome.htm )—problem based learning home page from Queen's University's School of Medicine

Clerkship Directors in Internal Medicine Task Force Subgroup Report ( lhttp://www.im.org/cdim/5educate/eval/clinical.html )—evaluation of clinical competence

National Board of Medical Examiners ( http://www.nbme.org/about/itemwriting.asp )—constructing written test questions for the basic and clinical sciences

Useful publications

Norman GR, Schmidt HG. The psychological basis of problem-based learning: a review of evidence. Acad Med 1992;67:557-65.

Norman GR, van der Vleuten CPM, Newble DI. International Handbook of Research in Medical Education . Dordrecht: Kluwer, 2002.

Swanson DB, Norman GR, Linn RL. Performance based assessment: lessons from the health professions. Educ Res 1995;24:5-11.

This research has led to major advances in performance assessment—for example, the Medical Council of Canada now administers a performance examination to 1800 licensure candidates each year. 16 Changes in assessment methods at the school level have, however, been much slower in coming. 17

Research foci and major findings

Basic research on reasoning.

Generic reasoning skills are non-existent

Knowledge (formal and experiential) is a critical determinant of reasoning

Self directed learning does not result in lower knowledge

Students and teachers are happier and more satisfied

Performance assessment

Multiple sampling strategies are crucial to reliable, valid assessment

Performance can be assessed as well as knowledge

Continuing education

Improved reliable methods for performance assessment in practice

Systematic approaches to relicensure

Continuing education, recertification, and relicensure

While continuing education of health professionals remains dominated by the “day in medicine,” when physicians assemble and hear a full day of lectures on a particular topic from academic specialists, a substantial body of evidence has emerged pointing to the deficiencies of this approach, and, more importantly, identifying alternative methods that are effective. 18

These changes have paralleled dramatic changes in the assessment of practising physicians. Society is challenging the presumed right of independent practice conferred on the physician at the time of licensure, and the medical education community has responded by devising and implementing several defensible strategies for reassessment. One highly innovative approach is the use of unidentified standardised patients who enter physicians' practices undetected. 19 20 Another is the serious attempt to identify and deal with incompetent physicians through formal performance assessment both in Canada and in the United Kingdom. 21 22

The outcome of medical education

Research in medical education is no longer in its infancy (see box). While it remains multifocal, with nearly as many research methods as researchers, there is a growing body of knowledge about the process and outcome of medical education.

In my view there has been insufficient attention to the interface between our understanding of clinical expertise and the application of this knowledge to improve instruction and assessment. Studies at the curriculum level of complex “treatments” like problem based learning are unlikely to reveal a deeper understanding of the interface between instruction and learning. Real improvement in education, just like real improvements in medical treatments, will only result when we combine better the understanding of basic science with the experimental interventions.

Competing interests None declared.

  • Albanese MA ,
  • Vernon DTA ,
  • Enarson C ,
  • Cariaga-Lo L
  • Monette J ,
  • Tamblyn RM ,
  • McLeod PJ ,
  • Elstein AS ,
  • Shulman LS ,
  • Barrows HS ,
  • Norman GR ,
  • Neufeld VR ,
  • Feightner JW
  • Schmidt HG ,
  • Boshuizen HPA
  • Brooks LR ,
  • Van der Vleuten CPM ,
  • Harden RG ,
  • Reznick RK ,
  • Blackmore D ,
  • Dauphinee WD ,
  • Rothman AI ,
  • Fowell SL ,
  • Thomson MA ,
  • Woodward CA ,
  • McConvey GA ,
  • Neufeld V ,
  • Rethans JJ ,
  • Sturmans F ,
  • van der Vleuten C
  • Vincent DR ,
  • Bordage G ,
  • Jacques A ,
  • Southgate L

research on medical education

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • View all journals
  • Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • Review Article
  • Open access
  • Published: 23 March 2022

Student wellness trends and interventions in medical education: a narrative review

  • Harrison J. Klein 1 &
  • Sarah M. McCarthy 1  

Humanities and Social Sciences Communications volume  9 , Article number:  92 ( 2022 ) Cite this article

15k Accesses

31 Citations

1 Altmetric

Metrics details

  • Science, technology and society

Medical education is a time wrought with personal and professional stressors, posing serious challenges to maintaining student wellness. Extensive research has thus been conducted to identify these stressors and develop practical solutions to alleviate their harmful effects. This narrative review of quantitative and qualitative literature summarizes trends in student wellness and examines interventions deployed by medical schools to ameliorate student distress. Current trends indicate that mental illness, substance use, and burnout are more prevalent in medical students compared to the general population due to excessive academic, personal, and societal stressors. Pass/fail grading systems and longitudinal, collaborative learning approaches with peer support appear to be protective for student wellness. Additionally, maintaining enjoyable hobbies, cultivating social support networks, and developing resiliency decrease distress in medical students on an individual level. Faculty and administrator development is also a necessary component to ensuring student wellness. The COVID-19 pandemic has posed unique challenges to the medical education system and has stimulated unprecedented innovation in educational technology and adaptability. Particularly, the discontinuation of the clinical skill evaluation components for both osteopathic and allopathic students should be a focus of medical student wellness research in the future.

Similar content being viewed by others

research on medical education

Well-being among university students in the post-COVID-19 era: a cross-country survey

research on medical education

Impact of the SARS-CoV-2 pandemic on pediatric subspecialists’ well-being and perception of workplace value

research on medical education

Academic burnout among master and doctoral students during the COVID-19 pandemic

Defining student wellness.

Defining student wellness has challenged stakeholders throughout the medical education system. The term “wellness” first appeared in literature following World War II, though the concept extends back to Christian ethics of the 19th century that linked physical well-being to moral character (Kirkland, 2014 ). Implicit within these origins of wellness is a responsibility of the individual to contribute to their own well-being. This is reflected in Kirkland’s premise that “each individual can and should strive to achieve a state of optimal functioning” ( 2014 ). Contemporary researchers characterize wellness similarly to the World Health Organization’s (WHO) definition of human health. In the preamble to the WHO’s constitution, health is defined as a “state of complete physical, mental, and social well-being and not merely the absence of disease” (Grad, 2002 ). Wellness can therefore be succinctly defined as self-aware, intentional prevention of distress and promotion of well-being (Kirkland, 2014 ).

Human wellness’s inherent multidimensionality often poses a challenge to quantitative research methods. Most studies thus ultimately measure some combination of indicators for distress and well-being. Addiction, mental disorders, suicidal ideation, and burnout are common indicators of distress assessed through various screening methods (Jackson et al., 2016 ; Moir et al., 2018 ; Dyrbye and Shanafelt, 2016 ). On the contrary, Gallup-Healthways Well-Being Index Composite Score examines well-being across several domains of life, including: life evaluation, emotional health, physical health, healthy behavior, work environment, and basic access. The Well-Being Composite Score thus emphasizes the presence of health rather than absence of disease (Kirkland, 2014 ). Though methodologies and definitions vary across studies and reviews, the fundamental characteristics of wellness appear constant: absence of disease and presence of health. Investigations using this paradigm have identified professional education, particularly medical education, as a time of increased distress and diminished wellness (Dyrbye et al., 2014 ). We have thus undertaken a review of contemporary literature to identify trends in student wellness, as well as the interventions deployed to address such trends. This narrative review outlines the prevalence and contributing factors to mental illness, addiction, and burnout in the medical student population. We then describe several intervention strategies used by medical schools to address student wellness deficits, including: wellness committees, pass-fail (P/F) grading, mindfulness training, curricular alterations, and developing more wellness-aware faculty/administration. In compiling this review, we hope to provide a snapshot of contemporary student wellness that may be used to guide medical schools seeking to improve the student experience during the COVID-19 pandemic and its aftermath.

Mental well-being

As previously mentioned, directly measuring wellness is a challenge in educational research. Therefore, most studies assess wellness of student populations by examining rates of mental illness or distress (Kirkland, 2014 ). Numerous studies have revealed that mental health issues are virtually ubiquitous in the medical education system. Dyrbye and colleagues report that medical school appears to be a peak time for distress in a physician’s training ( 2014 ). Localization of distress to the training process is evidenced by higher rates of depression, fatigue, and suicidal ideation in medical students as compared to age-matched controls from the general population, with these symptoms declining to the same levels as control populations within 5 years after completing post-graduate education (Dyrbye et al., 2014 ). Further, Jackson et al determined that a majority of medical students exhibited either burnout, depressive symptoms, suicidal ideation, alcohol abuse/dependence, or a combination of these factors at the time of survey ( 2016 ). A meta-analysis conducted by Rosenstein and colleagues revealed that 27% of medical students met criteria specifically for depression or depressive symptoms ( 2016 ). This increased prevalence of mental illness is not restricted to medical education. A survey of law students revealed that 17% screened positively for depression, 37% screened positively for anxiety, and 27% screened positively for an eating disorder. These statistics indicate increasing trends of mental illness across graduate education as a whole, rather than medical education alone (Organ et al., 2016 ).

This prolific mental distress can substantially impact medical students’ ability to meet academic demands (Dyrbye et al., 2014 ). As such, substantial research has been conducted investigating factors that contribute to mental illness in an academic setting. Surprisingly, students begin medical school with mental health better than similarly aged peers. However, these roles quickly reverse, with medical student mental health ultimately becoming worse than control populations (Dyrbye and Shanafelt, 2016 ). It seems that medical education may actually select for individuals prone to developing psychological distress (Bergmann et al., 2019 ). Moir et al. report that the majority of medical students are considered Type A individuals, displaying high levels of ambition and competition. Though these qualities facilitate academic success, they also lead to hostility and frustration with challenging situations (Moir et al., 2018 ). Medical students were also found to have high levels of conscientiousness (Moir et al., 2018 ). Conscientiousness is a component of the Big 5 Personality model, which uses the qualities of neuroticism, extraversion, openness, agreeableness, and conscientiousness as the most basic descriptors of an individual’s personality (Shi et al., 2018 ). Conscientiousness is characterized by diligence and careful attention to detail, thus predicting high levels of academic success. However, increased conscientiousness may also exacerbate the likelihood of mental and physical distress due to inordinate demands placed on one’s self (Bergmann et al., 2019 ). Student age was also found to correlate with mental well-being. Younger students were found to approach their studies with dualistic orientations, seeking an explicit, incontrovertible knowledge of medicine. Diagnostic challenges and knowledge gaps ubiquitous in clinical medicine can thus be frustrating to younger students (Lonka et al., 2008 ). It is worth noting that, despite the importance of addressing mental health issues, some authors feel categorizing symptoms of depression and burnout leads to over-medicalization of human suffering and is not useful (Moir et al., 2018 ).

The aforementioned qualities of medical students facilitate development of both maladaptive perfectionism and imposter syndrome, heightening mental wellness concerns in this population (Bubenius and Harendza, 2019 ; Hu et al., 2019 ; Henning et al., 1998 ; Seeliger and Harendza, 2017 ; Thomas and Bigatti, 2020 ). The prevalence of imposter syndrome has been estimated between 22.5–46.6% in medical students, however, the prevalence of perfectionism has proven much more difficult to measure (Thomas and Bigatti, 2020 ). Maladaptive perfectionism is a multifactorial entity encompassing inordinate self-expectations, negative reactions to failure, and a persistent lack of satisfaction in performance (Bubenius and Harendza, 2019 ; Thomas and Bigatti, 2020 ). This emphasis on perfection prevents students from appreciating their vulnerability and thus delays self-recognition of mental distress (Seeliger and Harendza, 2017 ). Not surprisingly, maladaptive perfectionism has thus demonstrated an association with anxiety, depression, bulimia nervosa, anorexia nervosa, and chronic fatigue syndrome (Thomas and Bigatti, 2020 ). The strength of these associations was further demonstrated by Bubenius and Harendza’s use of maladaptive perfectionism as a predictor of depressive symptoms in German medical school applicants ( 2019 ). Imposter syndrome is a phenomenon often associated with maladaptive perfectionism and is characterized by anxiety, lack of self-confidence, depression, and frustration with one’s performance (Clance and Imes, 1978 ). While imposter syndrome bears an uncanny resemblance to perfectionism, the difference lies in imposter syndrome’s characteristic fear of being discovered as undeserving of a place in medical school, regardless of actual accomplishments (Clance and Imes, 1978 ). Imposter syndrome has been associated with a lack of resilience and this, similar to perfectionism, can increase psychological distress (Levant et al., 2020 ). The combined effects of imposter syndrome and maladaptive perfectionism predispose students to mental health issues and thus deserve special attention in studies geared toward well-being interventions. Of note, preliminary work by Chand and colleagues has demonstrated that cognitive behavioral therapy may be especially effective in ameliorating the deleterious effects of maladaptive perfectionism (Chand et al., 2018 ). Treatment for imposter syndrome, however, appears to be a significant gap in wellness literature (Bravata et al., 2020 ).

Deeply intertwined with imposterism and perfectionism is the medical student’s experience of shame. Shame is characterized as a negative emotional response to life events. These life events can take many forms, though personal mistakes within a hostile environment are a common instigator of shame (Bynum et al., 2019 ). Perfectionism and imposter syndrome thus provide a fertile soil of negative self-evaluation in which shame can flourish (Bynum et al., 2020 ). Feelings of shame are further exacerbated by factors within the medical school environment. Mistreatment by colleagues or preceptors, receiving low test scores, underrepresentation within classes, institutional expectations, and social comparison were reported as contributors to shame by medical students in a hermeneutic analysis (Bynum et al., 2021 ). Regardless of origin, shame has been recognized as a “destabilizing emotion,” leading to student isolation, psychological distress, and difficulty with identity formation (Bynum et al., 2021 ). Explorations of shame as a contributor to medical student distress are limited in the current literature. Thus, wellness researchers must dedicate studies to characterizing and preventing this significant, but potentially modifiable, contributor to student distress (Bynum et al., 2019 ).

Medical students’ educational environment can also have a profound impact on mental health, particularly during the early days of training. The transition between college and professional school is marked by anxiety, stress, and financial upheaval. Thus, students may feel more vulnerable than ever as they begin their professional education in a new environment in which they are unaware of available mental health resources, leading to isolation and unnecessary suffering (Organ et al., 2016 ). Even for those aware of these resources, significant stigma still surrounds mental illness in professional education. This is emphasized in Organ et al’s finding that only 50% of law students with mental health issues actually receive professional counseling. Their findings suggest that this reluctance largely stems from fear of professional repercussions if administrators discover a student’s mental health diagnosis (Organ et al., 2016 ). While this study was conducted in law students, Hankir et al found similar trends in both medical students and physicians by examining autobiographical narratives published to combat the stigma against help-seeking behavior (Hankir et al., 2014 ). Hankir and colleagues have elucidated several phenomena that contribute to medical students delaying or even avoiding treatment for mental distress. Self-stigma operates as a powerful deterrent to help-seeking and seems to stem from internalization of society’s expectation that medical students are mentally and physically invincible. This leads to feelings of decreased self-esteem and self-efficacy, as well as fear of stigmatization from the general public (Hankir et al., 2014 ; Fischbein and Bonfine, 2019 ). Rahael Gupta, now a psychiatry resident, brought this stigma to public light as she shared her personal experience with depression during medical school in her short film project entitled “Physicians Connected.” The film, conveyed line-by-line through Gupta’s colleagues at the University of Michigan, highlights the unspoken rule that mental distress is a black mark on a future physician’s career (Gupta, 2018 ). Gupta’s efforts, and those similar, underscore a growing call for public discourse, rather than concealment, of mental well-being within the medical profession. This call is echoed with Robyn Symon’s film “Do No Harm: Exposing the Hippocratic Hoax,” which further explores the toxic culture of medical education that drives physicians and medical students to commit suicide. Both Gupta and Symon highlight the taboo of mental distress within the medical field, which instead prioritizes efficiency and academic success over student and physician well-being. Both films characterize this lack of help-seeking behavior as products of the healthcare system’s toxic structure, rather than individual student distress interacting with a demanding work life (Gupta, 2018 ; Symon 2020 ).

