Introduce the topic.
Provide background information.
Present the thesis statement or main argument.
Have a looming deadline for your argumentative essay? Write 2x faster with Paperpal – Start now!
An argumentative essay presents a specific claim or argument and supports it with evidence and reasoning. Here’s an outline for an argumentative essay, along with examples for each section: 3
1. Introduction :
Example: “Did you know that plastic pollution is threatening marine life at an alarming rate?”
Example: “Plastic pollution has become a global environmental concern, with millions of tons of plastic waste entering our oceans yearly.”
Example: “We must take immediate action to reduce plastic usage and implement more sustainable alternatives to protect our marine ecosystem.”
2. Body Paragraphs :
Example: “The first step towards addressing the plastic pollution crisis is reducing single-use plastic consumption.”
Example: “Research shows that plastic straws alone contribute to millions of tons of plastic waste annually, and many marine animals suffer from ingestion or entanglement.”
Example: “Some argue that banning plastic straws is inconvenient for consumers, but the long-term environmental benefits far outweigh the temporary inconvenience.”
Example: “Having addressed the issue of single-use plastics, the focus must now shift to promoting sustainable alternatives.”
3. Counterargument Paragraph :
Example: “While some may argue that individual actions cannot significantly impact global plastic pollution, the cumulative effect of collective efforts must be considered.”
Example: “However, individual actions, when multiplied across millions of people, can substantially reduce plastic waste. Small changes in behavior, such as using reusable bags and containers, can have a significant positive impact.”
4. Conclusion :
Example: “In conclusion, adopting sustainable practices and reducing single-use plastic is crucial for preserving our oceans and marine life.”
Example: “It is our responsibility to make environmentally conscious choices and advocate for policies that prioritize the health of our planet. By collectively embracing sustainable alternatives, we can contribute to a cleaner and healthier future.”
A claim is a statement or proposition a writer puts forward with evidence to persuade the reader. 4 Here are some common types of argument claims, along with examples:
Understanding these argument claims can help writers construct more persuasive and well-supported arguments tailored to the specific nature of the claim.
If you’re wondering how to start an argumentative essay, here’s a step-by-step guide to help you with the argumentative essay format and writing process.
Struggling to start your argumentative essay? Paperpal can help – try now!
Here are eight strategies to craft a compelling argumentative essay:
Let’s consider a sample of argumentative essay on how social media enhances connectivity:
In the digital age, social media has emerged as a powerful tool that transcends geographical boundaries, connecting individuals from diverse backgrounds and providing a platform for an array of voices to be heard. While critics argue that social media fosters division and amplifies negativity, it is essential to recognize the positive aspects of this digital revolution and how it enhances connectivity by providing a platform for diverse voices to flourish. One of the primary benefits of social media is its ability to facilitate instant communication and connection across the globe. Platforms such as Facebook, Twitter, and Instagram break down geographical barriers, enabling people to establish and maintain relationships regardless of physical location and fostering a sense of global community. Furthermore, social media has transformed how people stay connected with friends and family. Whether separated by miles or time zones, social media ensures that relationships remain dynamic and relevant, contributing to a more interconnected world. Moreover, social media has played a pivotal role in giving voice to social justice movements and marginalized communities. Movements such as #BlackLivesMatter, #MeToo, and #ClimateStrike have gained momentum through social media, allowing individuals to share their stories and advocate for change on a global scale. This digital activism can shape public opinion and hold institutions accountable. Social media platforms provide a dynamic space for open dialogue and discourse. Users can engage in discussions, share information, and challenge each other’s perspectives, fostering a culture of critical thinking. This open exchange of ideas contributes to a more informed and enlightened society where individuals can broaden their horizons and develop a nuanced understanding of complex issues. While criticisms of social media abound, it is crucial to recognize its positive impact on connectivity and the amplification of diverse voices. Social media transcends physical and cultural barriers, connecting people across the globe and providing a platform for marginalized voices to be heard. By fostering open dialogue and facilitating the exchange of ideas, social media contributes to a more interconnected and empowered society. Embracing the positive aspects of social media allows us to harness its potential for positive change and collective growth.
Writing a winning argumentative essay not only showcases your ability to critically analyze a topic but also demonstrates your skill in persuasively presenting your stance backed by evidence. Achieving this level of writing excellence can be time-consuming. This is where Paperpal, your AI academic writing assistant, steps in to revolutionize the way you approach argumentative essays. Here’s a step-by-step guide on how to use Paperpal to write your essay:
Paperpal not only simplifies the essay writing process but also ensures your argumentative essay is persuasive, well-structured, and academically rigorous. Sign up today and transform how you write argumentative essays.
The length of an argumentative essay can vary, but it typically falls within the range of 1,000 to 2,500 words. However, the specific requirements may depend on the guidelines provided.
You might write an argumentative essay when: 1. You want to convince others of the validity of your position. 2. There is a controversial or debatable issue that requires discussion. 3. You need to present evidence and logical reasoning to support your claims. 4. You want to explore and critically analyze different perspectives on a topic.
