Hypothesis Testing - Chi Squared Test
Lisa Sullivan, PhD
Professor of Biostatistics
Boston University School of Public Health
Introduction
This module will continue the discussion of hypothesis testing, where a specific statement or hypothesis is generated about a population parameter, and sample statistics are used to assess the likelihood that the hypothesis is true. The hypothesis is based on available information and the investigator's belief about the population parameters. The specific tests considered here are called chi-square tests and are appropriate when the outcome is discrete (dichotomous, ordinal or categorical). For example, in some clinical trials the outcome is a classification such as hypertensive, pre-hypertensive or normotensive. We could use the same classification in an observational study such as the Framingham Heart Study to compare men and women in terms of their blood pressure status - again using the classification of hypertensive, pre-hypertensive or normotensive status.
The technique to analyze a discrete outcome uses what is called a chi-square test. Specifically, the test statistic follows a chi-square probability distribution. We will consider chi-square tests here with one, two and more than two independent comparison groups.
Learning Objectives
After completing this module, the student will be able to:
- Perform chi-square tests by hand
- Appropriately interpret results of chi-square tests
- Identify the appropriate hypothesis testing procedure based on type of outcome variable and number of samples
Tests with One Sample, Discrete Outcome
Here we consider hypothesis testing with a discrete outcome variable in a single population. Discrete variables are variables that take on more than two distinct responses or categories and the responses can be ordered or unordered (i.e., the outcome can be ordinal or categorical). The procedure we describe here can be used for dichotomous (exactly 2 response options), ordinal or categorical discrete outcomes and the objective is to compare the distribution of responses, or the proportions of participants in each response category, to a known distribution. The known distribution is derived from another study or report and it is again important in setting up the hypotheses that the comparator distribution specified in the null hypothesis is a fair comparison. The comparator is sometimes called an external or a historical control.
In one sample tests for a discrete outcome, we set up our hypotheses against an appropriate comparator. We select a sample and compute descriptive statistics on the sample data. Specifically, we compute the sample size (n) and the proportions of participants in each response
Test Statistic for Testing H 0 : p 1 = p 10 , p 2 = p 20 , ..., p k = p k0
We find the critical value in a table of probabilities for the chi-square distribution with degrees of freedom (df) = k-1. In the test statistic, O = observed frequency and E=expected frequency in each of the response categories. The observed frequencies are those observed in the sample and the expected frequencies are computed as described below. χ 2 (chi-square) is another probability distribution and ranges from 0 to ∞. The test above statistic formula above is appropriate for large samples, defined as expected frequencies of at least 5 in each of the response categories.
When we conduct a χ 2 test, we compare the observed frequencies in each response category to the frequencies we would expect if the null hypothesis were true. These expected frequencies are determined by allocating the sample to the response categories according to the distribution specified in H 0 . This is done by multiplying the observed sample size (n) by the proportions specified in the null hypothesis (p 10 , p 20 , ..., p k0 ). To ensure that the sample size is appropriate for the use of the test statistic above, we need to ensure that the following: min(np 10 , n p 20 , ..., n p k0 ) > 5.
The test of hypothesis with a discrete outcome measured in a single sample, where the goal is to assess whether the distribution of responses follows a known distribution, is called the χ 2 goodness-of-fit test. As the name indicates, the idea is to assess whether the pattern or distribution of responses in the sample "fits" a specified population (external or historical) distribution. In the next example we illustrate the test. As we work through the example, we provide additional details related to the use of this new test statistic.
A University conducted a survey of its recent graduates to collect demographic and health information for future planning purposes as well as to assess students' satisfaction with their undergraduate experiences. The survey revealed that a substantial proportion of students were not engaging in regular exercise, many felt their nutrition was poor and a substantial number were smoking. In response to a question on regular exercise, 60% of all graduates reported getting no regular exercise, 25% reported exercising sporadically and 15% reported exercising regularly as undergraduates. The next year the University launched a health promotion campaign on campus in an attempt to increase health behaviors among undergraduates. The program included modules on exercise, nutrition and smoking cessation. To evaluate the impact of the program, the University again surveyed graduates and asked the same questions. The survey was completed by 470 graduates and the following data were collected on the exercise question:
Based on the data, is there evidence of a shift in the distribution of responses to the exercise question following the implementation of the health promotion campaign on campus? Run the test at a 5% level of significance.
In this example, we have one sample and a discrete (ordinal) outcome variable (with three response options). We specifically want to compare the distribution of responses in the sample to the distribution reported the previous year (i.e., 60%, 25%, 15% reporting no, sporadic and regular exercise, respectively). We now run the test using the five-step approach.
- Step 1. Set up hypotheses and determine level of significance.