Substance use

In addition to impaired academic performance, mental illness also increases risk for development of substance use disorder in medical students (McLellan, 2017 ). Thus, the pervasiveness of mental illness during medical education warrants careful analysis of substance use patterns in the student population. Alcohol abuse or dependence has already been well documented in the professional education system (Dyrbye and Shanafelt, 2016 ; Organ et al., 2016 ; Jackson et al., 2016 ). Alarmingly, despite 43% of law students reporting a recent occurrence of binge drinking, only 4% had sought professional assistance for alcohol or drug misuse. This trend again highlights significant mental health and addiction stigma throughout the graduate education system (Organ et al., 2016 ). Medical students, and all those in the medical field, may be uniquely affected by this prevalence of substance use. For example, the American Foundation for Suicide Prevention produced a documentary entitled “Struggling in Silence: Physician Depression and Suicide,” which highlights the powerful role that substance use plays in medical student and physician suicide specifically. With a greater knowledge of and access to potentially lethal substances, those in the medical field are at heightened risk for suicide completion, especially with the inhibition-lowering effects of some drugs (AFSP, 2002 ).

Alcohol dependence is of particular concern in medical education due to implications in hindering student career progression and compromised patient safety. Despite this concern, alcohol use is prevalent among medical students. A survey of 855 medical students across 49 schools in the United States revealed that 33.8% of students reported consuming 5 or more drinks in one sitting within the past two weeks, meeting the criteria for binge drinking (Ayala et al., 2017 ). Further, survey responses from 4402 medical students in the U.S. demonstrated that 32.4% met criteria for alcohol abuse/dependence, compared to 15.6% in a control sample of similarly aged but non-medical student counterparts (Jackson et al., 2016 ). The substantial academic stress of a professional education is a clear driving force behind this trend, though several compounding risk factors have been identified. Young males were identified as at an increased risk for alcohol dependence compared to their female colleagues (Jackson et al., 2016 ; Organ et al., 2016 ). Jackson and colleagues further identified that students who were unmarried, diagnosed with a mood disorder, low-income, or burdened with educational debt from professional and undergraduate studies were at increased risk for alcohol dependence ( 2016 ). While ethnicity’s relationship to alcohol use was not explored in medical students, a survey of over 11,000 law students from 15 law schools in 2016 determined that ethnic minorities were more likely to report an increase in drinking whereas Caucasian students were more likely to demonstrate a positive CAGE screening (Organ et al., 2016 ). The CAGE screen is a 4-item questionnaire developed by John Ewing in 1984 to identify drinking problems. The CAGE screen has a 93% sensitivity and 76% specificity for identifying problem drinking whereas alcoholism identification has a sensitivity of 91% and specificity of 77% (Williams, 2014 ). This increased alcohol use in both Caucasian and ethnic minority students demonstrates a need for culturally tailored and inclusive prevention programs.

Though alcohol is the most commonly abused drug amongst medical students, illicit drug use has also been reported at concerning levels. A survey of 36 United States medical schools revealed that approximately one-third of students had used illicit drugs within the past 12 months (Shah et al., 2009 ). Papazisis and colleagues similarly examined illicit drug use in undergraduate medical students in Greece, finding a lifetime substance use rate of ~25% ( 2017 ). Marijuana was the most common illicit drug used in both studies (Shah et al., 2009 ; Papazisis et al., 2017 ). Use of prescription medications without a prescription was also found amongst law students, particularly stimulants such as Ritalin, Adderall, and Concerta (Organ et al., 2016 ). These findings suggest that the competitive culture of graduate education may drive students to engage in recreational drug use, particularly those struggling to meet academic demands or suffering from mental distress.

Student burnout

Burnout was canonically defined by Freudenberger in 1974 as a state of physical and mental exhaustion caused by or related to work activities, often manifesting when heightened professional stress conflicts with personal ideals or expectations (Freudenberger, 1974 ; Rodrigues et al., 2018 ; Baro Vila et al., 2022 ). Though originally a descriptive disorder, burnout is now recognized in the International Classification of Diseases, 10th revision, under code Z73.0 (Lacy and Chan, 2018 ). Burnout is traditionally diagnosed with the Maslach Burnout Inventory, a 22-item questionnaire that characterizes each of the three burnout domains: emotional exhaustion, depersonalization, and personal accomplishment (Dyrbye and Shanafelt, 2016 ). Emotional exhaustion is associated with feelings of being overworked and a subsequent loss of compassion. Depersonalization is characterized by a sense of detachment from colleagues/patients and, when combined with emotional exhaustion, can result in unprofessional behavior. The personal accomplishment domain mainly describes an individual’s feelings of competence and professional satisfaction (Lacy and Chan, 2018 ). In addition to each domain’s unique consequences, burnout domains interact to cause an extinction of motivation when efforts no longer produce desired results (Vidhukumar and Hamza, 2020 ). Approximately 50% of fourth year medical students were found to have burnout when surveyed with the Maslach Burnout Inventory (Dyrbye and Shanafelt, 2016 ). This value holds true internationally according to a survey of medical students conducted in India (Vidhukumar and Hamza, 2020 ). Additionally, burnout increases as training progresses, particularly the depersonalization component (Dyrbye and Shanafelt, 2016 ). Burnout thus increases feelings of callousness towards patients, leading to unprofessional and potentially dangerous conduct. Burnout in medical school also appears to affect specialty choice; burned out individuals were more likely to choose specialties with more controllable lifestyles and higher pay (Dyrbye and Shanafelt, 2016 ). Investigating causes of burnout is thus of utmost importance to understand potential influences on medical student career trajectory and ensuring patient safety.

Identified causes of burnout appear to differ between the years of medical training. Preclinical years are characterized by dissatisfaction with the learning environment and lack of faculty support. Clinical years are characterized by dissatisfaction with the learning environment, clerkship disorganization, and working with cynical or abusive residents and/or attending physicians (Dyrbye and Shanafelt, 2016 ). Reed and colleagues found a positive correlation between the time spent in exams and burnout whereas a negative correlation was observed with increased patient interaction ( 2011 ). Several correlates of burnout outside of medical schools’ learning environments and curricula have also been described, including: female gender, dissatisfaction with career options, non-ethnic minority status, high educational debt, residency competition, expanding knowledge-base, workforce shortage, and stressful events in one’s personal life (Dyrbyre and Shanafelt, 2016 ; Vidhukumar and Hamza, 2020 ). Erosion of social ties during medical education also contributes to the burnout spiral, as socialization is protective against burnout symptoms (Bergmann et al., 2019 ; Busireddy et al., 2017 ). No associations between contact days, time in didactic learning or clinical experiences, and any measure of student well-being and burnout prevalence were found (Reed et al., 2011 ).

Interventions to improve well-being

Medical schools have implemented several interventions to reduce student distress and enhance wellness. Though interventional approaches are varied, researchers have identified salient features common to most successful wellness interventions. For example, Dyrbye and colleagues underline the importance of well-being committees that can liaise between administration, faculty, and students, lessening fear of admonishment for seeking help or acknowledging distress ( 2019 ). Additionally, Moir et al reports that student buy-in is absolutely essential, as disengaged wellness lectures offer little, if any, benefit ( 2016 ). Interventions appear most effective when they are designed to reduce student burdens, rather than adding to the already overwhelming schedule and content of medical school (Busireddy et al., 2017 ). Finally, administrations often pose an obstacle to wellness initiatives, especially those who believe that well-being is of minor importance. This obstacle is reflected by the low prevalence of medical schools with official wellness competencies built into the curriculum (Dyrbye et al., 2019 ). We will now explore some of the specific interventions medical schools have employed to improve student wellness.

Transitioning to a Pass/Fail (P/F) grading scheme is a wellness initiative that has received substantial attention in the United States, especially in light of findings that grade evaluation systems are a larger determinant of student well-being compared to content of educational contact hours (Reed et al., 2011 ; Spring et al., 2011 ). The Mayo Medical School examined the feasibility and effects of P/F grading by introducing the system to first-year medical students in 2006. Rohe and colleagues found that these first-year medical students reported less stress, better overall mood, and greater group cohesion compared to their graded peers. These characteristics persisted into the second year of medical school, even when grading reverted to a traditional 5-level schema (Rohe et al., 2006 ). While critics of P/F grading argue that students will be less motivated to excel academically, evidence suggests that first-year residents from P/F schools performed similarly to residents from graded schools (Rohe et al., 2006 ). Additionally, a P/F system reduces extrinsic motivation and intense competition while increasing cohesion and peer cooperation (Moir et al., 2018 ; Rohe et al., 2006 ). These qualities are essential in the increasingly team-based healthcare landscape. Though transitioning to a P/F system reduced medical student distress during the preclinical years, it is important to note that the transition did not decrease test anxiety for the United States Medical Licensing Exam (USMLE) Step 1 (Williams et al., 2015 ; Rohe et al., 2006 ). Determining test anxiety for USMLE Step 1 will be an active area of research in the face of a new P/F grading for the licensure exam.

Allopathic and osteopathic medical programs are infamous for their academic rigors and intense curricular designs. These curricula are often described as competitive, leisure and socialization-deficient, and requiring exclusive dedication. These characteristics predispose medical students to decreased quality of life (Bergmann et al., 2019 ). As such, altering the curricula of these programs has been investigated as a means to prevent, rather than react to, student distress through a person-in-context perspective (Dyrbye et al., 2005 ; Slavin et al., 2012 ; Slavin et al., 2014 ). It has long been documented that the undergraduate medical curriculum is overflowing with information (D’Eon and Crawford, 2005 ). Rather than identifying salient features for inclusion in courses, medical school faculty often address this surplus of information by cramming unrealistic amounts of information into lectures (D’Eon and Crawford, 2005 ; Dyrbye et al., 2005 ). As mentioned earlier, wellness initiatives are often more effective when they reduce student burdens, rather than adding additional requirements (Busireddy et al., 2017 ). Though this may lead one to believe that shortening curricular hours is an intuitive wellness initiative, this measure only led to workload compression and feelings of being unprepared for clinical practice when used as a unifocal intervention (Dyrbye and Shanafelt 2016 ; Busireddy et al., 2017 ; Dyrbye et al., 2019 ). This continually expanding mass of information thus poses two challenges to wellness initiatives. First, medical students’ schedules are often too consumed by curricular hours to engage in additional wellness programming, especially without an external motivator. Second, the amount of information itself imposes feelings of distress on students, exacerbating the already-stressful nature of medical school and predisposition to mental health issues. Beyond the quantity of curricular hours, delivery and content of those hours is also important to student wellness. Lonka and colleagues found that a collaborative approach to learning increased satisfaction and decreased the perceived workload ( 2008 ). The collaborative environment of problem-based learning may thus offer some improvement to curriculum-induced stress, though current evidence is weak (Camp et al., 1994 ). Incorporating self-care workshops into the curriculum also appears to ameliorate the depersonalization component of burnout (Busireddy et al., 2017 ). In light of these promising results, it follows that the most powerful approach to improving student wellness through curricular restructuring is a multifactorial one. This multifactorial approach is best appreciated in the wellness initiatives within the Vanderbilt University School of Medicine and the Saint Louis University School of Medicine (Drolet and Rodgers, 2010 ; Slavin et al., 2014 ).

The Vanderbilt wellness initiative is composed of three arms: the Advisory College System, the Student Wellness Committee, and Vanderbilt Medical Student LIVE. The Advisory College is composed of both students and faculty that offer personalized advising and mentorship to students within the school. The Student Wellness Committee emphasizes student-led wellness initiatives and serves as an interface with faculty. Lastly, Vanderbilt Medical Student LIVE is an adjunct curriculum that fosters self-care and personal growth amongst the physicians in training (Drolet and Rodgers, 2010 ). The wellness program at the Saint Louis University School of Medicine is structured differently, though shares similar goals. The program entitled Mental Health 3.0 radically, but feasibly and efficiently, altered the structure of the School’s curriculum. Grading was converted to a P/F basis, with only the median exam score and 75 th percentile reported to students. Student contact hours were reduced by 10% during the preclinical curriculum and faculty were advised on how to appropriately identify topics for inclusion in their lectures. Longitudinal electives were instituted following contact hour reduction to encourage student growth and interest identification while forming relationships with fellow students and faculty. These electives were complemented by the formation of five learning communities to further enhance student immersion in areas of interest. Lastly, resilience and mindfulness training was incorporated into the mandatory curriculum while offering an increased number of social events (Slavin et al., 2014 ; Slavin, 2019 ). This wellness initiative was continually expanded and improved to include an early entry and exit to third-year clinical rotations, which minimized stress entering fourth year, and a confidential depression/anxiety tracking system to screen students for worrisome mental health issues (Slavin and Chibnall, 2016 ; Slavin, 2019 ). Comparison between these wellness initiatives reveals that whereas Slavin and colleagues have produced significant declines in student depression, anxiety, and stress with increased group cohesion (Slavin et al., 2014 ; Slavin, 2019 ), the impacts of curricular changes at the Vanderbilt University School of Medicine have not yet been quantified (Drolet and Rodgers, 2010 ). In addition to minimizing student distress, the Mental Health 3.0 program also increased student flourishing (Slavin and Chibnall, 2016 ). The success of Mental Health 3.0 provides strong evidence that diminished medical student well-being is likely a product of multiple factors within the medical learning environment rather than intrinsic student qualities alone (Slavin, 2019 ).

Mindfulness practices have also become increasingly popular as a wellness intervention. Mindfulness is defined as the non-judgmental awareness of one’s own experience with the goal of increasing concentration, insight, and relaxation. Employing mindfulness techniques has been demonstrated to decrease stress and anxiety, though its effects are not as apparent in reducing burnout symptoms (Williams et al., 2015 ). This lack of effect on burnout symptoms may be due to the focus of mindfulness practices, which is on the individual experience rather than improving the structural entities that cause burnout in the first place (Moir et al., 2018 ). Mindfulness practices implemented through peer-support groups in a United States medical school failed to demonstrate improvement in student anxiety, depression, quality of life, or resiliency. Though this may have been due to insufficient peer training, a non-blinded study design, or limited participation, these results lend further support to the need for structural corrections to the medical education system rather than improvement in students’ attitudes or outlooks (Moir et al., 2018 ). This is in contrast to the results obtained when primary care doctors underwent a 52-hour mindfulness training course. Post-course surveys revealed reduced burnout and improved empathy sustained for 3 months post-intervention (Dyrbye and Shanafelt, 2016 ). Comparison of factors contributing to burnout between medical students and practicing clinicians, as well as determining prerequisites for successful implementation of mindfulness programs, may thus be potential areas for research.