Argumentative Essay: Purpose : An argumentative essay aims to persuade the reader to accept or agree with a specific point of view or argument. Structure : It follows a clear structure with an introduction, thesis statement, body paragraphs presenting arguments and evidence, counterarguments and refutations, and a conclusion. Tone : The tone is formal and relies on logical reasoning, evidence, and critical analysis. Narrative/Descriptive Essay: Purpose : These aim to tell a story or describe an experience, while a descriptive essay focuses on creating a vivid picture of a person, place, or thing. Structure : They may have a more flexible structure. They often include an engaging introduction, a well-developed body that builds the story or description, and a conclusion. Tone : The tone is more personal and expressive to evoke emotions or provide sensory details.
Paperpal is a comprehensive AI writing toolkit that helps students and researchers achieve 2x the writing in half the time. It leverages 21+ years of STM experience and insights from millions of research articles to provide in-depth academic writing, language editing, and submission readiness support to help you write better, faster.
Get accurate academic translations, rewriting support, grammar checks, vocabulary suggestions, and generative AI assistance that delivers human precision at machine speed. Try for free or upgrade to Paperpal Prime starting at US$19 a month to access premium features, including consistency, plagiarism, and 30+ submission readiness checks to help you succeed.
Experience the future of academic writing – Sign up to Paperpal and start writing for free!
The do’s & don’ts of using generative ai tools ethically in academia, you may also like, dissertation printing and binding | types & comparison , what is a dissertation preface definition and examples , how to write a research proposal: (with examples..., how to write your research paper in apa..., how to choose a dissertation topic, how to write a phd research proposal, how to write an academic paragraph (step-by-step guide), maintaining academic integrity with paperpal’s generative ai writing..., research funding basics: what should a grant proposal..., how to write an abstract in research papers....
Peer Reviewed
Article metrics.
CrossRef Citations
Altmetric Score
PDF Downloads
Academic journals, archives, and repositories are seeing an increasing number of questionable research papers clearly produced using generative AI. They are often created with widely available, general-purpose AI applications, most likely ChatGPT, and mimic scientific writing. Google Scholar easily locates and lists these questionable papers alongside reputable, quality-controlled research. Our analysis of a selection of questionable GPT-fabricated scientific papers found in Google Scholar shows that many are about applied, often controversial topics susceptible to disinformation: the environment, health, and computing. The resulting enhanced potential for malicious manipulation of society’s evidence base, particularly in politically divisive domains, is a growing concern.
Swedish School of Library and Information Science, University of Borås, Sweden
Department of Arts and Cultural Sciences, Lund University, Sweden
Division of Environmental Communication, Swedish University of Agricultural Sciences, Sweden
The use of ChatGPT to generate text for academic papers has raised concerns about research integrity. Discussion of this phenomenon is ongoing in editorials, commentaries, opinion pieces, and on social media (Bom, 2023; Stokel-Walker, 2024; Thorp, 2023). There are now several lists of papers suspected of GPT misuse, and new papers are constantly being added. 1 See for example Academ-AI, https://www.academ-ai.info/ , and Retraction Watch, https://retractionwatch.com/papers-and-peer-reviews-with-evidence-of-chatgpt-writing/ . While many legitimate uses of GPT for research and academic writing exist (Huang & Tan, 2023; Kitamura, 2023; Lund et al., 2023), its undeclared use—beyond proofreading—has potentially far-reaching implications for both science and society, but especially for their relationship. It, therefore, seems important to extend the discussion to one of the most accessible and well-known intermediaries between science, but also certain types of misinformation, and the public, namely Google Scholar, also in response to the legitimate concerns that the discussion of generative AI and misinformation needs to be more nuanced and empirically substantiated (Simon et al., 2023).
Google Scholar, https://scholar.google.com , is an easy-to-use academic search engine. It is available for free, and its index is extensive (Gusenbauer & Haddaway, 2020). It is also often touted as a credible source for academic literature and even recommended in library guides, by media and information literacy initiatives, and fact checkers (Tripodi et al., 2023). However, Google Scholar lacks the transparency and adherence to standards that usually characterize citation databases. Instead, Google Scholar uses automated crawlers, like Google’s web search engine (Martín-Martín et al., 2021), and the inclusion criteria are based on primarily technical standards, allowing any individual author—with or without scientific affiliation—to upload papers to be indexed (Google Scholar Help, n.d.). It has been shown that Google Scholar is susceptible to manipulation through citation exploits (Antkare, 2020) and by providing access to fake scientific papers (Dadkhah et al., 2017). A large part of Google Scholar’s index consists of publications from established scientific journals or other forms of quality-controlled, scholarly literature. However, the index also contains a large amount of gray literature, including student papers, working papers, reports, preprint servers, and academic networking sites, as well as material from so-called “questionable” academic journals, including paper mills. The search interface does not offer the possibility to filter the results meaningfully by material type, publication status, or form of quality control, such as limiting the search to peer-reviewed material.
To understand the occurrence of ChatGPT (co-)authored work in Google Scholar’s index, we scraped it for publications, including one of two common ChatGPT responses (see Appendix A) that we encountered on social media and in media reports (DeGeurin, 2024). The results of our descriptive statistical analyses showed that around 62% did not declare the use of GPTs. Most of these GPT-fabricated papers were found in non-indexed journals and working papers, but some cases included research published in mainstream scientific journals and conference proceedings. 2 Indexed journals mean scholarly journals indexed by abstract and citation databases such as Scopus and Web of Science, where the indexation implies journals with high scientific quality. Non-indexed journals are journals that fall outside of this indexation. More than half (57%) of these GPT-fabricated papers concerned policy-relevant subject areas susceptible to influence operations. To avoid increasing the visibility of these publications, we abstained from referencing them in this research note. However, we have made the data available in the Harvard Dataverse repository.