The null hypothesis again represents the "no change" or "no difference" situation. If the health promotion campaign has no impact then we expect the distribution of responses to the exercise question to be the same as that measured prior to the implementation of the program.
H 0 : p 1 =0.60, p 2 =0.25, p 3 =0.15, or equivalently H 0 : Distribution of responses is 0.60, 0.25, 0.15
H 1 : H 0 is false. α =0.05
Notice that the research hypothesis is written in words rather than in symbols. The research hypothesis as stated captures any difference in the distribution of responses from that specified in the null hypothesis. We do not specify a specific alternative distribution, instead we are testing whether the sample data "fit" the distribution in H 0 or not. With the χ 2 goodness-of-fit test there is no upper or lower tailed version of the test.
- Step 2. Select the appropriate test statistic.
The test statistic is:
We must first assess whether the sample size is adequate. Specifically, we need to check min(np 0 , np 1, ..., n p k ) > 5. The sample size here is n=470 and the proportions specified in the null hypothesis are 0.60, 0.25 and 0.15. Thus, min( 470(0.65), 470(0.25), 470(0.15))=min(282, 117.5, 70.5)=70.5. The sample size is more than adequate so the formula can be used.
- Step 3. Set up decision rule.
The decision rule for the χ 2 test depends on the level of significance and the degrees of freedom, defined as degrees of freedom (df) = k-1 (where k is the number of response categories). If the null hypothesis is true, the observed and expected frequencies will be close in value and the χ 2 statistic will be close to zero. If the null hypothesis is false, then the χ 2 statistic will be large. Critical values can be found in a table of probabilities for the χ 2 distribution. Here we have df=k-1=3-1=2 and a 5% level of significance. The appropriate critical value is 5.99, and the decision rule is as follows: Reject H 0 if χ 2 > 5.99.
- Step 4. Compute the test statistic.
We now compute the expected frequencies using the sample size and the proportions specified in the null hypothesis. We then substitute the sample data (observed frequencies) and the expected frequencies into the formula for the test statistic identified in Step 2. The computations can be organized as follows.
Notice that the expected frequencies are taken to one decimal place and that the sum of the observed frequencies is equal to the sum of the expected frequencies. The test statistic is computed as follows:
- Step 5. Conclusion.
We reject H 0 because 8.46 > 5.99. We have statistically significant evidence at α=0.05 to show that H 0 is false, or that the distribution of responses is not 0.60, 0.25, 0.15. The p-value is p < 0.005.
In the χ 2 goodness-of-fit test, we conclude that either the distribution specified in H 0 is false (when we reject H 0 ) or that we do not have sufficient evidence to show that the distribution specified in H 0 is false (when we fail to reject H 0 ). Here, we reject H 0 and concluded that the distribution of responses to the exercise question following the implementation of the health promotion campaign was not the same as the distribution prior. The test itself does not provide details of how the distribution has shifted. A comparison of the observed and expected frequencies will provide some insight into the shift (when the null hypothesis is rejected). Does it appear that the health promotion campaign was effective?
Consider the following:
If the null hypothesis were true (i.e., no change from the prior year) we would have expected more students to fall in the "No Regular Exercise" category and fewer in the "Regular Exercise" categories. In the sample, 255/470 = 54% reported no regular exercise and 90/470=19% reported regular exercise. Thus, there is a shift toward more regular exercise following the implementation of the health promotion campaign. There is evidence of a statistical difference, is this a meaningful difference? Is there room for improvement?
The National Center for Health Statistics (NCHS) provided data on the distribution of weight (in categories) among Americans in 2002. The distribution was based on specific values of body mass index (BMI) computed as weight in kilograms over height in meters squared. Underweight was defined as BMI< 18.5, Normal weight as BMI between 18.5 and 24.9, overweight as BMI between 25 and 29.9 and obese as BMI of 30 or greater. Americans in 2002 were distributed as follows: 2% Underweight, 39% Normal Weight, 36% Overweight, and 23% Obese. Suppose we want to assess whether the distribution of BMI is different in the Framingham Offspring sample. Using data from the n=3,326 participants who attended the seventh examination of the Offspring in the Framingham Heart Study we created the BMI categories as defined and observed the following:
- Step 1. Set up hypotheses and determine level of significance.
H 0 : p 1 =0.02, p 2 =0.39, p 3 =0.36, p 4 =0.23 or equivalently
H 0 : Distribution of responses is 0.02, 0.39, 0.36, 0.23
H 1 : H 0 is false. α=0.05
The formula for the test statistic is:
We must assess whether the sample size is adequate. Specifically, we need to check min(np 0 , np 1, ..., n p k ) > 5. The sample size here is n=3,326 and the proportions specified in the null hypothesis are 0.02, 0.39, 0.36 and 0.23. Thus, min( 3326(0.02), 3326(0.39), 3326(0.36), 3326(0.23))=min(66.5, 1297.1, 1197.4, 765.0)=66.5. The sample size is more than adequate, so the formula can be used.