Administration and faculty personnel serve as educators and role models for students. Interventions centered on these individuals can thus facilitate a top-down approach to increasing student wellness. A primary concern for German medical students was a lack of coherent information management by faculty with regard to academic expectations, exacerbating the stress of exams and assignments. Solutions offered by students included recording lectures for later viewing and professors providing explicit learning objectives. These students also reported that attendance policies are often too strict and may impede self-care practices, such as utilizing the school counseling system. Proposed solutions were to loosen attendance requirements via a self-reporting absence system (Dederichs et al., 2020 ). Beyond their academic roles, faculty also often serve as mentors to students. The Liaison Committee on Medical Education requires that schools implement a mentoring system for their students, and these mentors are typically medical school faculty. However, Andre et al proposed a vertical mentoring system that complements faculty involvement with senior students in a program entitled “Mentors in Medicine.” This peer-mentoring system was found to be better suited for day-to-day navigation of medical school, while faculty were better suited to offer more long-term career support (Andre et al., 2017 ). Further integration of mentoring to include financial advisors may reduce distress in students with large amounts of educational debt (Dyrbye et al., 2019 ). Faculty commitment to wellness initiatives facilitates the development of communal concern for student wellness, extending beyond the Office of Student Affairs (Slavin et al., 2014 ). Moving forward, faculty and administration will continue to play pivotal roles in student wellness as the medical education system adapts to the technology and challenges of a post-pandemic landscape.

Though a majority of reviewed literature focused on the preclinical years of medical school, important developments have been made in clinical education as well. Dyrbye and Shanafelt found that a longitudinal rotation curriculum, in which students spend several contiguous months at one training site rather than smaller stints at several training sites, facilitates development of meaningful relationships with preceptors, increasing satisfaction and reducing burnout (Dyrbye and Shanafelt, 2016 ). This is congruent with Slavin and Chibnall’s finding that deploying effective wellness initiatives is made difficult by the changing environment of clinical rotations and lack of control over clinician interactions with students (Slavin and Chibnall, 2016 ). Further work by Slavin and Chibnall indicates that negative experiences (e.g., mistreatment) during clinical years are a product of resident burnout, which itself results from toxic healthcare structures and environments (Slavin and Chibnall, 2016 ). For example, residents often experience sleep deprivation, adjustment difficulties, interpersonal conflict, demanding workloads, and a lack of control over their schedule. Interplay between these factors and resident burnout increases likelihood for development of depression and suicidal ideation (Nene and Tadi, 2021 ). These deleterious resident symptoms may then translate to negative interactions with medical students. Improving the medical student experience can thus be facilitated by ameliorating resident burnout. A potential target for resident burnout interventions is resiliency, which has demonstrated a protective effect against burnout (Sheer et al., 2021 ; Nituica et al., 2021 ; Rodrigues et al., 2018 ). For example, implementation of the Gabbe Health and Wellness program, which was structured around an interprofessional Mindfulness in Motion training, significantly increased resiliency in residents at the Ohio State University Wexner Medical Center (Moffatt-Bruce et al., 2019 ). The Mindfulness in Motion training consists of a weekly group meeting with five sequential segments: prompted reflective writing, video presentation on mind/body connectivity, voluntary sharing of reflective responses, video instruction on yoga and mindfulness practices, and a closing meditation (Klatt et al., 2020 ). Though yielding promising results, these methods remain reactive, similar to most medical student wellness initiatives, and do not address the underlying structural causes of burnout within the healthcare system. While current literature lacks specific explorations of the healthcare system’s tendency toward reactive change, as opposed to proactive, this may be an extension of the field’s prioritization of efficiency and academic success over well-being, as mentioned previously (Gupta, 2018 ; Symon, 2020 ). Addressing the correction of such structures is beyond the scope of this review, but deserves serious attention in wellness research. In addition, further explorations of student and resident wellness may involve elucidating the specific motivations within medical culture that keep wellness a low priority within program structuring.

Based on reviewed literature, the following interventions were demonstrated to improve student well-being: transitioning to a P/F grading system, collaborative learning approaches, longitudinal clinical rotation sites, and peer-mentoring programs. General measures for reducing distress include: maintaining hobbies, socialization, positive outlook, avoiding delayed gratification mindsets, learned resiliency, and choosing medicine based off of one’s own interests. Mental Health 3.0 offers an evidence-based approach for successfully implementing these interventions. Measures that did not demonstrate significant improvement include: peer-led mindfulness groups and shortening curricular hours (Vidhukumar and Hamza, 2020 ; Dyrbye and Shanafelt, 2016 ).

The COVID-19 pandemic caused both immediate and long-term changes to the delivery of medical education. At the onset of the pandemic, medical students were removed from clinical rotations to protect against infection. While this ensured their safety, these students were also deprived of peer-engagement due to asynchronous virtual learning. This shift undoubtedly contributed to increased feelings of isolation and risk for burnout (Klasen et al., 2021 ). Despite numerous challenges, the pandemic has also provided opportunities for medical educators to innovate with new technology. For example, senior students on emergency medicine rotations have served as a source of virtual follow-up for emergency department (ED) visits after reviewing medical records. This has allowed students to continue clinical skill development while ensuring safety from infection and proper supervision. Virtual ED follow-ups reflect a growing trend for web-side encounters to serve as a temporary substitute or supplement for clinical rotations (Klasen et al., 2021 ). These digital learning structures were well-received by students, which predicts the persistence of virtual learning in medical school curricula after the COVID-19 pandemic resolves (Dederichs et al., 2020 ). Despite this apparent positive reception, online learning poses challenges to students’ psychological well-being. The asynchronous nature of virtual education modalities lends to feelings of isolation and a lack of motivation during the preclinical years of medical school (Klasen et al., 2021 ). Combined with the already taxing nature of medical education, the stressors of online learning may ultimately exacerbate existing student wellness concerns. Students featured in “Four Years in Blue: The University of Michigan Medical School Documentary” expressed concern for their future clinical training, specifically with regard to availability of personal protective equipment and physician safety. The students also reported feelings of sadness due to a loss of participation in important class milestones, such as a residency match day celebration (Michigan Medicine, 2020 ). Future alterations to the global medical education system in light of the pandemic will thus be an active area of research for years to come. Most notably, the pandemic appears to have served as an impetus for the National Board of Medical Examiners and National Board of Osteopathic Medical Examiners to indefinitely suspend the Step 2-Clinical Skills and Level 2-Performance Evaluation requirement for both allopathic and osteopathic students, respectively (AACOM, 2021 ; USMLE, 2021 ). Student response to this change and its potential effect on student performance should be thoroughly evaluated in future research.

Conclusions and future work

Further reports of wellness programs and interventions aimed at reducing student stress, developing coping strategies, and preventing burnout are needed. As demand for physicians increases and medical school curricula continue to expand, the potential for worsening student wellness increases. COVID-19, stress of licensure exam preparation, and the increasing cost of medical school all add to the brewing pot of pervasive mental illness, substance use, and burnout in the medical student population. Our review of contemporary literature suggests that transitioning to a P/F grading system and implementing longitudinal, collaborative learning approaches with peer support offer solutions to deteriorating medical student wellness. Electives should also be incorporated within the curriculum to further enhance student engagement and excitement for learning (Slavin, 2014 ). Academic faculty should be specifically targeted with instruction on how to reduce extraneous information within courses (Slavin et al., 2014 ; Slavin, 2019 ). Students should also be encouraged to maintain enjoyable hobbies, cultivate social support networks, and maintain a positive outlook to develop resiliency and protect their mental health (Vidhukumar and Hamza, 2020 ; Dyrbyre and Shanafelt, 2016 ). Cognitive behavioral therapy and training in cognitive restructuring techniques should be made available to students in order to address feelings of shame, maladaptive perfectionism, and imposter syndrome (Bynum et al., 2020 ; Chand et al., 2018 ; Slavin et al., 2014 ; Slavin, 2019 ). Confidential depression/anxiety tracking systems to screen students for worrisome mental health issues may also aid in identifying at risk students before mental distress becomes fulminant (Slavin, 2019 ). Faculty and administrators must also strive to improve student wellness from a top-down approach, ensuring that students feel safe to express wellness concerns and seek support when necessary. This may be accomplished through faculty training sessions or development of student liaison committees (Dyrbye et al., 2019 ; Andre et al., 2017 ). Programs at the Saint Louis University School of Medicine and Vanderbilt University School of Medicine offer successful templates for implementation of such programming. With the implementation of any intervention, of course, stringent evaluation guidelines must be employed to ensure optimal improvement to student wellness while avoiding unnecessary burdens to students’ overwhelming schedule.

Data availability

Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.

American Association of Colleges of Osteopathic Medicine (2021) AACOM, AOA, NBOME support suspension of COMLEX-USA Level 2-PE and continued osteopathic assessment. AACOM. https://www.aacom.org/news-and-events/news-detail/2021/02/17/aacom-aoa-nbome-support-suspension-of-comlex-usa-level-2-pe-and-continued-osteopathic-assessment . Accessed 16 Apr 2021

American Foundation for Suicide Prevention (2002) Struggling in silence: physician depression and suicide. State of the Art, Inc

Andre C, Deerin J, Leykum L (2017) Students helping students: vertical peer mentoring to enhance the medical school experience. BMC Res Note 10(1):176. https://doi.org/10.1186/s13104-017-2498-8

Article   Google Scholar  

Ayala EE, Roseman D, Winseman JS, Mason HRC (2017) Prevalence, perceptions, and consequences of substance use in medical students. Med Educ Online 22(1):1392824. https://doi.org/10.1080/10872981.2017.1392824

Article   PubMed   PubMed Central   Google Scholar  

Baro Vila RC, Burgos LM, Sigal A, Costabel JP, Alves de Lima A (2022) Burnout syndrome in cardiology residents. Impact of the COVID-19 pandemic on burnout syndrome in cardiology residents. Curr Probl Cardiol 47(1):100873. https://doi.org/10.1016/j.cpcardiol.2021.100873

Article   PubMed   Google Scholar  

Bergmann C, Muth T, Loerbroks A (2019) Medical students’ perceptions of stress due to academic studies and its interrelationships with other domains of life: a qualitative study. Med Educ Online 24(1):1603526. https://doi.org/10.1080/10872981.2019.1603526

Bravata DM, Watts SA, Keefer AL, Madhusudhan DK, Taylor KT, Clark DM, Nelson RS, Cokley KO, Hagg HK (2020) Prevalence, predictors, and treatment of impostor syndrome: a systematic review. J Gen Intern Med 35(4):1252–1275. https://doi.org/10.1007/s11606-019-05364-

Busireddy KR, Miller JA, Ellison K, Ren V, Qayyum R, Panda M (2017) Efficacy of interventions to reduce resident physician burnout: a systematic review. J Grad Med Educ 9(3):294–301. https://doi.org/10.4300/JGME-D-16-00372.1

Bußenius L, Harendza S (2019) The relationship between perfectionism and symptoms of depression in medical school applicants. BMC Med Educ 19(1):370. https://doi.org/10.1186/s12909-019-1823-4

Bynum IV WE, Artino AR, Uijtdehaage S, Webb A, Varpio L (2019) Sentinel emotional events: the nature, triggers, and effects of shame experiences in medical residents. Acad Med 94(1):85–93. https://doi.org/10.1097/ACM.0000000000002479

Bynum IV WE, Teunissen WP, Varpio L (2021) In the “Shadow of Shame”: a phenomenological exploration of the nature of shame experiences in medical students. Acad Med 96(11S):S23–S30. https://doi.org/10.1097/ACM.0000000000004261

Bynum IV WE, Uijtdehaage S, Artino Jr AR, Fox JW (2020) The Psychology of shame: a resilience seminar for medical students. MedEdPORTAL 16:11052. https://doi.org/10.15766/mep_2374-8265.11052

Bynum IV WE, Varpio L, Lagoo J, Teunissen PW (2021) ‘I’m unworthy of being in this space’: The origins of shame in medical students. Med Educ 55(2):185–197. https://doi.org/10.1111/medu.14354

Camp DL, Hollingsworth MA, Zaccaro DJ, Cariaga-Lo LD, Richards BF (1994) Does a problem-based learning curriculum affect depression in medical students? Acad Med 69(10 Suppl):S25–7. https://doi.org/10.1097/00001888-199410000-00031 . PMID: 7916817

Article   CAS   PubMed   Google Scholar  

Chand SP, Chibnall JT, Slavin SJ (2018) Cognitive behavioral therapy for maladaptive perfectionism in medical students: a preliminary investigation. Acad Psychiatry 42(1):58–61. https://doi.org/10.1007/s40596-017-0708-2

Clance PR, Imes SA (1978) The imposter phenomenon in high achieving women: dynamics and therapeutic intervention. Psychothe. Theory Res Pract 15:241–247. https://doi.org/10.1037/h0086006

Dederichs M, Weber J, Muth T, Angerer P, Loerbroks A (2020) Students’ perspectives on interventions to reduce stress in medical school: a qualitative study. PLoS ONE 15(10):e0240587. https://doi.org/10.1371/journal.pone.0240587

Article   CAS   PubMed   PubMed Central   Google Scholar  

D’Eon M, Crawford R (2005) The elusive content of the medical-school curriculum: a method to the madness. Med Teach 27(8):699–703. https://doi.org/10.1080/01421590500237598

Drolet BC, Rodgers S (2010) A comprehensive medical student wellness program—design and implementation at Vanderbilt School of Medicine. Acad Med 85:103–110. https://doi.org/10.1097/00001888-199410000-00031

Dyrbye LN, Sciolla AF, Dekhtyar M, Rajasekaran S, Allgood JA, Rea M, Knight AP, Haywood A, Smith S, Stephens MB (2019) Medical school strategies to address student well-being: a national survey. Acad Med 94(6):861–868. https://doi.org/10.1097/ACM.0000000000002611

Dyrbye LN, Shanafelt T (2016) A narrative review on burnout experienced by medical students and residents. Med Educ 50(1):132–149. https://doi.org/10.1111/medu.12927

Dyrbye LN, Thomas MR, Shanafelt TD (2005) Medical student distress: causes, consequences, and proposed solutions. Mayo Clin Proc 80(12):1613–22. https://doi.org/10.4065/80.12.1613

Dyrbye LN, West CP, Satele D, Boone S, Tan L, Sloan J, Shanafelt TD (2014) Burnout among U.S. medical students, residents, and early career physicians relative to the general U.S. population. Acad Med 89(3):443–451. https://doi.org/10.1097/ACM.0000000000000134

Fischbein R, Bonfine N (2019) Pharmacy and medical students’ mental health symptoms, experiences, attitudes and help-seeking behaviors. Am J Pharm Educ 83(10):7558. https://doi.org/10.5688/ajpe7558

Freudenberger H (1974) Staff burn-out. J Soc Issues 30(1):159–165. https://doi.org/10.1111/j.1540-4560.1974.tb00706.x