The publications were related to three issue areas—health (14.5%), environment (19.5%) and computing (23%)—with key terms such “healthcare,” “COVID-19,” or “infection”for health-related papers, and “analysis,” “sustainable,” and “global” for environment-related papers. In several cases, the papers had titles that strung together general keywords and buzzwords, thus alluding to very broad and current research. These terms included “biology,” “telehealth,” “climate policy,” “diversity,” and “disrupting,” to name just a few. While the study’s scope and design did not include a detailed analysis of which parts of the articles included fabricated text, our dataset did contain the surrounding sentences for each occurrence of the suspicious phrases that formed the basis for our search and subsequent selection. Based on that, we can say that the phrases occurred in most sections typically found in scientific publications, including the literature review, methods, conceptual and theoretical frameworks, background, motivation or societal relevance, and even discussion. This was confirmed during the joint coding, where we read and discussed all articles. It became clear that not just the text related to the telltale phrases was created by GPT, but that almost all articles in our sample of questionable articles likely contained traces of GPT-fabricated text everywhere.
Evidence hacking and backfiring effects
Generative pre-trained transformers (GPTs) can be used to produce texts that mimic scientific writing. These texts, when made available online—as we demonstrate—leak into the databases of academic search engines and other parts of the research infrastructure for scholarly communication. This development exacerbates problems that were already present with less sophisticated text generators (Antkare, 2020; Cabanac & Labbé, 2021). Yet, the public release of ChatGPT in 2022, together with the way Google Scholar works, has increased the likelihood of lay people (e.g., media, politicians, patients, students) coming across questionable (or even entirely GPT-fabricated) papers and other problematic research findings. Previous research has emphasized that the ability to determine the value and status of scientific publications for lay people is at stake when misleading articles are passed off as reputable (Haider & Åström, 2017) and that systematic literature reviews risk being compromised (Dadkhah et al., 2017). It has also been highlighted that Google Scholar, in particular, can be and has been exploited for manipulating the evidence base for politically charged issues and to fuel conspiracy narratives (Tripodi et al., 2023). Both concerns are likely to be magnified in the future, increasing the risk of what we suggest calling evidence hacking —the strategic and coordinated malicious manipulation of society’s evidence base.
The authority of quality-controlled research as evidence to support legislation, policy, politics, and other forms of decision-making is undermined by the presence of undeclared GPT-fabricated content in publications professing to be scientific. Due to the large number of archives, repositories, mirror sites, and shadow libraries to which they spread, there is a clear risk that GPT-fabricated, questionable papers will reach audiences even after a possible retraction. There are considerable technical difficulties involved in identifying and tracing computer-fabricated papers (Cabanac & Labbé, 2021; Dadkhah et al., 2023; Jones, 2024), not to mention preventing and curbing their spread and uptake.
However, as the rise of the so-called anti-vaxx movement during the COVID-19 pandemic and the ongoing obstruction and denial of climate change show, retracting erroneous publications often fuels conspiracies and increases the following of these movements rather than stopping them. To illustrate this mechanism, climate deniers frequently question established scientific consensus by pointing to other, supposedly scientific, studies that support their claims. Usually, these are poorly executed, not peer-reviewed, based on obsolete data, or even fraudulent (Dunlap & Brulle, 2020). A similar strategy is successful in the alternative epistemic world of the global anti-vaccination movement (Carrion, 2018) and the persistence of flawed and questionable publications in the scientific record already poses significant problems for health research, policy, and lawmakers, and thus for society as a whole (Littell et al., 2024). Considering that a person’s support for “doing your own research” is associated with increased mistrust in scientific institutions (Chinn & Hasell, 2023), it will be of utmost importance to anticipate and consider such backfiring effects already when designing a technical solution, when suggesting industry or legal regulation, and in the planning of educational measures.
Recommendations
Solutions should be based on simultaneous considerations of technical, educational, and regulatory approaches, as well as incentives, including social ones, across the entire research infrastructure. Paying attention to how these approaches and incentives relate to each other can help identify points and mechanisms for disruption. Recognizing fraudulent academic papers must happen alongside understanding how they reach their audiences and what reasons there might be for some of these papers successfully “sticking around.” A possible way to mitigate some of the risks associated with GPT-fabricated scholarly texts finding their way into academic search engine results would be to provide filtering options for facets such as indexed journals, gray literature, peer-review, and similar on the interface of publicly available academic search engines. Furthermore, evaluation tools for indexed journals 3 Such as LiU Journal CheckUp, https://ep.liu.se/JournalCheckup/default.aspx?lang=eng . could be integrated into the graphical user interfaces and the crawlers of these academic search engines. To enable accountability, it is important that the index (database) of such a search engine is populated according to criteria that are transparent, open to scrutiny, and appropriate to the workings of science and other forms of academic research. Moreover, considering that Google Scholar has no real competitor, there is a strong case for establishing a freely accessible, non-specialized academic search engine that is not run for commercial reasons but for reasons of public interest. Such measures, together with educational initiatives aimed particularly at policymakers, science communicators, journalists, and other media workers, will be crucial to reducing the possibilities for and effects of malicious manipulation or evidence hacking. It is important not to present this as a technical problem that exists only because of AI text generators but to relate it to the wider concerns in which it is embedded. These range from a largely dysfunctional scholarly publishing system (Haider & Åström, 2017) and academia’s “publish or perish” paradigm to Google’s near-monopoly and ideological battles over the control of information and ultimately knowledge. Any intervention is likely to have systemic effects; these effects need to be considered and assessed in advance and, ideally, followed up on.