Here we have df=k-1=4-1=3 and a 5% level of significance. The appropriate critical value is 7.81 and the decision rule is as follows: Reject H 0 if χ 2 > 7.81.
We now compute the expected frequencies using the sample size and the proportions specified in the null hypothesis. We then substitute the sample data (observed frequencies) into the formula for the test statistic identified in Step 2. We organize the computations in the following table.
The test statistic is computed as follows:
We reject H 0 because 233.53 > 7.81. We have statistically significant evidence at α=0.05 to show that H 0 is false or that the distribution of BMI in Framingham is different from the national data reported in 2002, p < 0.005.
Again, the χ 2 goodness-of-fit test allows us to assess whether the distribution of responses "fits" a specified distribution. Here we show that the distribution of BMI in the Framingham Offspring Study is different from the national distribution. To understand the nature of the difference we can compare observed and expected frequencies or observed and expected proportions (or percentages). The frequencies are large because of the large sample size, the observed percentages of patients in the Framingham sample are as follows: 0.6% underweight, 28% normal weight, 41% overweight and 30% obese. In the Framingham Offspring sample there are higher percentages of overweight and obese persons (41% and 30% in Framingham as compared to 36% and 23% in the national data), and lower proportions of underweight and normal weight persons (0.6% and 28% in Framingham as compared to 2% and 39% in the national data). Are these meaningful differences?
In the module on hypothesis testing for means and proportions, we discussed hypothesis testing applications with a dichotomous outcome variable in a single population. We presented a test using a test statistic Z to test whether an observed (sample) proportion differed significantly from a historical or external comparator. The chi-square goodness-of-fit test can also be used with a dichotomous outcome and the results are mathematically equivalent.
In the prior module, we considered the following example. Here we show the equivalence to the chi-square goodness-of-fit test.
The NCHS report indicated that in 2002, 75% of children aged 2 to 17 saw a dentist in the past year. An investigator wants to assess whether use of dental services is similar in children living in the city of Boston. A sample of 125 children aged 2 to 17 living in Boston are surveyed and 64 reported seeing a dentist over the past 12 months. Is there a significant difference in use of dental services between children living in Boston and the national data?
We presented the following approach to the test using a Z statistic.
- Step 1. Set up hypotheses and determine level of significance
H 0 : p = 0.75
H 1 : p ≠ 0.75 α=0.05
We must first check that the sample size is adequate. Specifically, we need to check min(np 0 , n(1-p 0 )) = min( 125(0.75), 125(1-0.75))=min(94, 31)=31. The sample size is more than adequate so the following formula can be used
This is a two-tailed test, using a Z statistic and a 5% level of significance. Reject H 0 if Z < -1.960 or if Z > 1.960.
We now substitute the sample data into the formula for the test statistic identified in Step 2. The sample proportion is:
We reject H 0 because -6.15 < -1.960. We have statistically significant evidence at a =0.05 to show that there is a statistically significant difference in the use of dental service by children living in Boston as compared to the national data. (p < 0.0001).
We now conduct the same test using the chi-square goodness-of-fit test. First, we summarize our sample data as follows:
H 0 : p 1 =0.75, p 2 =0.25 or equivalently H 0 : Distribution of responses is 0.75, 0.25
We must assess whether the sample size is adequate. Specifically, we need to check min(np 0 , np 1, ...,np k >) > 5. The sample size here is n=125 and the proportions specified in the null hypothesis are 0.75, 0.25. Thus, min( 125(0.75), 125(0.25))=min(93.75, 31.25)=31.25. The sample size is more than adequate so the formula can be used.
Here we have df=k-1=2-1=1 and a 5% level of significance. The appropriate critical value is 3.84, and the decision rule is as follows: Reject H 0 if χ 2 > 3.84. (Note that 1.96 2 = 3.84, where 1.96 was the critical value used in the Z test for proportions shown above.)
(Note that (-6.15) 2 = 37.8, where -6.15 was the value of the Z statistic in the test for proportions shown above.)
We reject H 0 because 37.8 > 3.84. We have statistically significant evidence at α=0.05 to show that there is a statistically significant difference in the use of dental service by children living in Boston as compared to the national data. (p < 0.0001). This is the same conclusion we reached when we conducted the test using the Z test above. With a dichotomous outcome, Z 2 = χ 2 ! In statistics, there are often several approaches that can be used to test hypotheses.