Grad FP (2002) The preamble of the constitution of the World Health Organization. Bull WHO 80(12):981–984

PubMed   Google Scholar  

Gupta R (2018) Physicians connected. https://www.youtube.com/watch?v=Xtfsrqp9XH4&t=191s . Accessed 9 Jan 2022

Hankir AK, Northall A, Zaman R (2014) Stigma and mental health challenges in medical students. BMJ Case Rep. https://doi.org/10.1136/bcr-2014-205226 . PMID: 25183806; PMCID: PMC4158203

Henning K, Ey S, Shaw D (1998) Perfectionism, the imposter phenomenon and psychological adjustment in medical, dental, nursing and pharmacy students. Med Educ 32(5):456–64. https://doi.org/10.1046/j.1365-2923.1998.00234.x

Hu KS, Chibnall JT, Slavin SJ (2019) Maladaptive perfectionism, imposterism, and cognitive distortions: threats to the mental health of pre-clinical medical students. Acad Psychiatry 43:381–385. https://doi.org/10.1007/s40596-019-01031-z

Jackson ER, Shanafelt TD, Hasan O, Satele DV, Dyrbye LN (2016) Burnout and alcohol abuse/dependence among U.S. medical students. Acad Med 91(9):1251–1256. https://doi.org/10.1097/ACM.0000000000001138

Kirkland A (2014) What is wellness now? J Health Polit Policy Law 39(5):957–70. https://doi.org/10.1215/03616878-2813647

Klasen JM, Meienberg A, Bogie BJM (2021) Medical student engagement during COVID‐19: lessons learned and areas for improvement. Med Educ 55(1):115–118. https://doi.org/10.1111/medu.14405

Klatt MD, Bawa R, Gabram O, Blake A, Steinberg B, Westrick A, Holliday S (2020) Embracing change: a mindful medical center meets COVID-19. Glob Adv Health Med 9(Dec):2164956120975369. https://doi.org/10.1177/2164956120975369

Lacy BE, Chan JL (2018) Physician burnout: the hidden health care crisis. Clin Gastroenterol Hepatol 16(3):311–317. https://doi.org/10.1016/j.cgh.2017.06.043

Levant B, Villwock JA, Manzardo AM (2020) Imposterism in third-year medical students: an item analysis using the Clance imposter phenomenon scale. Perspect Med Educ 9(2):83–91. https://doi.org/10.1007/s40037-020-00562-8

Lonka K, Sharafi P, Karlgren K, Masiello I, Nieminen J, Birgegard G, Josephson A (2008) MED NORD–A tool for measuring medical students’ well-being and study orientations. Med Teach 30(1):72–79. https://doi.org/10.1080/01421590701769555

McLellan AT (2017) Substance misuse and substance use disorders: why do they matter in healthcare? Trans Am Clin Climatol Assoc 128:112–130

PubMed   PubMed Central   Google Scholar  

Moffatt-Bruce SD, Nguyen MC, Steinberg B, Holliday S, Klatt M (2019) Interventions to Reduce Burnout and Improve Resilience: Impact on a Health System’s Outcomes. Clin Obstet Gynecol 63(3):432–443

Moir F, Henning M, Hassed C, Moyes SA, Elley CR (2016) A peer-support and mindfulness program to improve the mental health of medical students. Teach Learn Med 28(3):293–302. https://doi.org/10.1080/10401334.2016.1153475

Moir F, Yielder J, Sanson J, Chen Y (2018) Depression in medical students: current insights. Adv Med Educ Pract 9:323–333. https://doi.org/10.2147/AMEP.S137384

Nene Y, Tadi P (2021) Resident Burnout In: StatPearls. StatPearls Publishing. Available via: https://www.ncbi.nlm.nih.gov/books/NBK553176/?report=classic . Accessed 19 Feb 2022

Nituica C, Bota OA, Blebea J, Cheng CI, Slotman GJ (2021) Factors influencing resilience and burnout among resident physicians-a National Survey. BMC Med Educ 21(1):514. https://doi.org/10.1186/s12909-021-02950-y

Organ JM, Jaffe DB, Bender KM (2016) Suffering in silence: the survey of law student well-being and the reluctance of law students to seek help for substance use and mental health concerns. J Legal Educ 66(1):116–156

Google Scholar  

Papazisis G, Tsakiridis I, Koulas I, Dagklis T, Kouvelas D (2017) Prevalence of illicit drug use among medical students in Northern Greece and association with smoking and alcohol use. Hippokratia 21(1):13–18

CAS   PubMed   PubMed Central   Google Scholar  

Reed DA, Shanafelt TD, Satele DW, Power DV, Eacker A, Harper W, Moutier C, Durning S, Massie FS, Thomas MR, Sloan JA, Dyrbye LN (2011) Relationship of pass/fail grading and curriculum structure with well-being among preclinical medical students: a multi-institutional study. Acad Med 86(11):1367–1373. https://doi.org/10.1097/ACM.0b013e3182305d81

Rodrigues H, Cobucci R, Oliveira A, Cabral JV, Medeiros L, Gurgel K, Souza T, Gonçalves AK (2018) Burnout syndrome among medical residents: a systematic review and meta-analysis. PLoS ONE 13(11):e0206840. https://doi.org/10.1371/journal.pone.0206840

Rohe DE, Barrier PA, Clark MM, Cook DA, Vickers KS, Decker PA (2006) The benefits of pass-fail grading on stress, mood, and group cohesion in medical students. Mayo Clin Proc 81(11):1443–1148. https://doi.org/10.4065/81.11.1443

Rosenstein LS, Ramos MA, Torre M, Segal JB, Peluso MJ, Guille C, Sen C, Mata DA (2016) Prevalence of depression, depressive symptoms, and suicidal ideation among medical students: a systematic review and meta-analysis. JAMA 31(21):2214

Seeliger H, Harendza S (2017) Is perfect good?-dimensions of perfectionism in newly admitted medical students. BMC Med Educ 17(1):206. https://doi.org/10.1186/s12909-017-1034-9

Shah AA, Bazargan-Hejazi S, Lindstrom RW, Wolf KE (2009) Prevalence of at-risk drinking among a national sample of medical students. Subst Abus 30(2):141–149. https://doi.org/10.1080/08897070902802067

Sheer AJ, Estores IM, Nickels R, Radhakrishnan N, Goede DL, Mramba LK, Lo MC (2021) Improving burnout and well-being among medicine residents: impact of a grassroots intervention compared to a formal program curriculum. J Educ Health Promot 10:250. https://doi.org/10.4103/jehp.jehp_1378_20

Shi J, Yao Y, Zhan C, Mao Z, Yin F, Zhao X (2018) The relationship between big five personality traits and psychotic experience in a large non-clinical youth sample: the mediating role of emotion regulation. Front Psychiatry 9:648. https://doi.org/10.3389/fpsyt.2018.00648

Slavin S (2019) Reflections on a decade leading a medical student well-being initiative. Acad Med 94(6):771–774. https://doi.org/10.1097/ACM.0000000000002540

Slavin SJ, Chibnall JT (2016) Finding the why, changing the how: improving the mental health of medical students, residents, and physicians. Acad Med 91(9):1194–1196. https://doi.org/10.1097/ACM.0000000000001226

Slavin SJ, Schindler D, Chibnall JT (2014) Mental health 3.0: improving student wellness through curricular changes. Acad Med 89(4):573–577. https://doi.org/10.1097/ACM.0000000000000166 . Medical Student

Slavin SJ, Schindler D, Chibnall JT, Fendell G, Shoss M (2012) PERMA: A model for institutional leadership and culture change. Acad Med 87:1481

Spring L, Robillard D, Gehlbach L, Simas TA (2011) Impact of pass/fail grading on medical students’ well-being and academic outcomes. Med Educ 45(9):867–77. https://doi.org/10.1111/j.1365-2923.2011.03989.x . PMID: 21848714

Symon R (2020) Do no harm: exposing the hippocratic hoax. Symon Productions

Thomas M, Bigatti S (2020) Perfectionism, imposter phenomenon, and mental health in medicine: a literature review. Int J Med Educ 11:201–213. https://doi.org/10.5116/ijme.5f54.c8f8

United States Medical Licensing Examination (2021) Work to relaunch USMLE Step 2 CS discontinued. USMLE. https://www.usmle.org/announcements/?ContentId=309 . Accessed 16 Apr 2021

University of Michigan Medical School (2020) Four Years in Blue: The University of Michigan Medical School Documentary. Michigan Medicine

Vidhukumar K, Hamza M (2020) Prevalence and correlates of burnout among undergraduate medical students-a cross-sectional survey. Indian J Psychol Med 42(2):122–127

Article   CAS   Google Scholar  

Williams D, Tricomi G, Gupta J, Janise A (2015) Efficacy of burnout interventions in the medical education pipeline. Acad Psychiatry 39(1):47–54. https://doi.org/10.1007/s40596-014-0197-5

Williams N (2014) The CAGE questionnaire. Occup Med 64(6):473–474. https://doi.org/10.1093/occmed/kqu058

Download references

Acknowledgements

We thank Ericka Allen, of the Lake Erie College of Osteopathic Medicine, for assistance in proofreading and revisions of this manuscript.

Author information

Authors and affiliations.

Lake Erie College of Osteopathic Medicine, Erie, PA, USA

Harrison J. Klein & Sarah M. McCarthy

You can also search for this author in PubMed   Google Scholar

Corresponding author

Correspondence to Sarah M. McCarthy .

Ethics declarations

Competing interests.

The authors declare no competing interests.

Ethical approval

Not applicable.

Informed consent

This article does not contain any studies with human participants performed by any of the authors.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ .

Reprints and permissions

About this article

Cite this article.

Klein, H.J., McCarthy, S.M. Student wellness trends and interventions in medical education: a narrative review. Humanit Soc Sci Commun 9 , 92 (2022). https://doi.org/10.1057/s41599-022-01105-8

Download citation

Received : 30 August 2021

Accepted : 24 February 2022

Published : 23 March 2022

DOI : https://doi.org/10.1057/s41599-022-01105-8

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Quick links

  • Explore articles by subject
  • Guide to authors
  • Editorial policies

research on medical education

U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings
  • My Bibliography
  • Collections
  • Citation manager

Save citation to file

Email citation, add to collections.

  • Create a new collection
  • Add to an existing collection

Add to My Bibliography

Your saved search, create a file for external citation management software, your rss feed.

  • Search in PubMed
  • Search in NLM Catalog
  • Add to Search

Review article: medical education research: an overview of methods

Affiliation.

  • 1 Department of Anesthesiology of The Ottawa Hospital & The University of Ottawa Skills and Simulation Centre, University of Ottawa, Ottawa, ON, Canada.
  • PMID: 22215522
  • DOI: 10.1007/s12630-011-9635-y

Purpose: This article provides clinician-teachers with an overview of the process necessary to move from an initial idea to the conceptualization and implementation of an empirical study in the field of medical education. This article will allow clinician-teachers to become familiar with educational research methodology in order to a) critically appraise education research studies and apply evidence-based education more effectively to their practice and b) initiate or collaborate in medical education research.

Source: This review uses relevant articles published in the fields of medicine, education, psychology, and sociology before October 2011.

Principal findings: The focus of the majority of research in medical education has been on reporting outcomes related to participants. There has been less assessment of patient care outcomes, resulting in informing evidence-based education to only a limited extent. This article explains the process necessary to develop a focused and relevant education research question and emphasizes the importance of theory in medical education research. It describes a range of methodologies, including quantitative, qualitative, and mixed methods, and concludes with a discussion of dissemination of research findings. A majority of studies currently use quantitative methods. This article highlights how further use of qualitative methods can provide insight into the nuances and complexities of learning and teaching processes.

Conclusions: Research in medical education requires several successive steps, from formulating the correct research question to deciding the method for dissemination. Each approach has advantages and disadvantages and should be chosen according to the question being asked and the specific goal of the study. Well-conducted education research should allow progression towards the important goal of using evidence-based education in our teaching and institutions.

PubMed Disclaimer

Similar articles

  • Review article: new directions in medical education related to anesthesiology and perioperative medicine. Bould MD, Naik VN, Hamstra SJ. Bould MD, et al. Can J Anaesth. 2012 Feb;59(2):136-50. doi: 10.1007/s12630-011-9633-0. Epub 2011 Dec 10. Can J Anaesth. 2012. PMID: 22161241 Review.
  • Review article: closing the research gap at the interface of learning and clinical practice. Philibert I. Philibert I. Can J Anaesth. 2012 Feb;59(2):203-12. doi: 10.1007/s12630-011-9639-7. Epub 2011 Dec 13. Can J Anaesth. 2012. PMID: 22161270 Review.
  • [Procedures and methods of benefit assessments for medicines in Germany]. Bekkering GE, Kleijnen J. Bekkering GE, et al. Dtsch Med Wochenschr. 2008 Dec;133 Suppl 7:S225-46. doi: 10.1055/s-0028-1100954. Epub 2008 Nov 25. Dtsch Med Wochenschr. 2008. PMID: 19034813 German.
  • Procedures and methods of benefit assessments for medicines in Germany. Bekkering GE, Kleijnen J. Bekkering GE, et al. Eur J Health Econ. 2008 Nov;9 Suppl 1:5-29. doi: 10.1007/s10198-008-0122-5. Eur J Health Econ. 2008. PMID: 18987905
  • Information and communication technologies in higher education: evidence-based practices in medical education. Valcke M, De Wever B. Valcke M, et al. Med Teach. 2006 Feb;28(1):40-8. doi: 10.1080/01421590500441927. Med Teach. 2006. PMID: 16627322 Review.
  • Analyzing the application of mixed method methodology in medical education: a qualitative study. Alhassan AI. Alhassan AI. BMC Med Educ. 2024 Mar 4;24(1):225. doi: 10.1186/s12909-024-05242-3. BMC Med Educ. 2024. PMID: 38438987 Free PMC article. Review.
  • Fostering the development of non-technical competencies in medical learners through patient engagement: a rapid review. Massé J, Beaura S, Tremblay MC. Massé J, et al. Can Med Educ J. 2023 Sep 8;14(4):47-69. doi: 10.36834/cmej.73630. eCollection 2023 Sep. Can Med Educ J. 2023. PMID: 37719397 Free PMC article. Review.
  • Emergency medicine resident perceptions of simulation-based training and assessment in competence by design. Costello LL, Cho DD, Daniel RC, Dida J, Pritchard J, Pardhan K. Costello LL, et al. CJEM. 2023 Oct;25(10):828-835. doi: 10.1007/s43678-023-00577-0. Epub 2023 Sep 4. CJEM. 2023. PMID: 37665550
  • An emerging field: An evaluation of biomedical graduate student and postdoctoral education and training research across seven decades. Van Wart A, Djorić D, D'Silva NM, Layton R, Hardy L, Suelzer E, Tetzlaff JE. Van Wart A, et al. PLoS One. 2023 Jul 25;18(7):e0282262. doi: 10.1371/journal.pone.0282262. eCollection 2023. PLoS One. 2023. PMID: 37490486 Free PMC article.
  • Patients' perspectives on their motivations for participating in non-clinical medical teaching and what they gain from their experience: a qualitative study informed by critical theory. Massé J, Grignon S, Vigneault L, Olivier-D'Avignon G, Tremblay MC. Massé J, et al. Adv Health Sci Educ Theory Pract. 2024 Mar;29(1):217-243. doi: 10.1007/s10459-023-10262-7. Epub 2023 Jun 29. Adv Health Sci Educ Theory Pract. 2024. PMID: 37382856 Free PMC article.