Our study focused on a selection of papers that were easily recognizable as fraudulent. We used this relatively small sample as a magnifying glass to examine, delineate, and understand a problem that goes beyond the scope of the sample itself, which however points towards larger concerns that require further investigation. The work of ongoing whistleblowing initiatives 4 Such as Academ-AI, https://www.academ-ai.info/ , and Retraction Watch, https://retractionwatch.com/papers-and-peer-reviews-with-evidence-of-chatgpt-writing/ . , recent media reports of journal closures (Subbaraman, 2024), or GPT-related changes in word use and writing style (Cabanac et al., 2021; Stokel-Walker, 2024) suggest that we only see the tip of the iceberg. There are already more sophisticated cases (Dadkhah et al., 2023) as well as cases involving fabricated images (Gu et al., 2022). Our analysis shows that questionable and potentially manipulative GPT-fabricated papers permeate the research infrastructure and are likely to become a widespread phenomenon. Our findings underline that the risk of fake scientific papers being used to maliciously manipulate evidence (see Dadkhah et al., 2017) must be taken seriously. Manipulation may involve undeclared automatic summaries of texts, inclusion in literature reviews, explicit scientific claims, or the concealment of errors in studies so that they are difficult to detect in peer review. However, the mere possibility of these things happening is a significant risk in its own right that can be strategically exploited and will have ramifications for trust in and perception of science. Society’s methods of evaluating sources and the foundations of media and information literacy are under threat and public trust in science is at risk of further erosion, with far-reaching consequences for society in dealing with information disorders. To address this multifaceted problem, we first need to understand why it exists and proliferates.
Finding 1: 139 GPT-fabricated, questionable papers were found and listed as regular results on the Google Scholar results page. Non-indexed journals dominate.
Most questionable papers we found were in non-indexed journals or were working papers, but we did also find some in established journals, publications, conferences, and repositories. We found a total of 139 papers with a suspected deceptive use of ChatGPT or similar LLM applications (see Table 1). Out of these, 19 were in indexed journals, 89 were in non-indexed journals, 19 were student papers found in university databases, and 12 were working papers (mostly in preprint databases). Table 1 divides these papers into categories. Health and environment papers made up around 34% (47) of the sample. Of these, 66% were present in non-indexed journals.
Indexed journals* | 5 | 3 | 4 | 7 | 19 |
Non-indexed journals | 18 | 18 | 13 | 40 | 89 |
Student papers | 4 | 3 | 1 | 11 | 19 |
Working papers | 5 | 3 | 2 | 2 | 12 |
Total | 32 | 27 | 20 | 60 | 139 |
Finding 2: GPT-fabricated, questionable papers are disseminated online, permeating the research infrastructure for scholarly communication, often in multiple copies. Applied topics with practical implications dominate.
The 20 papers concerning health-related issues are distributed across 20 unique domains, accounting for 46 URLs. The 27 papers dealing with environmental issues can be found across 26 unique domains, accounting for 56 URLs. Most of the identified papers exist in multiple copies and have already spread to several archives, repositories, and social media. It would be difficult, or impossible, to remove them from the scientific record.
As apparent from Table 2, GPT-fabricated, questionable papers are seeping into most parts of the online research infrastructure for scholarly communication. Platforms on which identified papers have appeared include ResearchGate, ORCiD, Journal of Population Therapeutics and Clinical Pharmacology (JPTCP), Easychair, Frontiers, the Institute of Electrical and Electronics Engineer (IEEE), and X/Twitter. Thus, even if they are retracted from their original source, it will prove very difficult to track, remove, or even just mark them up on other platforms. Moreover, unless regulated, Google Scholar will enable their continued and most likely unlabeled discoverability.
Environment | researchgate.net (13) | orcid.org (4) | easychair.org (3) | ijope.com* (3) | publikasiindonesia.id (3) |
Health | researchgate.net (15) | ieee.org (4) | twitter.com (3) | jptcp.com** (2) | frontiersin.org (2) |
A word rain visualization (Centre for Digital Humanities Uppsala, 2023), which combines word prominences through TF-IDF 5 Term frequency–inverse document frequency , a method for measuring the significance of a word in a document compared to its frequency across all documents in a collection. scores with semantic similarity of the full texts of our sample of GPT-generated articles that fall into the “Environment” and “Health” categories, reflects the two categories in question. However, as can be seen in Figure 1, it also reveals overlap and sub-areas. The y-axis shows word prominences through word positions and font sizes, while the x-axis indicates semantic similarity. In addition to a certain amount of overlap, this reveals sub-areas, which are best described as two distinct events within the word rain. The event on the left bundles terms related to the development and management of health and healthcare with “challenges,” “impact,” and “potential of artificial intelligence”emerging as semantically related terms. Terms related to research infrastructures, environmental, epistemic, and technological concepts are arranged further down in the same event (e.g., “system,” “climate,” “understanding,” “knowledge,” “learning,” “education,” “sustainable”). A second distinct event further to the right bundles terms associated with fish farming and aquatic medicinal plants, highlighting the presence of an aquaculture cluster. Here, the prominence of groups of terms such as “used,” “model,” “-based,” and “traditional” suggests the presence of applied research on these topics. The two events making up the word rain visualization, are linked by a less dominant but overlapping cluster of terms related to “energy” and “water.”