Tests for Two or More Independent Samples, Discrete Outcome
Here we extend that application of the chi-square test to the case with two or more independent comparison groups. Specifically, the outcome of interest is discrete with two or more responses and the responses can be ordered or unordered (i.e., the outcome can be dichotomous, ordinal or categorical). We now consider the situation where there are two or more independent comparison groups and the goal of the analysis is to compare the distribution of responses to the discrete outcome variable among several independent comparison groups.
The test is called the χ 2 test of independence and the null hypothesis is that there is no difference in the distribution of responses to the outcome across comparison groups. This is often stated as follows: The outcome variable and the grouping variable (e.g., the comparison treatments or comparison groups) are independent (hence the name of the test). Independence here implies homogeneity in the distribution of the outcome among comparison groups.
The null hypothesis in the χ 2 test of independence is often stated in words as: H 0 : The distribution of the outcome is independent of the groups. The alternative or research hypothesis is that there is a difference in the distribution of responses to the outcome variable among the comparison groups (i.e., that the distribution of responses "depends" on the group). In order to test the hypothesis, we measure the discrete outcome variable in each participant in each comparison group. The data of interest are the observed frequencies (or number of participants in each response category in each group). The formula for the test statistic for the χ 2 test of independence is given below.
Test Statistic for Testing H 0 : Distribution of outcome is independent of groups
and we find the critical value in a table of probabilities for the chi-square distribution with df=(r-1)*(c-1).
Here O = observed frequency, E=expected frequency in each of the response categories in each group, r = the number of rows in the two-way table and c = the number of columns in the two-way table. r and c correspond to the number of comparison groups and the number of response options in the outcome (see below for more details). The observed frequencies are the sample data and the expected frequencies are computed as described below. The test statistic is appropriate for large samples, defined as expected frequencies of at least 5 in each of the response categories in each group.
The data for the χ 2 test of independence are organized in a two-way table. The outcome and grouping variable are shown in the rows and columns of the table. The sample table below illustrates the data layout. The table entries (blank below) are the numbers of participants in each group responding to each response category of the outcome variable.
Table - Possible outcomes are are listed in the columns; The groups being compared are listed in rows.
In the table above, the grouping variable is shown in the rows of the table; r denotes the number of independent groups. The outcome variable is shown in the columns of the table; c denotes the number of response options in the outcome variable. Each combination of a row (group) and column (response) is called a cell of the table. The table has r*c cells and is sometimes called an r x c ("r by c") table. For example, if there are 4 groups and 5 categories in the outcome variable, the data are organized in a 4 X 5 table. The row and column totals are shown along the right-hand margin and the bottom of the table, respectively. The total sample size, N, can be computed by summing the row totals or the column totals. Similar to ANOVA, N does not refer to a population size here but rather to the total sample size in the analysis. The sample data can be organized into a table like the above. The numbers of participants within each group who select each response option are shown in the cells of the table and these are the observed frequencies used in the test statistic.
The test statistic for the χ 2 test of independence involves comparing observed (sample data) and expected frequencies in each cell of the table. The expected frequencies are computed assuming that the null hypothesis is true. The null hypothesis states that the two variables (the grouping variable and the outcome) are independent. The definition of independence is as follows:
Two events, A and B, are independent if P(A|B) = P(A), or equivalently, if P(A and B) = P(A) P(B).
The second statement indicates that if two events, A and B, are independent then the probability of their intersection can be computed by multiplying the probability of each individual event. To conduct the χ 2 test of independence, we need to compute expected frequencies in each cell of the table. Expected frequencies are computed by assuming that the grouping variable and outcome are independent (i.e., under the null hypothesis). Thus, if the null hypothesis is true, using the definition of independence:
P(Group 1 and Response Option 1) = P(Group 1) P(Response Option 1).
The above states that the probability that an individual is in Group 1 and their outcome is Response Option 1 is computed by multiplying the probability that person is in Group 1 by the probability that a person is in Response Option 1. To conduct the χ 2 test of independence, we need expected frequencies and not expected probabilities . To convert the above probability to a frequency, we multiply by N. Consider the following small example.
The data shown above are measured in a sample of size N=150. The frequencies in the cells of the table are the observed frequencies. If Group and Response are independent, then we can compute the probability that a person in the sample is in Group 1 and Response category 1 using:
P(Group 1 and Response 1) = P(Group 1) P(Response 1),
P(Group 1 and Response 1) = (25/150) (62/150) = 0.069.
Thus if Group and Response are independent we would expect 6.9% of the sample to be in the top left cell of the table (Group 1 and Response 1). The expected frequency is 150(0.069) = 10.4. We could do the same for Group 2 and Response 1:
P(Group 2 and Response 1) = P(Group 2) P(Response 1),
P(Group 2 and Response 1) = (50/150) (62/150) = 0.138.