Publication types

  • Search in MeSH

LinkOut - more resources

Full text sources.

  • Citation Manager

NCBI Literature Resources

MeSH PMC Bookshelf Disclaimer

The PubMed wordmark and PubMed logo are registered trademarks of the U.S. Department of Health and Human Services (HHS). Unauthorized use of these marks is strictly prohibited.

2022 Articles

Understanding Ethical Challenges in Medical Education Research

Klitzman, Robert

Rapidly advancing biomedical and electronic technologies, ongoing health disparities, and new online educational modalities are all changing medicine and medical education. As medical training continues to evolve, research is increasingly critical to help improve it, but medical education research can pose unique ethical challenges. As research participants, medical trainees may face several risks and in many ways constitute a vulnerable group. In this commentary, the author examines several of the ethical challenges involved in medical education research, including confidentiality and the risk of stigma; the need for equity, diversity, and inclusion; genetic testing of students; clustered randomized trials of training programs; and questions about quality improvement activities. The author offers guidance for navigating these ethical challenges, including the importance of engaging with institutional review boards. Academic medical institutions should educate and work closely with faculty to ensure that all research adheres to appropriate ethical guidelines and regulations and should provide instruction about the ethics of medical education research to establish a strong foundation for the future of the field. Research on medical education will become increasingly important. Given the potential sensitivity of the data collected in such research, investigators must understand and address potential ethical challenges as carefully as possible.

  • Medical ethics
  • Hospital care

thumnail for Klitzman - 2022 - Understanding Ethical Challenges in Medical Educat.pdf

Also Published In

More about this work.

  • DOI Copy DOI to clipboard

share this!

August 16, 2024

This article has been reviewed according to Science X's editorial process and policies . Editors have highlighted the following attributes while ensuring the content's credibility:

fact-checked

peer-reviewed publication

trusted source

Can AI add value to medical education and improve communication between physicians and patients?

by Cynthia Fazio, University of Western Ontario

Can AI add value to medical education and improve communication between physicians and patients?

For symptoms like a runny nose and a cough, some might think it's a common cold. It doesn't warrant a doctor's visit, so they turn to Google and WebMD for additional reassurance. Now, with advancements in AI, some might be tempted to switch from "Dr. Google" to "Dr. ChatGPT," but can OpenAI's AI-powered chatbot provide accurate medical advice?

Researchers from Western University set out to answer that question and explore whether ChatGPT is capable of becoming a reliable resource in health care and medical education . The study, led by Schulich School of Medicine & Dentistry professor Dr. Amrit Kirpalani, was recently published in PLOS One and found that ChatGPT was only 49% accurate when it came to providing the right diagnosis.

While they determined ChatGPT is not yet ready to be used as a reliable medical diagnostic tool for complicated cases, their study did find it was able to take complex medical topics and synthesize them in an easy-to-understand manner, which could be beneficial for instructors and health-care providers to deliver medical information in a digestible format.

"To me, the most relevant finding is that ChatGPT delivered its answers in a very simple and easy-to-understand way," said Kirpalani. "I think that's important because you can see the potential for it to be used as a great tool to help people learn and understand medical cases."

The study asked ChatGPT to diagnose 150 cases through Medscape Clinical Challenges, which are designed to test the diagnostic skills of health-care professionals. Medscape is a public platform with many complex cases, where clinicians vote on what they think is the right answer. The research team, which included third-year medical students Ali Hadi, Edward Tran and Branavan Nagarajan, created prompts asking ChatGPT to choose the correct diagnosis in a multiple-choice format and to provide a rationale.

The chat bot was given information including patients' histories, physical examination results, and laboratory or imaging test results. The researchers found it struggled with interpreting test results and sometimes overlooked critical information that was relevant to the diagnosis. However, the chatbot was helpful in providing next diagnostic steps and making medical information more accessible.

More research needed to 'use AI responsibly'

It is clear from the study that further research and advancements are needed before AI can be used as another tool to help with medical diagnoses. And as new AI models advance and improve, Kirpalani emphasizes the importance of AI literacy.

"AI literacy is important for patients, for providers, for educators and for students because we need to understand how we can use AI responsibly and how it can be applied and leveraged for health care and medical education purposes," says Kirpalani.

Regardless of the accuracy of these online resources, Kirpalani stressed the need to evaluate and double check responses from the internet against reliable, peer-reviewed sources.

"I would say we're maybe already at the point where we need guidance around prompt engineering—where they structure an instruction that can be interpreted and understood by a generative AI model," said Kirpalani.

"We are going to need a lot of oversight on how it's being used to ensure patient safety and to make sure [this kind of AI technology] will be thoughtfully rolled out."

Explore further

Feedback to editors

research on medical education

New statistical mechanics formula suggests urban street networks and building density shape severity of floods

research on medical education

Breathing easier thanks to ART: Engineers take unique approach to tackle indoor air quality

2 hours ago

research on medical education

Novel electrolyte design shows promise for longer-lasting lithium-metal batteries

21 hours ago

research on medical education

Simplified robotic gripper can still tackle complex object manipulation tasks

Aug 17, 2024

research on medical education

Flexible multi-task computation in recurrent neural networks relies on dynamical motifs, study shows

Aug 16, 2024

research on medical education

Epic launches own app store, Fortnite back for iPhones in Europe

research on medical education

Numerous manufacturers use insecure Android kernels, analysis shows

research on medical education

Q&A: Could 'personhood credentials' protect people against digital imposters?

research on medical education

AI researchers introduce an LLM capable of generating text outputs of up to 10,000 words

research on medical education

Large parts of Canada are ideal for future hydrogen production, global analysis suggests

Related stories.

research on medical education

ChatGPT still not very good at diagnosing human ailments

Aug 1, 2024

research on medical education

Can ChatGPT diagnose your condition? Not yet, say researchers

Oct 16, 2023

research on medical education

ChatGPT found to have very low success rate in diagnosing pediatric case studies

Jan 4, 2024

research on medical education

Trust your doctor: Study shows human medical professionals are more reliable than artificial intelligence tools

Apr 2, 2024

research on medical education

Statistical analysis can detect when ChatGPT is used to cheat on multiple-choice chemistry exams

Aug 14, 2024

research on medical education

Interview: How does ChatGPT perform on the United States Medical Licensing Examination?

Mar 30, 2023

Recommended for you

research on medical education

A two-stage framework to improve LLM-based anomaly detection and reactive planning

Aug 15, 2024

research on medical education

'AI Scientist' model designed to conduct scientific research autonomously

research on medical education

Global AI adoption is outpacing risk understanding, researchers warn

Let us know if there is a problem with our content.

Use this form if you have come across a typo, inaccuracy or would like to send an edit request for the content on this page. For general inquiries, please use our contact form . For general feedback, use the public comments section below (please adhere to guidelines ).

Please select the most appropriate category to facilitate processing of your request

Thank you for taking time to provide your feedback to the editors.

Your feedback is important to us. However, we do not guarantee individual replies due to the high volume of messages.

E-mail the story

Your email address is used only to let the recipient know who sent the email. Neither your address nor the recipient's address will be used for any other purpose. The information you enter will appear in your e-mail message and is not retained by Tech Xplore in any form.

Your Privacy

This site uses cookies to assist with navigation, analyse your use of our services, collect data for ads personalisation and provide content from third parties. By using our site, you acknowledge that you have read and understand our Privacy Policy and Terms of Use .

E-mail newsletter

  • Open access
  • Published: 16 August 2024

Going virtual: mixed methods evaluation of online versus in-person learning in the NIH mixed methods research training program retreat

  • Joseph J. Gallo 1 ,
  • Sarah M. Murray 1 ,
  • John W. Creswell 2 ,
  • Charles Deutsch 3 &
  • Timothy C. Guetterman 2  

BMC Medical Education volume  24 , Article number:  882 ( 2024 ) Cite this article

37 Accesses

Metrics details

Despite the central role of mixed methods in health research, studies evaluating online methods training in the health sciences are nonexistent. The focused goal was to evaluate online training by comparing the self-rated skills of scholars who experienced an in-person retreat to scholars in an online retreat in specific domains of mixed methods research for the health sciences from 2015–2023.

The authors administered a scholar Mixed Methods Skills Self-Assessment instrument based on an educational competency scale that included domains on: “research questions,” “design/approach,” “sampling,” “analysis,” and “dissemination” to participants of the Mixed Methods Research Training Program for the Health Sciences (MMRTP). Self-ratings on confidence on domains were compared before and after retreat participation within cohorts who attended in person ( n  = 73) or online ( n  = 57) as well as comparing across in-person to online cohorts. Responses to open-ended questions about experiences with the retreat were analyzed.

Scholars in an interactive program to improve mixed methods skills reported significantly increased confidence in ability to define or explain concepts and in ability to apply the concepts to practical problems, whether the program was attended in-person or synchronously online. Scholars in the online retreat had self-rated skill improvements as good or better than scholars who participated in person. With the possible exception of networking, scholars found the online format was associated with advantages such as accessibility and reduced burden of travel and finding childcare. No differences in difficulty of learning concepts was described.

Conclusions

Keeping in mind that the retreat is only one component of the MMRTP, this study provides evidence that mixed methods training online was associated with the same increases in self-rated skills as persons attending online and can be a key component to increasing the capacity for mixed methods research in the health sciences.

Peer Review reports

Introduction

The coronavirus pandemic accelerated interest in distance or remote learning. While the acute nature of the pandemic has abated, changes in the way people work have largely remained, with hybrid conferences and trainings more commonly implemented now than during the pre-pandemic period. Studies of health-related online teaching have focused on medical students [ 1 , 2 , 3 ], health professionals [ 4 , 5 ], and medical conferences [ 6 , 7 , 8 ] and have touted the advantages of virtual training and conferences in health education, but few studies have assessed relative growth in skills and competencies in health research methods for synchronous online vs. in-person training.

The National Institutes of Health (NIH)-funded Mixed Methods Research Training Program (MMRTP) for the Health Sciences provided training to faculty-level investigators across health disciplines from 2015–2023. The NIH is a major funder of health-related research in the United States. Its institutes span diseases and conditions (e.g., mental health, environmental health) in addition to focus areas (e.g., minority health and health disparities, nursing) and developing research capacity. Scholars in the MMRTP seek to develop skills in mixed methods research through participation in a summer retreat followed by ongoing mentorship for one year from a mixed methods expert matched to the scholar to support their development of a research proposal. Webinars leading up to the retreat include didactic sessions taught by the same faculty each year, and the retreat itself contains multiple interactive small group sessions in which each scholar presents their project and receives feedback on their grant proposal. Due to pandemic restrictions on gatherings and travel, in 2020 the MMRTP retained all components of the program but transitioned the in-person retreat to a synchronous online retreat.

The number of NIH agencies funding mixed methods research increased from 23 in 1997–2008 to 36 in 2009–2014 [ 9 ]. The usefulness of mixed methods research aligns with several Institutes’ strategic priories, including improving health equity, enhancing feasibility, acceptability, and sustainability of interventions, and addressing patient-centeredness. However, there is a tension between growing interest in mixed methods for health sciences research and a lack of training for investigators to acquire mixed methods research skills. Mixed methods research is not routinely taught in doctoral programs, institutional grant-writing programs, nor research training that academic physicians receive. The relative lack of researchers trained in mixed methods research necessitates ongoing research capacity building and mentorship [ 10 ]. Online teaching has the potential to meet growing demand for training and mentoring in mixed methods, as evidenced by the growth of online offerings by the Mixed Methods International Research Association [ 11 ]. Yet, the nature of skills and attitudes required for doing mixed methods research, such as integration of quantitative and qualitative data collection, analysis, and epistemologies, may make this type of training difficult to adapt to an online format without compromising its effectiveness.

Few studies have attempted to evaluate mixed methods training [ 12 , 13 , 14 , 15 ] and none appear to have evaluated online trainings in mixed methods research. Our goal was to evaluate our online MMRTP by comparing the self-rated skills of scholars who experienced an in-person retreat to an online retreat across specific domains. While the MMRTP retreat is only one component of the program, assessment before and after the retreat among persons who experienced the synchronous retreat online compared to in-person provides an indication of the effectiveness of online instruction in mixed methods for specific domains critical to the design of research in health services. We hypothesized that scholars who attended the retreat online would exhibit improvements in self-rated skills comparable to scholars who attended in person.

Participants

Five cohorts with a total of 73 scholars participated in the MMRTP in person (2015–2019), while four cohorts with a total of 57 scholars participated online (2020–2023). Scholars are faculty-level researchers in the health sciences in the United States. The scholars are from a variety of disciplines in the health sciences; namely, pediatrics, psychiatry, general medicine, oncology, nursing, human development, music therapy, nutrition, psychology, and social work.

The mixed methods research training program

Formal program activities include two webinars leading up to a retreat followed by ongoing mentorship support. The mixed methods content taught in webinars and the retreat is informed by a widely used textbook by Creswell and Plano Clark [ 18 ] in addition to readings on methodological topics and the practice of mixed methods. The webinars introduce mixed methods research and integration concepts, with the goal of imparting foundational knowledge and ensuring a common language. Specifically, the first webinar introduces mixed methods concepts, research designs, scientific rigor, and becoming a resource at one’s institution, while the second focuses on strategies for the integration of qualitative and quantitative research. Retreats provide an active workshop blending lectures, one-on-one meetings, and interactive faculty-led small workgroups. In addition to scholars, core program faculty who serve as investigators and mentors for the MMRTP, supplemented with consultants and former scholars, lead the retreat. The retreat has covered the state-of-the-art topics within the context of mixed methods research: rationale for use of mixed methods, procedural diagrams, study aims, use of theory, integration strategies, sampling strategies, implementation science, randomized trials, ethics, manuscript and proposal writing, and becoming a resource at one’s home institution. In addition to lectures, the retreat includes multiple interactive small group sessions in which each scholar presents their project and receives feedback on their grant proposal and is expected to make revisions based on feedback and lectures.

Scholars are matched for one year with a mentor based on the Scholar’s needs, career level, and area of health research from a national list of affiliated experienced mixed methods investigators with demonstrated success in obtaining independent funding for research related to the health sciences and a track record and commitment to mentoring. The purpose of this arrangement is to provide different perspectives on mixed methods design while also providing specific feedback on the scholar's research proposal, reviewing new ideas, and together developing a strategy and timeline for submission.