The bar chart of the terms in the paper subset (see Figure 2) complements the word rain visualization by depicting the most prominent terms in the full texts along the y-axis. Here, word prominences across health and environment papers are arranged descendingly, where values outside parentheses are TF-IDF values (relative frequencies) and values inside parentheses are raw term frequencies (absolute frequencies).
Finding 3: Google Scholar presents results from quality-controlled and non-controlled citation databases on the same interface, providing unfiltered access to GPT-fabricated questionable papers.
Google Scholar’s central position in the publicly accessible scholarly communication infrastructure, as well as its lack of standards, transparency, and accountability in terms of inclusion criteria, has potentially serious implications for public trust in science. This is likely to exacerbate the already-known potential to exploit Google Scholar for evidence hacking (Tripodi et al., 2023) and will have implications for any attempts to retract or remove fraudulent papers from their original publication venues. Any solution must consider the entirety of the research infrastructure for scholarly communication and the interplay of different actors, interests, and incentives.
We searched and scraped Google Scholar using the Python library Scholarly (Cholewiak et al., 2023) for papers that included specific phrases known to be common responses from ChatGPT and similar applications with the same underlying model (GPT3.5 or GPT4): “as of my last knowledge update” and/or “I don’t have access to real-time data” (see Appendix A). This facilitated the identification of papers that likely used generative AI to produce text, resulting in 227 retrieved papers. The papers’ bibliographic information was automatically added to a spreadsheet and downloaded into Zotero. 6 An open-source reference manager, https://zotero.org .
We employed multiple coding (Barbour, 2001) to classify the papers based on their content. First, we jointly assessed whether the paper was suspected of fraudulent use of ChatGPT (or similar) based on how the text was integrated into the papers and whether the paper was presented as original research output or the AI tool’s role was acknowledged. Second, in analyzing the content of the papers, we continued the multiple coding by classifying the fraudulent papers into four categories identified during an initial round of analysis—health, environment, computing, and others—and then determining which subjects were most affected by this issue (see Table 1). Out of the 227 retrieved papers, 88 papers were written with legitimate and/or declared use of GPTs (i.e., false positives, which were excluded from further analysis), and 139 papers were written with undeclared and/or fraudulent use (i.e., true positives, which were included in further analysis). The multiple coding was conducted jointly by all authors of the present article, who collaboratively coded and cross-checked each other’s interpretation of the data simultaneously in a shared spreadsheet file. This was done to single out coding discrepancies and settle coding disagreements, which in turn ensured methodological thoroughness and analytical consensus (see Barbour, 2001). Redoing the category coding later based on our established coding schedule, we achieved an intercoder reliability (Cohen’s kappa) of 0.806 after eradicating obvious differences.
The ranking algorithm of Google Scholar prioritizes highly cited and older publications (Martín-Martín et al., 2016). Therefore, the position of the articles on the search engine results pages was not particularly informative, considering the relatively small number of results in combination with the recency of the publications. Only the query “as of my last knowledge update” had more than two search engine result pages. On those, questionable articles with undeclared use of GPTs were evenly distributed across all result pages (min: 4, max: 9, mode: 8), with the proportion of undeclared use being slightly higher on average on later search result pages.
To understand how the papers making fraudulent use of generative AI were disseminated online, we programmatically searched for the paper titles (with exact string matching) in Google Search from our local IP address (see Appendix B) using the googlesearch – python library(Vikramaditya, 2020). We manually verified each search result to filter out false positives—results that were not related to the paper—and then compiled the most prominent URLs by field. This enabled the identification of other platforms through which the papers had been spread. We did not, however, investigate whether copies had spread into SciHub or other shadow libraries, or if they were referenced in Wikipedia.
We used descriptive statistics to count the prevalence of the number of GPT-fabricated papers across topics and venues and top domains by subject. The pandas software library for the Python programming language (The pandas development team, 2024) was used for this part of the analysis. Based on the multiple coding, paper occurrences were counted in relation to their categories, divided into indexed journals, non-indexed journals, student papers, and working papers. The schemes, subdomains, and subdirectories of the URL strings were filtered out while top-level domains and second-level domains were kept, which led to normalizing domain names. This, in turn, allowed the counting of domain frequencies in the environment and health categories. To distinguish word prominences and meanings in the environment and health-related GPT-fabricated questionable papers, a semantically-aware word cloud visualization was produced through the use of a word rain (Centre for Digital Humanities Uppsala, 2023) for full-text versions of the papers. Font size and y-axis positions indicate word prominences through TF-IDF scores for the environment and health papers (also visualized in a separate bar chart with raw term frequencies in parentheses), and words are positioned along the x-axis to reflect semantic similarity (Skeppstedt et al., 2024), with an English Word2vec skip gram model space (Fares et al., 2017). An English stop word list was used, along with a manually produced list including terms such as “https,” “volume,” or “years.”