The expected frequency in Group 2 and Response 1 is 150(0.138) = 20.7.
Thus, the formula for determining the expected cell frequencies in the χ 2 test of independence is as follows:
Expected Cell Frequency = (Row Total * Column Total)/N.
The above computes the expected frequency in one step rather than computing the expected probability first and then converting to a frequency.
In a prior example we evaluated data from a survey of university graduates which assessed, among other things, how frequently they exercised. The survey was completed by 470 graduates. In the prior example we used the χ 2 goodness-of-fit test to assess whether there was a shift in the distribution of responses to the exercise question following the implementation of a health promotion campaign on campus. We specifically considered one sample (all students) and compared the observed distribution to the distribution of responses the prior year (a historical control). Suppose we now wish to assess whether there is a relationship between exercise on campus and students' living arrangements. As part of the same survey, graduates were asked where they lived their senior year. The response options were dormitory, on-campus apartment, off-campus apartment, and at home (i.e., commuted to and from the university). The data are shown below.
Based on the data, is there a relationship between exercise and student's living arrangement? Do you think where a person lives affect their exercise status? Here we have four independent comparison groups (living arrangement) and a discrete (ordinal) outcome variable with three response options. We specifically want to test whether living arrangement and exercise are independent. We will run the test using the five-step approach.
H 0 : Living arrangement and exercise are independent
H 1 : H 0 is false. α=0.05
The null and research hypotheses are written in words rather than in symbols. The research hypothesis is that the grouping variable (living arrangement) and the outcome variable (exercise) are dependent or related.
- Step 2. Select the appropriate test statistic.
The condition for appropriate use of the above test statistic is that each expected frequency is at least 5. In Step 4 we will compute the expected frequencies and we will ensure that the condition is met.
The decision rule depends on the level of significance and the degrees of freedom, defined as df = (r-1)(c-1), where r and c are the numbers of rows and columns in the two-way data table. The row variable is the living arrangement and there are 4 arrangements considered, thus r=4. The column variable is exercise and 3 responses are considered, thus c=3. For this test, df=(4-1)(3-1)=3(2)=6. Again, with χ 2 tests there are no upper, lower or two-tailed tests. If the null hypothesis is true, the observed and expected frequencies will be close in value and the χ 2 statistic will be close to zero. If the null hypothesis is false, then the χ 2 statistic will be large. The rejection region for the χ 2 test of independence is always in the upper (right-hand) tail of the distribution. For df=6 and a 5% level of significance, the appropriate critical value is 12.59 and the decision rule is as follows: Reject H 0 if c 2 > 12.59.
We now compute the expected frequencies using the formula,
Expected Frequency = (Row Total * Column Total)/N.
The computations can be organized in a two-way table. The top number in each cell of the table is the observed frequency and the bottom number is the expected frequency. The expected frequencies are shown in parentheses.
Notice that the expected frequencies are taken to one decimal place and that the sums of the observed frequencies are equal to the sums of the expected frequencies in each row and column of the table.
Recall in Step 2 a condition for the appropriate use of the test statistic was that each expected frequency is at least 5. This is true for this sample (the smallest expected frequency is 9.6) and therefore it is appropriate to use the test statistic.
We reject H 0 because 60.5 > 12.59. We have statistically significant evidence at a =0.05 to show that H 0 is false or that living arrangement and exercise are not independent (i.e., they are dependent or related), p < 0.005.
Again, the χ 2 test of independence is used to test whether the distribution of the outcome variable is similar across the comparison groups. Here we rejected H 0 and concluded that the distribution of exercise is not independent of living arrangement, or that there is a relationship between living arrangement and exercise. The test provides an overall assessment of statistical significance. When the null hypothesis is rejected, it is important to review the sample data to understand the nature of the relationship. Consider again the sample data.
Because there are different numbers of students in each living situation, it makes the comparisons of exercise patterns difficult on the basis of the frequencies alone. The following table displays the percentages of students in each exercise category by living arrangement. The percentages sum to 100% in each row of the table. For comparison purposes, percentages are also shown for the total sample along the bottom row of the table.
From the above, it is clear that higher percentages of students living in dormitories and in on-campus apartments reported regular exercise (31% and 23%) as compared to students living in off-campus apartments and at home (10% each).
Test Yourself
Pancreaticoduodenectomy (PD) is a procedure that is associated with considerable morbidity. A study was recently conducted on 553 patients who had a successful PD between January 2000 and December 2010 to determine whether their Surgical Apgar Score (SAS) is related to 30-day perioperative morbidity and mortality. The table below gives the number of patients experiencing no, minor, or major morbidity by SAS category.