From 2015–2019 (in-person cohorts) the retreat was held over 3 days at the Johns Hopkins University Bloomberg School of Public Health (in 2016 Harvard Catalyst, the Harvard Clinical and Translational Science Center, hosted the retreat at Harvard Medical School). Due to pandemic restrictions, from 2020–2023 the retreat activities were conducted via Zoom with the same number of lecture sessions (over 3 days in 2020 and 4 days thereafter). We made adaptations for the online retreat based on continuous feedback from attendees. We had to rapidly transition to online in 2020 with the same structure as in person, but feedback from scholars led us to extend the retreat to 4 days online from 2021–2023. The extra day allowed for more breaks from Zoom sessions with time for scholars to consider feedback from small groups and to have one-on-one meetings with mentors. Discussion during interactive presentations was encouraged and facilitated by using breakout rooms at breaks mid-presentation. Online resources were available to participants through CoursePlus, the teaching and learning platform used for courses at the Johns Hopkins Bloomberg School of Public Health, hosting publications, presentation materials, recordings of lectures, sharing proposals, email, and discussion boards that scholars have access to before, during, and after the retreat.

Measurement strategy

Before and after the retreat in each year, we distributed a self-administered scholar Mixed Methods Skills Self-Assessment instrument (Supplement 1) to all participating scholars [ 15 ]; we have reported results from this pre-post assessment for the first two cohorts [ 14 ]. The Mixed Methods Skills Self-Assessment instrument has been previously used and has established reliability for the total items (α = 0.95) and evidence of criterion-related validity between experiences and ability ratings [ 15 ]. In each year, the pre-assessment is completed upon entry to the program, approximately four months prior to the retreat, and the post-assessment is administered two weeks after the retreat. The instrument consists of three sections: 1) professional experiences with mixed methods, including background, software, and resource familiarity; 2) a quantitative, qualitative, and mixed methods skills self-assessment; and 3) open-ended questions focused on learning goals for the MMRTP. The skills assessment contains items for each of the following domains: “research questions,” “design/approach,” “sampling,” “analysis,” and “dissemination.” Each skill was assessed via three items drawn from an educational competency ratings scale that ask scholars to rate: [ 16 ] “My ability to define/explain,” “My ability to apply to practical problems,” and “Extent to which I need to improve my skill.” Response options were on a five-point Likert-type scale that ranged from “Not at all” (coded ‘1’) to “To a great extent” (coded ‘5’), including a mid-point [ 17 ]. We took the mean of the scholar’s item ratings over all component items within each domain (namely, “research questions,” “design/approach,” “sampling,” “analysis,” and “dissemination”).

Open-ended questions

The baseline survey included two open-ended prompts: 1) What skills and goals are most important to you?, and 2) What would you like to learn? The post-assessment survey also included two additional open-ended questions about the retreat: 1) What aspects of the retreat were helpful?, and 2) What would you like to change about the retreat? In addition, for the online cohorts (2020–2023), we wanted to understand reactions to the online training and added three questions for this purpose: (1) In general, what did you think of the online format for the MMRTP retreat?, 2) What mixed methods concepts are easier or harder to learn virtually?, and 3) What do you think was missing from having the retreat online rather than in person?

Data analysis

Our evaluation employed a convergent mixed methods design [ 18 ], integrating an analysis of ratings pre- and post-retreat with analysis of open-ended responses provided by scholars after the retreat. Our quantitative analysis proceeded in 3 steps. First, we analyzed item-by-item baseline ratings of the extent to which scholars thought they “need to improve skills,” stratified into two groups (5 cohorts who attended in-person and 4 cohorts who attended online). The purpose of comparing the two groups at baseline on learning needs was to assess how similar the scholars in the in-person or online groups were in self-assessment of learning needs before attending the program. Second, to examine the change in scholar ratings of ability to “define or explain a concept” and in their ability to “apply to practical problems,” from before to after the retreat, we conducted paired t-tests. The goal was to compare the ratings before and after the retreat among scholars who attended the program in person to scholars who attended online. Third, we compared post-retreat ratings among in-person cohorts to online cohorts to gauge the effectiveness of the online training. We set statistical significance at α  < 0.05 as a guide to inference. We calculated Cohen’s d as a guide to the magnitude of differences [ 19 ]. SPSS Version 28 was employed for all analyses.

We analyzed qualitative data using a thematic analysis approach that consisted of reviewing all open-ended responses, conducting open coding based on the data, developing and refining a codebook, and identifying major themes [ 20 ]. We then compared the qualitative results for the in-person versus online cohorts to understand any thematic differences concerning retreat experiences and reactions.

Background and experiences of scholars

Scholars in the in-person ( n  = 59, 81%) and online ( n  = 52, 91%) cohorts reported their primary training was quantitative rather than qualitative or mixed methods, and scholars across cohorts commonly reported at least some exposure to mixed methods research (Table  1 ). However, most scholars did not have previous mixed methods training with 17 (23%) and 16 (28%) of the in-person and online cohorts, respectively, having previously completed a mixed methods course. While experiences were similar across in-person vs. online cohorts, there were two areas in which the scholars reported a statistically significant difference: a larger portion of the online cohorts reported writing a mixed methods application that received funding ( n  = 35, 48% in person; n  = 46, 81% online), and a smaller proportion of the online cohorts had given a local or institutional mixed methods presentation ( n  = 32, 44% in person; n  = 15, 26% online).

Self-identified need to improve skills in mixed methods

At baseline, scholars rated the extent to which they needed to improve specific mixed methods skills (Table  2 ). Overall, scholars endorsed a strong need to improve all mixed methods skills. The ratings between the in-person and online cohorts were not statistically significant for any item.

Change in self-ratings of skills after the retreat

Within cohorts.

For all domains, the differences in pre-post assessment scores were statistically significant for both the in-person and online cohorts in ability to define or explain concepts and to apply concepts to practical problems (left side of Table  3 ). In other words, on average scholars improved in both in-person and online cohorts.

Across cohorts

Online cohorts had significantly better self-ratings after the retreat than did in-person cohorts in ability to define or explain concepts and to apply concepts to practical problems (in sampling, data collection, analysis, and dissemination) but no significant differences in research questions and design / approach (rightmost column of Table  3 ).

Scholar reflections about online and in-person retreats

Goals of training.

In comparing in-person to online cohorts, discussions of the skills that scholars wanted to improve had no discernable differences. Scholars mentioned wanting to develop skills in the foundations of mixed methods research, how to write competitive proposals for funding, the use of the terminology of mixed methods research, and integrative analysis. In addition, some scholars expressed wanting to become a resource at their own institutions and providing training and mentoring to others.

Small group sessions

Scholars consistently reported appreciating being able to talk through their project and gaining feedback from experts in small group sessions. Some scholars expressed a preference for afternoon small group sessions, “The small group sessions felt the most helpful, but only because we can apply what we were learning from the morning lecture sessions” (online cohort 9). How participants discussed the benefits of the small group sessions or how they used the sessions did not depend on whether they had experienced the session in person or online.

Online participants described a tradeoff between the accessibility of a virtual retreat versus advantages of in-person training. One participant explained, “I liked the online format, as I do not have reliable childcare” (online cohort 8). Many of the scholars felt that there was an aspect of networking missing when the retreat was held fully online. As one scholar described, when learning online they, “miss getting to know the other fellows and forming lasting connections” (online cohort 9). However, an equal number of others reported that having a virtual retreat meant less hassle; for instance, they were able to join from their preferred location and did not have to travel. Some individuals specifically described the tradeoff of fewer networking opportunities for ease of attendance. One scholar wrote, being online “certainly loses some of the perks of in person connection building but made it equitable to attend” (online cohort 8).

Learning online

No clear difference in ease of learning concepts was described. A scholar explained: “Learning most concepts is essentially the same virtually versus in person” (online cohort 8). However, scholars described some concepts as easier to learn in one modality versus the other, for example, simpler concepts being more suited to learning virtually while complex concepts were better suited to in-person learning. There was notable variation though in the topics which scholars considered to be simple versus complex. For instance, one scholar noted that “I suppose developing the joint displays were a bit tougher virtually since you were not literally elbow to elbow” (online cohort 7) while another explained, “joint displays lend themselves to the zoom format” (online cohort 8).

Integrating survey responses and scholar reflections

In-person and online cohorts were comparable in professional experiences and ratings of the need to improve skills before attending the retreat, sharpening the focus on differences in self-rated skills associated with attendance online compared to in person. If anything, online attendees rated skills as good or better than in-person attendees. Open-ended questions revealed that, for the most part, scholar reflections on learning were similar across in-person and online cohorts. Whether learning the concept of “mixed methods integration” was more difficult online was a source of disagreement. Online attendance was associated with numerous advantages, and small group sessions were valued, regardless of format. Taken together, the evidence from nine cohorts shows that the online retreat was acceptable and as effective in improving self-rated skills as meeting in person.

Mixed methods have become indispensable to health services research from intervention development and testing [ 21 ] to implementation science [ 22 , 23 , 24 ]. We found that scholars participating in an interactive program to improve mixed methods skills reported significantly increased confidence in their ability to define or explain concepts and in their ability to apply the concepts to practical problems, whether the program was attended in-person or synchronously online. Scholars who participated in the online retreat had self-rated skill improvements as good or better than scholars who participated in person, and these improvements were relatively large as indicated by the Cohen’s d estimates. The online retreat appeared to be effective in increasing confidence in the use of mixed methods research in the health sciences and was acceptable to scholars. Our study deserves attention because the national need is so great for investigators with training in mixed methods to address complex behavioral health problems, community- and patient-centered research, and implementation research. No program has been evaluated as we have done here.

Aside from having written a funded mixed methods proposal, the online compared to earlier in person cohorts were comparable in experiences and need to improve specific skills. Within each cohort, scholars reported significant gains in self-rated skills on their ability to “define or explain” a concept and on their ability to “apply to practical problems” in domains essential to mixed methods research. However, consistent with our hypothesis that online training would be as effective as in person we found that online scholars reported better improvement in self-ratings in ability to define or explain concepts and to apply concepts to practical problems in sampling, data collection, analysis, and dissemination but no significant differences in research questions and design / approach. Better ratings in online cohorts could reflect differences in experience with mixed methods, secular changes in knowledge and availability of resources in mixed methods, and maturation of the program facilitated by continued modifications based on feedback from scholars and participating faculty [ 13 , 14 , 15 ].

Ratings related to the “analysis” domain, which includes the central concept of mixed methods integration, deserve notice since scholars rated this skill well below other domains at baseline. While both in-person and online cohorts improved after the retreat, and online cohorts improved substantially more than in-person cohorts, ratings for analysis after the retreat remained lower than for other domains. Scholars consistently have mentioned integration as a difficult concept, and our analysis here is limited to the retreat alone. Continued mentoring one year after the retreat and work on their proposal is built in to the MMRTP to enhance understanding of integration.

Several reviews point out the advantages of online training including savings in time, money, and greenhouse emissions [ 1 , 7 , 8 ]. Online conferences may increase the reach of training to international audiences, improve the diversity of speakers and attendees, facilitate attendance of persons with disabilities, and ease the burden of finding childcare [ 1 , 8 , 25 ]. Online training in health also appears to be effective [ 2 , 4 , 5 , 25 ], though studies are limited because often no skills were evaluated, no comparison groups were used, the response rate was low, or the sample size was small [ 1 , 6 ]. With the possible exception of networking, scholars found the online format was associated with advantages, including saving travel, maintaining work-family balance, and learning effectively. As scholars did discuss perceived increase in difficulty networking, deliberate effort needs to be directed at enhancing collaborations and mentorship [ 8 ]. The MMRTP was designed with components to facilitate networking during and beyond the retreat (e.g., small group sessions, one-on-one meetings, working with a consultant on a specific proposal).

Limitations of our study should be considered. First, the retreat was only one of several components of a mentoring program for faculty in the health sciences. Second, in-person and online cohorts represent different time periods spanning 9 years during which mixed methods applications to NIH and other funders have been increasing [ 9 ]. Third, the pre- and post-evaluations of ability to explain or define concepts, or to apply the concepts to practical problems, were based on self-report. Nevertheless, the pre-post retreat survey on self-rated skills uses a skills self-assessment form we developed [ 15 ], drawing from educational theory related to the epistemology of knowledge [ 26 , 27 ].

Despite the central role of mixed methods in health research, studies evaluating online methods training in the health sciences are nonexistent. Our study provides evidence that mixed methods training online was associated with the same increases in self-rated skills as persons attending online and can be a key component to increasing the capacity for mixed methods research in the health sciences.

Availability of data and materials

The datasets used and analysed during the current study are available from the corresponding author on reasonable request.

Abbreviations

Mixed Methods Research Training Program

Wilcha RJ. Effectiveness of Virtual Medical Teaching During the COVID-19 Crisis: Systematic Review. JMIR Med Educ. 2020;6(2):e20963.

Article   Google Scholar  

Pei L, Wu H. Does online learning work better than offline learning in undergraduate medical education? A systematic review and meta-analysis. Medical Education Online. 2019;24(1) https://doi.org/10.1080/10872981.2019.1666538

Barche A, Nayak V, Pandey A, Bhandarkar A, Nayak K. Student perceptions towards online learning in medical education during the COVID-19 pandemic: a mixed-methods study. F1000Res. 2022;11:979. https://doi.org/10.12688/f1000research.123582.1 .

Ebner C, Gegenfurtner A. Learning and Satisfaction in Webinar, Online, and Face-to-Face Instruction: A Meta-Analysis. Frontiers in Education. 2019;4(92) https://doi.org/10.3389/feduc.2019.00092

Randazzo M, Preifer R, Khamis-Dakwar R. Project-Based Learning and Traditional Online Teaching of Research Methods During COVID-19: An Investigation of Research Self-Efficacy and Student Satisfaction. Frontiers in Education. 2021;6(662850) https://doi.org/10.3389/feduc.2021.662850

Chan A, Cao A, Kim L, et al. Comparison of perceived educational value of an in-person versus virtual medical conference. Can Med Educ J. 2021;12(4):65–9. https://doi.org/10.36834/cmej.71975 .

Rubinger L, Gazendam A, Ekhtiari S, et al. Maximizing virtual meetings and conferences: a review of best practices. Int Orthop. 2020;44(8):1461–6. https://doi.org/10.1007/s00264-020-04615-9 .

Sarabipour S. Virtual conferences raise standards for accessibility and interactions. Elife. Nov 4 2020;9 https://doi.org/10.7554/eLife.62668

Coyle CE, Schulman-Green D, Feder S, et al. Federal funding for mixed methods research in the health sciences in the United States: Recent trends. J Mixed Methods Res. 2018;12(3):1–20.

Poth C, Munce SEP. Commentary – preparing today’s researchers for a yet unknown tomorrow: promising practices for a synergistic and sustainable mentoring approach to mixed methods research learning. Int J Multiple Res Approaches. 2020;12(1):56–64.

Creswell JW. Reflections on the MMIRA The Future of Mixed Methods Task Force Report. J Mixed Methods Res. 2016;10(3):215–9. https://doi.org/10.1177/1558689816650298 .

Hou S. A Mixed Methods Process Evaluation of an Integrated Course Design on Teaching Mixed Methods Research. Int J Sch Teach Learn. 2021;15(2):Article 8. https://doi.org/10.20429/ijsotl.2021.150208 .

Guetterman TC, Creswell J, Deutsch C, Gallo JJ. Process Evaluation of a Retreat for Scholars in the First Cohort: The NIH Mixed Methods Research Training Program for the Health Sciences. J Mix Methods Res. 2019;13(1):52–68. https://doi.org/10.1177/1558689816674564 .