Haider, J., Söderström, K. R., Ekström, B., & Rödl, M. (2024). GPT-fabricated scientific papers on Google Scholar: Key features, spread, and implications for preempting evidence manipulation. Harvard Kennedy School (HKS) Misinformation Review . https://doi.org/10.37016/mr-2020-156
Antkare, I. (2020). Ike Antkare, his publications, and those of his disciples. In M. Biagioli & A. Lippman (Eds.), Gaming the metrics (pp. 177–200). The MIT Press. https://doi.org/10.7551/mitpress/11087.003.0018
Barbour, R. S. (2001). Checklists for improving rigour in qualitative research: A case of the tail wagging the dog? BMJ , 322 (7294), 1115–1117. https://doi.org/10.1136/bmj.322.7294.1115
Bom, H.-S. H. (2023). Exploring the opportunities and challenges of ChatGPT in academic writing: A roundtable discussion. Nuclear Medicine and Molecular Imaging , 57 (4), 165–167. https://doi.org/10.1007/s13139-023-00809-2
Cabanac, G., & Labbé, C. (2021). Prevalence of nonsensical algorithmically generated papers in the scientific literature. Journal of the Association for Information Science and Technology , 72 (12), 1461–1476. https://doi.org/10.1002/asi.24495
Cabanac, G., Labbé, C., & Magazinov, A. (2021). Tortured phrases: A dubious writing style emerging in science. Evidence of critical issues affecting established journals . arXiv. https://doi.org/10.48550/arXiv.2107.06751
Carrion, M. L. (2018). “You need to do your research”: Vaccines, contestable science, and maternal epistemology. Public Understanding of Science , 27 (3), 310–324. https://doi.org/10.1177/0963662517728024
Centre for Digital Humanities Uppsala (2023). CDHUppsala/word-rain [Computer software]. https://github.com/CDHUppsala/word-rain
Chinn, S., & Hasell, A. (2023). Support for “doing your own research” is associated with COVID-19 misperceptions and scientific mistrust. Harvard Kennedy School (HSK) Misinformation Review, 4 (3). https://doi.org/10.37016/mr-2020-117
Cholewiak, S. A., Ipeirotis, P., Silva, V., & Kannawadi, A. (2023). SCHOLARLY: Simple access to Google Scholar authors and citation using Python (1.5.0) [Computer software]. https://doi.org/10.5281/zenodo.5764801
Dadkhah, M., Lagzian, M., & Borchardt, G. (2017). Questionable papers in citation databases as an issue for literature review. Journal of Cell Communication and Signaling , 11 (2), 181–185. https://doi.org/10.1007/s12079-016-0370-6
Dadkhah, M., Oermann, M. H., Hegedüs, M., Raman, R., & Dávid, L. D. (2023). Detection of fake papers in the era of artificial intelligence. Diagnosis , 10 (4), 390–397. https://doi.org/10.1515/dx-2023-0090
DeGeurin, M. (2024, March 19). AI-generated nonsense is leaking into scientific journals. Popular Science. https://www.popsci.com/technology/ai-generated-text-scientific-journals/
Dunlap, R. E., & Brulle, R. J. (2020). Sources and amplifiers of climate change denial. In D.C. Holmes & L. M. Richardson (Eds.), Research handbook on communicating climate change (pp. 49–61). Edward Elgar Publishing. https://doi.org/10.4337/9781789900408.00013
Fares, M., Kutuzov, A., Oepen, S., & Velldal, E. (2017). Word vectors, reuse, and replicability: Towards a community repository of large-text resources. In J. Tiedemann & N. Tahmasebi (Eds.), Proceedings of the 21st Nordic Conference on Computational Linguistics (pp. 271–276). Association for Computational Linguistics. https://aclanthology.org/W17-0237
Google Scholar Help. (n.d.). Inclusion guidelines for webmasters . https://scholar.google.com/intl/en/scholar/inclusion.html
Gu, J., Wang, X., Li, C., Zhao, J., Fu, W., Liang, G., & Qiu, J. (2022). AI-enabled image fraud in scientific publications. Patterns , 3 (7), 100511. https://doi.org/10.1016/j.patter.2022.100511
Gusenbauer, M., & Haddaway, N. R. (2020). Which academic search systems are suitable for systematic reviews or meta-analyses? Evaluating retrieval qualities of Google Scholar, PubMed, and 26 other resources. Research Synthesis Methods , 11 (2), 181–217. https://doi.org/10.1002/jrsm.1378
Haider, J., & Åström, F. (2017). Dimensions of trust in scholarly communication: Problematizing peer review in the aftermath of John Bohannon’s “Sting” in science. Journal of the Association for Information Science and Technology , 68 (2), 450–467. https://doi.org/10.1002/asi.23669
Huang, J., & Tan, M. (2023). The role of ChatGPT in scientific communication: Writing better scientific review articles. American Journal of Cancer Research , 13 (4), 1148–1154. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10164801/
Jones, N. (2024). How journals are fighting back against a wave of questionable images. Nature , 626 (8000), 697–698. https://doi.org/10.1038/d41586-024-00372-6
Kitamura, F. C. (2023). ChatGPT is shaping the future of medical writing but still requires human judgment. Radiology , 307 (2), e230171. https://doi.org/10.1148/radiol.230171
Littell, J. H., Abel, K. M., Biggs, M. A., Blum, R. W., Foster, D. G., Haddad, L. B., Major, B., Munk-Olsen, T., Polis, C. B., Robinson, G. E., Rocca, C. H., Russo, N. F., Steinberg, J. R., Stewart, D. E., Stotland, N. L., Upadhyay, U. D., & Ditzhuijzen, J. van. (2024). Correcting the scientific record on abortion and mental health outcomes. BMJ , 384 , e076518. https://doi.org/10.1136/bmj-2023-076518