Question: What would be an appropriate statistical test to examine whether there is an association between Surgical Apgar Score and patient outcome? Using 14.13 as the value of the test statistic for these data, carry out the appropriate test at a 5% level of significance. Show all parts of your test.
In the module on hypothesis testing for means and proportions, we discussed hypothesis testing applications with a dichotomous outcome variable and two independent comparison groups. We presented a test using a test statistic Z to test for equality of independent proportions. The chi-square test of independence can also be used with a dichotomous outcome and the results are mathematically equivalent.
In the prior module, we considered the following example. Here we show the equivalence to the chi-square test of independence.
A randomized trial is designed to evaluate the effectiveness of a newly developed pain reliever designed to reduce pain in patients following joint replacement surgery. The trial compares the new pain reliever to the pain reliever currently in use (called the standard of care). A total of 100 patients undergoing joint replacement surgery agreed to participate in the trial. Patients were randomly assigned to receive either the new pain reliever or the standard pain reliever following surgery and were blind to the treatment assignment. Before receiving the assigned treatment, patients were asked to rate their pain on a scale of 0-10 with higher scores indicative of more pain. Each patient was then given the assigned treatment and after 30 minutes was again asked to rate their pain on the same scale. The primary outcome was a reduction in pain of 3 or more scale points (defined by clinicians as a clinically meaningful reduction). The following data were observed in the trial.
We tested whether there was a significant difference in the proportions of patients reporting a meaningful reduction (i.e., a reduction of 3 or more scale points) using a Z statistic, as follows.
H 0 : p 1 = p 2
H 1 : p 1 ≠ p 2 α=0.05
Here the new or experimental pain reliever is group 1 and the standard pain reliever is group 2.
We must first check that the sample size is adequate. Specifically, we need to ensure that we have at least 5 successes and 5 failures in each comparison group or that:
In this example, we have
Therefore, the sample size is adequate, so the following formula can be used:
Reject H 0 if Z < -1.960 or if Z > 1.960.
We now substitute the sample data into the formula for the test statistic identified in Step 2. We first compute the overall proportion of successes:
We now substitute to compute the test statistic.
- Step 5. Conclusion.
We now conduct the same test using the chi-square test of independence.
H 0 : Treatment and outcome (meaningful reduction in pain) are independent
H 1 : H 0 is false. α=0.05
The formula for the test statistic is:
For this test, df=(2-1)(2-1)=1. At a 5% level of significance, the appropriate critical value is 3.84 and the decision rule is as follows: Reject H0 if χ 2 > 3.84. (Note that 1.96 2 = 3.84, where 1.96 was the critical value used in the Z test for proportions shown above.)
We now compute the expected frequencies using:
The computations can be organized in a two-way table. The top number in each cell of the table is the observed frequency and the bottom number is the expected frequency. The expected frequencies are shown in parentheses.
A condition for the appropriate use of the test statistic was that each expected frequency is at least 5. This is true for this sample (the smallest expected frequency is 22.0) and therefore it is appropriate to use the test statistic.
(Note that (2.53) 2 = 6.4, where 2.53 was the value of the Z statistic in the test for proportions shown above.)
Chi-Squared Tests in R
The video below by Mike Marin demonstrates how to perform chi-squared tests in the R programming language.
Answer to Problem on Pancreaticoduodenectomy and Surgical Apgar Scores
We have 3 independent comparison groups (Surgical Apgar Score) and a categorical outcome variable (morbidity/mortality). We can run a Chi-Squared test of independence.
H 0 : Apgar scores and patient outcome are independent of one another.
H A : Apgar scores and patient outcome are not independent.
Chi-squared = 14.3
Since 14.3 is greater than 9.49, we reject H 0.
There is an association between Apgar scores and patient outcome. The lowest Apgar score group (0 to 4) experienced the highest percentage of major morbidity or mortality (16 out of 57=28%) compared to the other Apgar score groups.
User Preferences
Content preview.
Arcu felis bibendum ut tristique et egestas quis:
- Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris
- Duis aute irure dolor in reprehenderit in voluptate
- Excepteur sint occaecat cupidatat non proident
Keyboard Shortcuts
S.4 chi-square tests, chi-square test of independence section .
Do you remember how to test the independence of two categorical variables? This test is performed by using a Chi-square test of independence.
Recall that we can summarize two categorical variables within a two-way table, also called an r × c contingency table, where r = number of rows, c = number of columns. Our question of interest is “Are the two variables independent?” This question is set up using the following hypothesis statements:
\[E=\frac{\text{row total}\times\text{column total}}{\text{sample size}}\]
We will compare the value of the test statistic to the critical value of \(\chi_{\alpha}^2\) with the degree of freedom = ( r - 1) ( c - 1), and reject the null hypothesis if \(\chi^2 \gt \chi_{\alpha}^2\).