Guetterman T, Creswell JW, Deutsch C, Gallo JJ. Skills Development and Academic Productivity of Scholars in the NIH Mixed Methods Research Training Program for the Health Sciences (invited publication). Int J Multiple Res Approach. 2018;10(1):1–17.

Guetterman T, Creswell JW, Wittink MN, et al. Development of a Self-Rated Mixed Methods Skills Assessment: The NIH Mixed Methods Research Training Program for the Health Sciences. J Contin Educ Health Prof. 2017;37(2):76–82.

Harnisch D, Shope RJ. Developing technology competencies to enhance assessment literate teachers. AACE; 2007:3053–3055.

DeVellis RF. Scale development: Theory and applications. 3rd ed. Sage; 2012.

Creswell JW, Plano Clark VL. Designing and Conducting Mixed Methods Research. 3rd ed. Sage Publications; 2017.

Cohen J. Statistical power analysis for the behavioral sciences. 3rd ed. Academic Press; 1988.

Boeije H. A purposeful approach to the constant comparative method in the analysis of qualitative interviews. Qual Quant. 2002;36:391–409.

Aschbrenner KA, Kruse G, Gallo JJ, Plano Clark VL. Applying mixed methods to pilot feasibility studies to inform intervention trials. Pilot Feasibility Stud. 2022;8(1):217–24. https://doi.org/10.1186/s40814-022-01178-x .

Palinkas LA. Qualitative and mixed methods in mental health services and implementation research. J Clin Child Adolesc Psychol. 2014;43(6):851–61.

Albright K, Gechter K, Kempe A. Importance of mixed methods in pragmatic trials and dissemination and implementation research. Acad Pediatr Sep-Oct. 2013;13(5):400–7. https://doi.org/10.1016/j.acap.2013.06.010 .

Palinkas L, Aarons G, Horwitz S, Chamberlain P, Hurlburt M, Landsverk J. Mixed methods designs in implementation research. Adm Policy Ment Health. 2011;38:44–53.

Ni AY. Comparing the Effectiveness of Classroom and Online Learning: Teaching Research Methods. J Public Affairs Educ. 2013;19(2):199–215. https://doi.org/10.1080/15236803.2013.12001730 .

Harnisch D, Shope RJ. Developing technology competencies to enhance assessment literate teachers. presented at: Society for Information Technology & Teacher Education International Conference; March 26, 2007 2007; San Antonio, Texas.

Guetterman TC. What distinguishes a novice from an expert mixed methods researcher? Qual Quantity. 2017;51:377–98.

Download references

Acknowledgements

The Mixed Methods Research Training Program is supported by the Office of Behavioral and Social Sciences Research under Grant R25MH104660. Participating institutes are the National Institute of Mental Health, National Heart, Lung, and Blood Institute, National Institute of Nursing Research, and the National Institute on Aging.

Author information

Authors and affiliations.

Johns Hopkins University, Baltimore, MD, USA

Joseph J. Gallo & Sarah M. Murray

University of Michigan, Ann Arbor, MI, USA

John W. Creswell & Timothy C. Guetterman

Harvard University, Boston, MA, USA

Charles Deutsch

You can also search for this author in PubMed   Google Scholar

Contributions

All authors conceptualized the design of this study. TG analyzed the scholar data in evaluation of the program. TG and JG interpreted results and were major contributors in writing the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Timothy C. Guetterman .

Ethics declarations

Ethics approval and consent to participate.

The program was reviewed by the Johns Hopkins Institutional Review Board and was deemed exempt as educational research under United States 45 CFR 46.101(b), Category (2). Data were collected through an anonymous survey. Consent to participate was waived.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note.

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Supplementary material 1, rights and permissions.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ . The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/ ) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Reprints and permissions

About this article

Cite this article.

Gallo, J.J., Murray, S.M., Creswell, J.W. et al. Going virtual: mixed methods evaluation of online versus in-person learning in the NIH mixed methods research training program retreat. BMC Med Educ 24 , 882 (2024). https://doi.org/10.1186/s12909-024-05877-2

Download citation

Received : 15 January 2024

Accepted : 08 August 2024

Published : 16 August 2024

DOI : https://doi.org/10.1186/s12909-024-05877-2

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Research training
  • Mixed methods research
  • Research capacity building
  • Online education
  • Teaching methods

BMC Medical Education

ISSN: 1472-6920

research on medical education

COLUMBIA UNIVERSITY IN THE CITY OF NEW YORK

Parliament, Office Building, Building, Architecture, Urban, Postal Office, Grass, Plant, City, Town

Clinical Research Coordinator

  • Columbia University Medical Center
  • Opening on: Aug 18 2024
  • Job Type: Officer of Administration
  • Bargaining Unit:
  • Regular/Temporary: Regular
  • End Date if Temporary:
  • Hours Per Week: 35
  • Standard Work Schedule:
  • Salary Range: $62,400 - $64,000

The Division of Geriatric Psychiatry is looking for a full time Research Coordinator who will be primarily responsible for assisting in the coordination of all research activities for various clinical trials within the Division.

Responsibilities

  • Assist in the coordination and implementation of all protocols assigned, including accountabilities such as: scheduling study assessments/procedures and participant interviews; organizing participant source documents, chart and study specific materials; ordering supplies; coordinating and accompanying participants to procedures (LP, MRI, PET).
  • Provide administration of neuropsychological tests and symptom rating scales.
  • Assist in participant recruitment.
  • Manage data entry and management.
  • Conduct biospecimen collection and processing (blood and CSF).
  • Manage completion of regulatory submissions for the NYSPI IRB.
  • Performs sub-site monitoring.
  • Conducts screening and obtains informed consent.
  • Communicates with IRB and Sponsor.
  • Checks completeness of data.
  • Performs related duties and responsibilities as assigned/requested.

Minimum Qualifications

  • Bachelor's degree or equivalent in education and experience.

Preferred Qualifications

  • 1-2 years of previous experience working in clinical research.
  • Prior experience in clinical trials preferred.
  • Ability to communicate effectively within a large cross functional study team.
  • Strong organizational skills and attention to detail.
  • Ability to handle sensitive information with a high level of discretion and integrity.

Other Requirements

  • Must successfully complete all online systems training requirements.

Equal Opportunity Employer / Disability / Veteran

Columbia University is committed to the hiring of qualified local residents.

Commitment to Diversity 

Columbia university is dedicated to increasing diversity in its workforce, its student body, and its educational programs. achieving continued academic excellence and creating a vibrant university community require nothing less. in fulfilling its mission to advance diversity at the university, columbia seeks to hire, retain, and promote exceptionally talented individuals from diverse backgrounds.  , share this job.

Thank you - we'll send an email shortly.

Other Recently Posted Jobs

Data Abstractor

Nurse practitioner.

Refer someone to this job

research on medical education

  • ©2022 Columbia University
  • Accessibility
  • Administrator Log in

Wait! Before you go, are you interested in a career at Columbia University? Sign up here! 

Thank you, for sharing your information. A member of our team will reach out to you soon!

Columbia University logo

This website uses cookies as well as similar tools and technologies to understand visitors' experiences. By continuing to use this website, you consent to Columbia University's usage of cookies and similar technologies, in accordance with the Columbia University Website Cookie Notice .

How do COVID-19 antibody tests differ from diagnostic tests?

I've heard about antibody testing for covid-19. what is antibody testing is it the same as testing to diagnose covid-19.

Antibody testing shows whether you have antibodies to the virus that causes COVID-19, also called coronavirus disease 2019.

Having antibodies suggests you've either had an infection with the virus in the past or you've had the COVID-19 vaccine. Antibody testing is not used to diagnose COVID-19.

What are antibodies and why are antibody tests done?

Antibodies are proteins. The body makes antibodies when there are things in the body that shouldn't be there, such as viruses. The antibodies help clear out the virus. Having antibodies to a virus may give some protection from the disease caused by the virus for a time.

A blood test can show whether you have antibodies to the COVID-19 virus within days to weeks of having the infection or the vaccine. But antibody testing, also called serology testing, is not done routinely.

A healthcare professional might use an antibody test to diagnose complications of COVID-19. These include multisystem inflammatory syndrome, a rare condition linked to COVID-19.

If you've gotten over COVID-19, you might be able to help others who have COVID-19. If testing shows that you have a high level of antibodies, you might donate part of your blood called plasma. This is called convalescent plasma. It may help others with severe disease who have a weakened immune system.

What tests are used to diagnose COVID-19?

Two types of tests can help diagnose COVID-19.

Molecular tests. These tests look for genetic material from the COVID-19 virus.

Polymerase chain reaction tests, shortened to PCR tests, are molecular tests. You may also hear this type of test called an NAAT test, short for nucleic acid amplification test.

PCR tests are more accurate than the other type of COVID-19 test, called an antigen test. You can do PCR tests at home. But they are more likely to be done by a healthcare professional and processed in a lab.

Antigen tests. These tests look for viral proteins called antigens.

Antigen tests also may be called rapid COVID-19 tests or at-home COVID-19 tests. These tests are useful if you need quick results.

Antigen tests are accurate. But they're less accurate than PCR tests. If you have symptoms and an antigen test is negative for COVID-19, take another antigen test after 48 hours to get the best result.

If you don't have symptoms and get a negative result, test again after 48 hours. If the result is still negative and you think you have COVID-19, you can test a third time after another 48 hours. Or you can get a molecular test or call your healthcare professional.

How do I get a COVID-19 diagnostic test?

In the United States, at-home COVID-19 tests are available from several sources. Free tests can be mailed to U.S. addresses, or you can buy tests in stores and pharmacies or online. The U.S. Food and Drug Administration (FDA) approves the tests. On the FDA website, you can find a list of the tests that are validated and when they expire.

Daniel C. DeSimone, M.D.

  • COVID-19 variant
  • COVID-19 drugs: Are there any that work?
  • AskMayoExpert. Serological antibody testing. Mayo Clinic; 2022.
  • Interim guidelines for COVID-19 antibody testing. Centers for Disease Control and Prevention. https://www.cdc.gov/coronavirus/2019-ncov/hcp/testing/antibody-tests-guidelines.html. Accessed March 5, 2024.
  • Antibody (serology) testing for COVID-19: Information for patients and consumers. U.S. Food and Drug Administration. https://www.fda.gov/medical-devices/coronavirus-covid-19-and-medical-devices/antibody-serology-testing-covid-19-information-patients-and-consumers. Accessed March 5, 2024.
  • AskMayoExpert. COVID-19: Drug regimens and other treatment options. Mayo Clinic; 2022.
  • COVID-19 testing: What you need to know. Centers for Disease Control and Prevention. https://www.cdc.gov/coronavirus/2019-ncov/symptoms-testing/testing.html. Accessed March 5, 2024.
  • At-home COVID-19 antigen tests: Take steps to reduce your risk of false negative results: FDA safety communication. U.S. Food and Drug Administration. https://www.fda.gov/medical-devices/safety-communications/home-covid-19-antigen-tests-take-steps-reduce-your-risk-false-negative-results-fda-safety. Accessed March 6, 2024.
  • AT-home OTC COVID diagnostic tests. U.S. Food and Drug Administration. https://www.fda.gov/medical-devices/coronavirus-covid-19-and-medical-devices/home-otc-covid-19-diagnostic-tests. Accessed March 6, 2024.
  • Zhang Y et al. Molecular and antigen tests, and sample types for diagnosis of COVID-19: A review. Future Virology. 2022; doi:10.2217/fvl-2021-0256.

Products and Services

  • A Book: Endemic - A Post-Pandemic Playbook
  • Begin Exploring Women's Health Solutions at Mayo Clinic Store
  • A Book: Future Care
  • Antibiotics: Are you misusing them?
  • COVID-19 and vitamin D
  • Convalescent plasma therapy
  • Coronavirus disease 2019 (COVID-19)
  • COVID-19: How can I protect myself?
  • Herd immunity and respiratory illness
  • COVID-19 and pets
  • COVID-19 and your mental health
  • COVID-19 antibody testing
  • COVID-19, cold, allergies and the flu
  • Long-term effects of COVID-19
  • COVID-19 tests
  • COVID-19 in babies and children
  • Coronavirus infection by race
  • COVID-19 travel advice
  • COVID-19 vaccine: Should I reschedule my mammogram?
  • COVID-19 vaccines for kids: What you need to know
  • COVID-19 vaccines
  • COVID-19 vs. flu: Similarities and differences
  • COVID-19: Who's at higher risk of serious symptoms?
  • Debunking coronavirus myths
  • Different COVID-19 vaccines
  • Extracorporeal membrane oxygenation (ECMO)
  • Fever: First aid
  • Fever treatment: Quick guide to treating a fever
  • Fight coronavirus (COVID-19) transmission at home
  • Honey: An effective cough remedy?
  • How to measure your respiratory rate
  • How to take your pulse
  • How to take your temperature
  • How well do face masks protect against COVID-19?
  • Is hydroxychloroquine a treatment for COVID-19?
  • Loss of smell
  • Mayo Clinic Minute: You're washing your hands all wrong
  • Mayo Clinic Minute: How dirty are common surfaces?
  • Multisystem inflammatory syndrome in children (MIS-C)
  • Nausea and vomiting
  • Pregnancy and COVID-19
  • Safe outdoor activities during the COVID-19 pandemic
  • Safety tips for attending school during COVID-19
  • Sex and COVID-19
  • Shortness of breath
  • Thermometers: Understand the options
  • Treating COVID-19 at home
  • Unusual symptoms of coronavirus
  • Vaccine guidance from Mayo Clinic
  • Watery eyes

Related information

  • COVID-19 diagnostic testing - Related information COVID-19 diagnostic testing
  • COVID-19 antibody testing - Related information COVID-19 antibody testing
  • How do COVID-19 antibody tests differ from diagnostic tests

Help transform healthcare

Your donation can make a difference in the future of healthcare. Give now to support Mayo Clinic's research.

U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings

Preview improvements coming to the PMC website in October 2024. Learn More or Try it out now .

  • Advanced Search
  • Journal List
  • v.324(7353); 2002 Jun 29

Research in medical education: three decades of progress

The specialty of research in medical education began just over three decades ago with a small group of clinicians and educational researchers at the medical school in Buffalo, New York. Since that time it has expanded worldwide. This paper is a personal reflection on how this research has informed our understanding of learning, teaching, and assessment in medicine.

Summary points

  • Research in medical education has contributed substantially to understanding the learning process
  • The educational community is becoming aware of the importance of evidence in educational decision making
  • Areas of major development include basic research on the nature of medical expertise, problem based learning, performance assessment, and continuing education and assessment of practising physicians

Measuring progress

In medicine, indicators of scientific progress might be measured by objective indicators such as death from cardiovascular disease. In education such “hard” evidence may be lacking for several reasons. Firstly, paradoxically, real differences in educational strategies may not be reflected in outcomes, such as licensing examination performance, simply because students are highly motivated and are not blinded to the intervention, so will compensate for any defects in the curriculum. 1 – 5 Secondly, a curriculum is not like a drug, which can be given at standard doses, but instead contains many components, delivered with variable quality by different teachers. Finally, the time between learning and important outcomes may be so long that the effects of the curriculum are obscured—although not always. 6

Use of evidence in educational decision making

Perhaps the most important evidence of progress in the discipline is that we are now more likely than before to demand evidence to guide educational decision making. Before 1970 important educational advances were largely adopted by persuasion and politics; since that time changes are more likely to be initiated or accompanied by evidence. Although this may sound circular, it represents tangible recognition of the contributions that research can make to the practice of education.