Lund, B. D., Wang, T., Mannuru, N. R., Nie, B., Shimray, S., & Wang, Z. (2023). ChatGPT and a new academic reality: Artificial Intelligence-written research papers and the ethics of the large language models in scholarly publishing. Journal of the Association for Information Science and Technology, 74 (5), 570–581. https://doi.org/10.1002/asi.24750
Martín-Martín, A., Orduna-Malea, E., Ayllón, J. M., & Delgado López-Cózar, E. (2016). Back to the past: On the shoulders of an academic search engine giant. Scientometrics , 107 , 1477–1487. https://doi.org/10.1007/s11192-016-1917-2
Martín-Martín, A., Thelwall, M., Orduna-Malea, E., & Delgado López-Cózar, E. (2021). Google Scholar, Microsoft Academic, Scopus, Dimensions, Web of Science, and OpenCitations’ COCI: A multidisciplinary comparison of coverage via citations. Scientometrics , 126 (1), 871–906. https://doi.org/10.1007/s11192-020-03690-4
Simon, F. M., Altay, S., & Mercier, H. (2023). Misinformation reloaded? Fears about the impact of generative AI on misinformation are overblown. Harvard Kennedy School (HKS) Misinformation Review, 4 (5). https://doi.org/10.37016/mr-2020-127
Skeppstedt, M., Ahltorp, M., Kucher, K., & Lindström, M. (2024). From word clouds to Word Rain: Revisiting the classic word cloud to visualize climate change texts. Information Visualization , 23 (3), 217–238. https://doi.org/10.1177/14738716241236188
Swedish Research Council. (2017). Good research practice. Vetenskapsrådet.
Stokel-Walker, C. (2024, May 1.). AI Chatbots Have Thoroughly Infiltrated Scientific Publishing . Scientific American. https://www.scientificamerican.com/article/chatbots-have-thoroughly-infiltrated-scientific-publishing/
Subbaraman, N. (2024, May 14). Flood of fake science forces multiple journal closures: Wiley to shutter 19 more journals, some tainted by fraud. The Wall Street Journal . https://www.wsj.com/science/academic-studies-research-paper-mills-journals-publishing-f5a3d4bc
The pandas development team. (2024). pandas-dev/pandas: Pandas (v2.2.2) [Computer software]. Zenodo. https://doi.org/10.5281/zenodo.10957263
Thorp, H. H. (2023). ChatGPT is fun, but not an author. Science , 379 (6630), 313–313. https://doi.org/10.1126/science.adg7879
Tripodi, F. B., Garcia, L. C., & Marwick, A. E. (2023). ‘Do your own research’: Affordance activation and disinformation spread. Information, Communication & Society , 27 (6), 1212–1228. https://doi.org/10.1080/1369118X.2023.2245869
Vikramaditya, N. (2020). Nv7-GitHub/googlesearch [Computer software]. https://github.com/Nv7-GitHub/googlesearch
This research has been supported by Mistra, the Swedish Foundation for Strategic Environmental Research, through the research program Mistra Environmental Communication (Haider, Ekström, Rödl) and the Marcus and Amalia Wallenberg Foundation [2020.0004] (Söderström).
The authors declare no competing interests.
The research described in this article was carried out under Swedish legislation. According to the relevant EU and Swedish legislation (2003:460) on the ethical review of research involving humans (“Ethical Review Act”), the research reported on here is not subject to authorization by the Swedish Ethical Review Authority (“etikprövningsmyndigheten”) (SRC, 2017).
This is an open access article distributed under the terms of the Creative Commons Attribution License , which permits unrestricted use, distribution, and reproduction in any medium, provided that the original author and source are properly credited.
All data needed to replicate this study are available at the Harvard Dataverse: https://doi.org/10.7910/DVN/WUVD8X
The authors wish to thank two anonymous reviewers for their valuable comments on the article manuscript as well as the editorial group of Harvard Kennedy School (HKS) Misinformation Review for their thoughtful feedback and input.
Run a free plagiarism check in 10 minutes, generate accurate citations for free.
Published on August 14, 2020 by Jack Caulfield . Revised on July 23, 2023.
An essay outline is a way of planning the structure of your essay before you start writing. It involves writing quick summary sentences or phrases for every point you will cover in each paragraph , giving you a picture of how your argument will unfold.
Upload your document to correct all your mistakes in minutes
Organizing your material, presentation of the outline, examples of essay outlines, other interesting articles, frequently asked questions about essay outlines.
At the stage where you’re writing an essay outline, your ideas are probably still not fully formed. You should know your topic and have already done some preliminary research to find relevant sources , but now you need to shape your ideas into a structured argument.
Look over any information, quotes and ideas you’ve noted down from your research and consider the central point you want to make in the essay—this will be the basis of your thesis statement . Once you have an idea of your overall argument, you can begin to organize your material in a way that serves that argument.