Example S.4.1 Section
Is gender independent of education level? A random sample of 395 people was surveyed and each person was asked to report the highest education level they obtained. The data that resulted from the survey are summarized in the following table:
Question : Are gender and education level dependent at a 5% level of significance? In other words, given the data collected above, is there a relationship between the gender of an individual and the level of education that they have obtained?
Here's the table of expected counts:
So, working this out, \(\chi^2= \dfrac{(60−50.886)^2}{50.886} + \cdots + \dfrac{(57 − 48.132)^2}{48.132} = 8.006\)
The critical value of \(\chi^2\) with 3 degrees of freedom is 7.815. Since 8.006 > 7.815, we reject the null hypothesis and conclude that the education level depends on gender at a 5% level of significance.
LEARN STATISTICS EASILY
Learn Data Analysis Now!
Understanding the Null Hypothesis in Chi-Square
The null hypothesis in chi square testing suggests no significant difference between a study’s observed and expected frequencies. It assumes any observed difference is due to chance and not because of a meaningful statistical relationship.
Introduction
The chi-square test is a valuable tool in statistical analysis. It’s a non-parametric test applied when the data are qualitative or categorical. This test helps to establish whether there is a significant association between 2 categorical variables in a sample population.
Central to any chi-square test is the concept of the null hypothesis. In the context of chi-square, the null hypothesis assumes no significant difference exists between the categories’ observed and expected frequencies. Any difference seen is likely due to chance or random error rather than a meaningful statistical difference.
- The chi-square null hypothesis assumes no significant difference between observed and expected frequencies.
- Failing to reject the null hypothesis doesn’t prove it true, only that data lacks strong evidence against it.
- A p-value < the significance level indicates a significant association between variables.
Ad description. Lorem ipsum dolor sit amet, consectetur adipiscing elit.
Understanding the Concept of Null Hypothesis in Chi Square
The null hypothesis in chi-square tests is essentially a statement of no effect or no relationship. When it comes to categorical data, it indicates that the distribution of categories for one variable is not affected by the distribution of categories of the other variable.
For example, if we compare the preference for different types of fruit among men and women, the null hypothesis would state that the preference is independent of gender. The alternative hypothesis, on the other hand, would suggest a dependency between the two.
Steps to Formulate the Null Hypothesis in Chi-Square Tests
Formulating the null hypothesis is a critical step in any chi-square test. First, identify the variables being tested. Then, once the variables are determined, the null hypothesis can be formulated to state no association between them.
Next, collect your data. This data must be frequencies or counts of categories, not percentages or averages. Once the data is collected, you can calculate the expected frequency for each category under the null hypothesis.
Finally, use the chi-square formula to calculate the chi-square statistic. This will help determine whether to reject or fail to reject the null hypothesis.
Practical Example and Case Study
Consider a study evaluating whether smoking status is independent of a lung cancer diagnosis. The null hypothesis would state that smoking status (smoker or non-smoker) is independent of cancer diagnosis (yes or no).
If we find a p-value less than our significance level (typically 0.05) after conducting the chi-square test, we would reject the null hypothesis and conclude that smoking status is not independent of lung cancer diagnosis, suggesting a significant association between the two.
Observed Table
Expected table, common misunderstandings and pitfalls.
One common misunderstanding is the interpretation of failing to reject the null hypothesis. It’s important to remember that failing to reject the null does not prove it true. Instead, it merely suggests that our data do not provide strong enough evidence against it.
Another pitfall is applying the chi-square test to inappropriate data. The chi-square test requires categorical or nominal data. Applying it to ordinal or continuous data without proper binning or categorization can lead to incorrect results.
The null hypothesis in chi-square testing is a powerful tool in statistical analysis. It provides a means to differentiate between observed variations due to random chance versus those that may signify a significant effect or relationship. As we continue to generate more data in various fields, the importance of understanding and correctly applying chi-square tests and the concept of the null hypothesis grows.
Recommended Articles
Interested in diving deeper into statistics? Explore our range of statistical analysis and data science articles to broaden your understanding. Visit our blog now!
- Simple Null Hypothesis – an overview (External Link)
- Chi-Square Calculator: Enhance Your Data Analysis Skills
- Effect Size for Chi-Square Tests: Unveiling its Significance
- What is the Difference Between the T-Test vs. Chi-Square Test?
- Understanding the Assumptions for Chi-Square Test of Independence
- How to Report Chi-Square Test Results in APA Style: A Step-By-Step Guide
Frequently Asked Questions (FAQs)
It’s a statistical test used to determine if there’s a significant association between two categorical variables.