Specific areas of progress

Beyond this cultural change, the following broad domains have seen real progress: basic research in the acquisition of expertise, problem based learning, advances in assessment methods, and continuing education, recertification, and relicensure.

Basic research in the acquisition of expertise

In the early 1970s basic research into the nature of clinical reasoning pursued the hypothesis that expert clinicians were distinguished by the possession of general “clinical problem solving” skills. This was wrong; what emerged was that expertise lay predominantly in the knowledge, both formal and experiential, that the expert brought to the problem. 7 , 8

This finding resulted in a new direction of inquiry, and a new generation of researchers attempted to uncover the ways that expert clinicians organise medical knowledge in their minds, using research strategies derived from cognitive psychology. 9 , 10 Although the fruits of these labours are not yet ripe, the research has moved from purely descriptive research to experimental studies directed at a better understanding of the process and theory based interventions that promise to improve the effectiveness of instruction. 11

Problem based learning

Problem based learning developed at McMaster University in the late 1960s, driven by a desire to construct a medical school that was more humane than one that used the traditional, lecture based approach. Since that time an extensive body of evidence has emerged about its effectiveness. 2 – 5 , 12 If the evaluation is restricted to the central educational outcomes such as performance on licensing examinations, few differences are found. 2 , 3 This should not be a surprise—most students will do whatever is necessary to compensate for any perceived weakness in a curriculum. 13 However, in terms of the original goal of creating a humane learning environment, problem based learning is an unqualified success. 3 , 4

Advances in assessment methods

Arguably the most dramatic advances have occurred in approaches to assessment. Thirty years ago assessment was dominated by written tests—essays in Europe and multiple choice questions in North America. When performance assessment did occur, as in specialty certification, the traditional viva dominated. Moreover, there was a paucity of evidence about the strengths and weaknesses of various approaches.

That has all changed. In the 1970s there was a proliferation of simulation approaches to assessing higher skills like problem solving. These developments were accompanied by careful research, largely stimulated by the licensing and certification bodies in the United States. Content specificity has been a major finding of this research—the correlation of the various measures of skills across problems was typically in the range of 0.1 to 0.3, 14 so many samples of behaviour were necessary to obtain stable, thus reliable, measurement. It is a direct consequence of content specificity that the objective structured clinical examination, 15 with its multiple samples of performance, has come to dominate performance assessment and has led to an extensive literature regarding the impact of various elements such as ratings of simulated patients versus physician observers.

Additional educational resources

Useful websites

  • Queen's University, Ontario, Canada ( http://meds.queensu.ca/medicine/pbl/pblhome.htm )—problem based learning home page from Queen's University's School of Medicine
  • Clerkship Directors in Internal Medicine Task Force Subgroup Report ( http://www.im.org/cdim/5educate/eval/clinical.html )—evaluation of clinical competence
  • National Board of Medical Examiners ( http://www.nbme.org/about/itemwriting.asp )—constructing written test questions for the basic and clinical sciences

Useful publications

  • Norman GR, Schmidt HG. The psychological basis of problem-based learning: a review of evidence. Acad Med 1992;67:557-65.
  • Norman GR, van der Vleuten CPM, Newble DI. International Handbook of Research in Medical Education . Dordrecht: Kluwer, 2002.
  • Swanson DB, Norman GR, Linn RL. Performance based assessment: lessons from the health professions. Educ Res 1995;24:5-11.

This research has led to major advances in performance assessment—for example, the Medical Council of Canada now administers a performance examination to 1800 licensure candidates each year. 16 Changes in assessment methods at the school level have, however, been much slower in coming. 17

Research foci and major findings

Basic research on reasoning

Generic reasoning skills are non-existent

Knowledge (formal and experiential) is a critical determinant of reasoning

Self directed learning does not result in lower knowledge

Students and teachers are happier and more satisfied

Performance assessment

Multiple sampling strategies are crucial to reliable, valid assessment

Performance can be assessed as well as knowledge

Continuing education

Improved reliable methods for performance assessment in practice

Systematic approaches to relicensure

Continuing education, recertification, and relicensure

While continuing education of health professionals remains dominated by the “day in medicine,” when physicians assemble and hear a full day of lectures on a particular topic from academic specialists, a substantial body of evidence has emerged pointing to the deficiencies of this approach, and, more importantly, identifying alternative methods that are effective. 18

These changes have paralleled dramatic changes in the assessment of practising physicians. Society is challenging the presumed right of independent practice conferred on the physician at the time of licensure, and the medical education community has responded by devising and implementing several defensible strategies for reassessment. One highly innovative approach is the use of unidentified standardised patients who enter physicians' practices undetected. 19 , 20 Another is the serious attempt to identify and deal with incompetent physicians through formal performance assessment both in Canada and in the United Kingdom. 21 , 22

The outcome of medical education

Research in medical education is no longer in its infancy (see box). While it remains multifocal, with nearly as many research methods as researchers, there is a growing body of knowledge about the process and outcome of medical education.

In my view there has been insufficient attention to the interface between our understanding of clinical expertise and the application of this knowledge to improve instruction and assessment. Studies at the curriculum level of complex “treatments” like problem based learning are unlikely to reveal a deeper understanding of the interface between instruction and learning. Real improvement in education, just like real improvements in medical treatments, will only result when we combine better the understanding of basic science with the experimental interventions.

An external file that holds a picture, illustration, etc.
Object name is norg6871.f1.jpg

Medical education, 1960s-style

  Competing interests: None declared.

IMAGES

  1. International Journal of Clinical and Medical Education Research|Volume

    research on medical education

  2. (PDF) Review article: Medical education research: An overview of methods

    research on medical education

  3. The Research Compass. An overview model of approaches to research in

    research on medical education

  4. Medical Education Research

    research on medical education

  5. The Importance of Research in Medical Education: KIST Medical College's

    research on medical education

  6. What is medical education research?

    research on medical education

COMMENTS

  1. Home page

    Aims and scope. BMC Medical Education is an open access journal publishing original peer-reviewed research articles in relation to the education and training of healthcare professionals. The journal welcomes studies on students and professionals across all levels of education; education delivery aspects; and other education-related topics.

  2. Medical Education

    Medical Education is the leading international journal for research about health professional education. As a pre-eminent medical education journal, we publish papers that are practically relevant and advance conceptual understanding of educational issues, reflecting worldwide or provocative issues and perspectives.

  3. A Medical Education Research Library: key research topics and

    Introduction. Medical education research (MER) advances innovation in medical education and improves its quality. However, for novice clinician-educators, generating medical education scholarship can be daunting [].The 'alien culture' of MER, with its own concepts and processes [], and time-constraints [], may hinder clinician-educators from appropriately implementing evidence into their ...

  4. Articles

    BMC Medical Education: Open access journal for research on medical education, with 2.7 Impact Factor and 29 days to first decision. ... Undergraduates' workplace learning is an important part of health sciences education. Educational psychology research considers many different aspects of self-regulated learning at the workplace, including ...

  5. Medical Education: Vol 58, No 9

    Synergy and collaboration with young educators and students: Insights from an open forum on generative artificial intelligence in medical education. Billy Ho Hung Cheung, Calvin Cheung, Jason Chan, Emmanuel Chun Ka Wong, Joshua Wing Kei Ho, Kui Kai Gary Lau. Pages: 998-999. First Published: 04 May 2024. Full text.

  6. Research in Medical Education

    medical education research in the past 20 years, noted that MedEd research frequently explores the psychological impact of these factors on the individual student. Below is a list of the top themes in medical education research cited in the 20-year review. 1. Student assessment & evaluation

  7. Journal of Medical Education and Curricular Development

    Journal of Medical Education and Curricular Development is a rigorously peer-reviewed, open access journal devoted to the publishing of timely information on medical education practices and development including basic science, clinical, and postgraduate medical education. It aims to present articles that assist educators in the evaluation of curriculum development, methods of instruction ...

  8. Research in medical education: three decades of progress

    The specialty of research in medical education began just over three decades ago with a small group of clinicians and educational researchers at the medical school in Buffalo, New York. Since that time it has expanded worldwide. This paper is a personal reflection on how this research has informed our understanding of learning, teaching, and assessment in medicine. #### Summary points Research ...

  9. We Have No Choice but to Transform: The Future of Medical Education

    Medical education exists within a complicated ecosystem that includes universities, health systems, accrediting bodies, regulatory agencies, licensing bureaucracies, specialty organizations, and certifying boards. ... it is time for the National Institutes of Health to launch an institute that funds research into effective educational strategies.

  10. Qualitative research essentials for medical education

    In medical education, published qualitative work includes methodologies such as grounded theory, phenomenology, ethnography, case study, discourse analysis, participatory action research and narrative inquiry, although the list is growing as the field embraces researchers with diverse disciplinary backgrounds.

  11. Medical education today: all that glitters is not gold

    The medical education system based on principles advocated by Flexner and Osler has produced generations of scientifically grounded and clinically skilled physicians whose collective experiences and contributions have served medicine and patients well. Yet sweeping changes launched around the turn of the millennium have constituted a revolution in medical education.

  12. Student wellness trends and interventions in medical education: a

    Medical education is a time wrought with personal and professional stressors, posing serious challenges to maintaining student wellness. Extensive research has thus been conducted to identify ...

  13. Researching Medical Education

    RESEARCHING MEDICAL EDUCATION Researching Medical Education is an authoritative guide to excellence in educational research within the healthcare professions presented by the Association for the Study of Medical Education and AMEE. This text provides readers with key foundational knowledge, while introducing a range of theories and how to use them, illustrating a diversity of methods and their ...

  14. Researching Medical Education

    Balancing the complexities and practicalities of medical education research is a challenging task. Researching Medical Education strikes that balance by providing theoretical frameworks, practical tips and examples of best research practices; essential reading for anyone engaged in rigorous educational research in the health professions.

  15. A Medical Education Research Library: key research topics and

    Introduction. Medical education research (MER) advances innovation in medical education and improves its quality. However, for novice clinician-educators, generating medical education scholarship can be daunting [Citation 1].The 'alien culture' of MER, with its own concepts and processes [Citation 2], and time-constraints [Citation 3], may hinder clinician-educators from appropriately ...

  16. PDF "The research compass": An introduction to research in medical education

    l is the conceptual, theoretical framework that is the key to any direction. The compass depicts four main categories of research approaches that can be applied when studying medical education phenomena, 'Explorative studies'; 'Experimen. al studies'; 'Observational studies'; and 'Translational studies'. Future AME.

  17. Misrepresenting Race

    Efforts to advance health equity in medical education have ranged from implicit-bias training to supplementary curricula in structural competency, cultural humility, and antiracism. 10-12 ...

  18. Review article: medical education research: an overview of methods

    Conclusions: Research in medical education requires several successive steps, from formulating the correct research question to deciding the method for dissemination. Each approach has advantages and disadvantages and should be chosen according to the question being asked and the specific goal of the study. Well-conducted education research ...

  19. Understanding Ethical Challenges in Medical Education Research

    Rapidly advancing biomedical and electronic technologies, ongoing health disparities, and new online educational modalities are all changing medicine and medical education. As medical training continues to evolve, research is increasingly critical to help improve it, but medical education research can pose unique ethical challenges. As research participants, medical trainees may face several ...

  20. Healthcare Simulation: A Key to the Future of Medical Education

    Simulation offers students and residents with adequate opportunities to practice their clinical skills in a risk-free environment. Unprecedented global catastrophes provide opportunities to explore simulation as a viable training tool. Future research should focus on sustainability of simulation-based medical education in LMICs. Keywords ...

  21. Research and Education at Mayo Clinic

    Your tax-deductible gift advances education and discovery to improve patient care. Learn more. Explore education and research opportunities and resources at Mayo Clinic, where academic leaders, faculty members, and scientists work together to improve patient care.

  22. Can AI add value to medical education and improve communication between

    Researchers from Western University set out to answer that question and explore whether ChatGPT is capable of becoming a reliable resource in health care and medical education.The study, led by Schulich School of Medicine & Dentistry professor Dr. Amrit Kirpalani, was recently published in PLOS One and found that ChatGPT was only 49% accurate when it came to providing the right diagnosis.

  23. Fellowship in Pulmonary & Critical Care Medicine at Lenox Hill Hospital

    Graduate medical education resources The Fellowship in Pulmonary & Critical Care Medicine at Lenox Hill Hospital is a three-year clinical training program that offers exposure to multiple pulmonary subspecialties and critical care settings, as well as an extensive focus on bedside ultrasonography, including advanced critical care echocardiography.

  24. Lock

    The 13th Annual Graduate School Research and Education Symposium is June 5-6, 2024, and will be held in-person. Our theme is "Navigating the Changing Character of Military Medicine." The symposium consists of guest speakers and poster and podium presentations, showcasing student and faculty research across the full spectrum of translational ...

  25. Going virtual: mixed methods evaluation of online versus in-person

    Studies of health-related online teaching have focused on medical students [1,2,3], health professionals [4, 5], and medical conferences [6,7,8] and have touted the advantages of virtual training and conferences in health education, but few studies have assessed relative growth in skills and competencies in health research methods for ...

  26. Clinical Research Coordinator

    Job Type: Officer of Administration Bargaining Unit: Regular/Temporary: Regular End Date if Temporary: Hours Per Week: 35 Standard Work Schedule: Building: Salary Range: $62,400 - $64,000 The salary of the finalist selected for this role will be set based on a variety of factors, including but not limited to departmental budgets, qualifications, experience, education, licenses, specialty, and ...

  27. A practical guide for conducting qualitative research in medical

    INTRODUCTION. Qualitative research plays an important role in advancing practice and policy in education both inside and out of the field of medicine. 1, 2 Qualitative methods allow for in‐depth understanding of human behavior and social context to provide clues as to "how" and "why" certain phenomena are occurring. 3 This can help inform understanding of teacher or learner behavior ...

  28. How do COVID-19 antibody tests differ from diagnostic tests?

    Antibody testing shows whether you have antibodies to the virus that causes COVID-19, also called coronavirus disease 2019. Having antibodies suggests you've either had an infection with the virus in the past or you've had the COVID-19 vaccine.

  29. Human Resources Assistant

    Our preeminent faculty spans from emerging leaders to highly accomplished physicians and scientists, including a Nobel laureate and members of the National Academy. Our mission is to improve the diagnosis, treatment, and basic understanding of the human disease. This is done through discovery (research), education, and clinical care.

  30. Research in medical education: three decades of progress

    The specialty of research in medical education began just over three decades ago with a small group of clinicians and educational researchers at the medical school in Buffalo, New York. Since that time it has expanded worldwide. This paper is a personal reflection on how this research has informed our understanding of learning, teaching, and ...