The null hypothesis suggests no significant difference between observed and expected frequencies exists. The alternative hypothesis suggests a significant difference.
No, we never “accept” the null hypothesis. We only fail to reject it if the data doesn’t provide strong evidence against it.
Rejecting the null hypothesis implies a significant difference between observed and expected frequencies, suggesting an association between variables.
Chi-Square tests are appropriate for categorical or nominal data.
The significance level, often 0.05, is the probability threshold below which the null hypothesis can be rejected.
A p-value < the significance level indicates a significant association between variables, leading to rejecting the null hypothesis.
Using the Chi-Square test for improper data, like ordinal or continuous data, without proper categorization can lead to incorrect results.
Identify the variables, state their independence, collect data, calculate expected frequencies, and apply the Chi-Square formula.
Understanding the null hypothesis is essential for correctly interpreting and applying Chi-Square tests, helping to make informed decisions based on data.
Similar Posts
What Is the Mode in a Data Set?
Explore the essence of ‘What Is the Mode in a Data Set’ and its pivotal role in statistical analysis for insightful data interpretation.
7 Strategies to Optimize Your Statistical and Data Analysis Workflow
Optimize your data analysis workflow with these 7 practical tips for better organization, efficiency, and accuracy in your projects.
Understanding Random Sampling: Essential Techniques in Data Analysis
Delve into the world of data analysis with our comprehensive guide on random sampling. Learn its importance, types, challenges, and common misconceptions.
What is an Independent Variable in an Experiment?
In Science, What is a Dependent Variable? Learn to differentiate them from independent variables and discover real-world applications.
Machine Learning Support Vector Machines: A Comprehensive Guide
Unlock the power of Machine Learning Support Vector Machines: your definitive guide to SVM principles, applications, and tutorials.
Sample Size in Logistic Regression: A Simple Binary Approach
Sample Size In Logistic Regression: Calculate With G*Power. The Tutorials Out There Are Inaccurate. (Simple Binary Logistic Regression)
Leave a Reply Cancel reply
Your email address will not be published. Required fields are marked *
Save my name, email, and website in this browser for the next time I comment.
IMAGES
VIDEO
COMMENTS
Example: Chi-square test of independence. Null hypothesis (H 0): The proportion of people who are left-handed is the same for Americans and Canadians. Alternative hypothesis (H A): The proportion of people who are left-handed differs between nationalities. Other types of chi-square tests
In each scenario, we can use a Chi-Square test of independence to determine if there is a statistically significant association between the variables. A Chi-Square test of independence uses the following null and alternative hypotheses: H0: (null hypothesis) The two variables are independent.
In statistics, there are two different types of Chi-Square tests: 1. The Chi-Square Goodness of Fit Test – Used to determine whether or not a categorical variable follows a hypothesized distribution. 2. The Chi-Square Test of Independence – Used to determine whether or not there is a significant association between two categorical variables.
The null hypothesis in the χ 2 test of independence is often stated in words as: H 0: The distribution of the outcome is independent of the groups. The alternative or research hypothesis is that there is a difference in the distribution of responses to the outcome variable among the comparison groups (i.e., that the distribution of responses ...
A chi-square (Χ 2) test of independence is a nonparametric hypothesis test. You can use it to test whether two categorical variables are related to each other. Example: Chi-square test of independence. Imagine a city wants to encourage more of its residents to recycle their household waste.
Under the null hypothesis and certain conditions (discussed below), the test statistic follows a Chi-Square distribution with degrees of freedom equal to \((r-1)(c-1)\), where \(r\) is the number of rows and \(c\) is the number of columns.
Like all hypothesis tests, a chi-square goodness of fit test evaluates two hypotheses: the null and alternative hypotheses. They’re two competing answers to the question “Was the sample drawn from a population that follows the specified distribution?” Null hypothesis (H 0): The population follows the specified distribution.
We will compare the value of the test statistic to the critical value of χ α 2 with the degree of freedom = (r - 1) (c - 1), and reject the null hypothesis if χ 2> χ α 2. Is gender independent of education level? A random sample of 395 people was surveyed and each person was asked to report the highest education level they obtained.
We would reject the null hypothesis that the die is fair only if the number Σ(O − E)2 E is large, so the test is right-tailed. In this example the random variable Σ(O − E)2 E has the chi-square distribution with five degrees of freedom.
Formulating the null hypothesis is a critical step in any chi-square test. First, identify the variables being tested. Then, once the variables are determined, the null hypothesis can be formulated to state no association between them. Next, collect your data. This data must be frequencies or counts of categories, not percentages or averages.