Try to arrange your material into categories related to different aspects of your argument. If you’re writing about a literary text, you might group your ideas into themes; in a history essay, it might be several key trends or turning points from the period you’re discussing.
Three main themes or subjects is a common structure for essays. Depending on the length of the essay, you could split the themes into three body paragraphs, or three longer sections with several paragraphs covering each theme.
As you create the outline, look critically at your categories and points: Are any of them irrelevant or redundant? Make sure every topic you cover is clearly related to your thesis statement.
When you have your material organized into several categories, consider what order they should appear in.
Your essay will always begin and end with an introduction and conclusion , but the organization of the body is up to you.
Consider these questions to order your material:
Professional editors proofread and edit your paper by focusing on:
See an example
Within each paragraph, you’ll discuss a single idea related to your overall topic or argument, using several points of evidence or analysis to do so.
In your outline, you present these points as a few short numbered sentences or phrases.They can be split into sub-points when more detail is needed.
The template below shows how you might structure an outline for a five-paragraph essay.
You can choose whether to write your outline in full sentences or short phrases. Be consistent in your choice; don’t randomly write some points as full sentences and others as short phrases.
Examples of outlines for different types of essays are presented below: an argumentative, expository, and literary analysis essay.
This outline is for a short argumentative essay evaluating the internet’s impact on education. It uses short phrases to summarize each point.
Its body is split into three paragraphs, each presenting arguments about a different aspect of the internet’s effects on education.
This is the outline for an expository essay describing how the invention of the printing press affected life and politics in Europe.
The paragraphs are still summarized in short phrases here, but individual points are described with full sentences.
The literary analysis essay outlined below discusses the role of theater in Jane Austen’s novel Mansfield Park .
The body of the essay is divided into three different themes, each of which is explored through examples from the book.
If you want to know more about AI tools , college essays , or fallacies make sure to check out some of our other articles with explanations and examples or go directly to our tools!
College essays
(AI) Tools
You will sometimes be asked to hand in an essay outline before you start writing your essay . Your supervisor wants to see that you have a clear idea of your structure so that writing will go smoothly.
Even when you do not have to hand it in, writing an essay outline is an important part of the writing process . It’s a good idea to write one (as informally as you like) to clarify your structure for yourself whenever you are working on an essay.
If you have to hand in your essay outline , you may be given specific guidelines stating whether you have to use full sentences. If you’re not sure, ask your supervisor.
When writing an essay outline for yourself, the choice is yours. Some students find it helpful to write out their ideas in full sentences, while others prefer to summarize them in short phrases.
You should try to follow your outline as you write your essay . However, if your ideas change or it becomes clear that your structure could be better, it’s okay to depart from your essay outline . Just make sure you know why you’re doing so.
If you want to cite this source, you can copy and paste the citation or click the “Cite this Scribbr article” button to automatically add the citation to our free Citation Generator.
Caulfield, J. (2023, July 23). How to Write an Essay Outline | Guidelines & Examples. Scribbr. Retrieved September 9, 2024, from https://www.scribbr.com/academic-essay/essay-outline/
Other students also liked, how to create a structured research paper outline | example, a step-by-step guide to the writing process, how to write an argumentative essay | examples & tips, get unlimited documents corrected.
✔ Free APA citation check included ✔ Unlimited document corrections ✔ Specialized in correcting academic texts
COMMENTS
The Beginner's Guide to Writing an Essay | Steps & Examples
Example of a Great Essay | Explanations, Tips & Tricks
How to Write an Essay in 8 Simple Steps (Examples ...
Harvard College Writing Center 5 Asking Analytical Questions When you write an essay for a course you are taking, you are being asked not only to create a product (the essay) but, more importantly, to go through a process of thinking more deeply about a question or problem related to the course. By writing about a
Guide to Essay Writing: 5 Steps to Write an Outstanding ...
How to Write an Essay Introduction | 4 Steps & Examples
How to Find Essay Writing Inspiration. If you have essays to write but are short on ideas, this section's links to prompts, example student essays, and celebrated essays by professional writers might help. You'll find writing prompts from a variety of sources, student essays to inspire you, and a number of essay writing collections.
Step 4: Writing the Essay Conclusion. Your essay conclusion is the final paragraph of your essay and primarily reminds your reader of your thesis. It also wraps up your essay and discusses your findings more generally. The conclusion typically makes up about 10% of the text, like the introduction.
How to Write an Essay (with Pictures)
How To Write An Essay: Beginner Tips And Tricks
How To Write a College Essay, With Examples
How to Structure an Essay | Tips & Templates
Introduction. The introduction, as its name implies, introduces the reader to the essay with following steps: Expression of a general idea. This initial stage introduces a broad idea of the topic by providing a definition or explanation. For example, an essay on a type of personal pronoun might begin with a definition of pronouns in general.
How to Write an Essay Introduction (with Examples)
Strategies for Essay Writing: PDFs Strategies for Essay Writing--Complete. description. Tips for Reading an Assignment Prompt. description. Asking Analytical Questions. description. Thesis. description. Introductions. description. What Do Introductions Across the Disciplines Have in Common? description. Anatomy Of a Body Paragraph.
How to Write a College Essay Step-by-Step
How to Start an Essay: 7 Tips for a Knockout ...
Article Writing - 45+ Examples, Samples, Format, How to ...
How to Write a College Essay | A Complete Guide & ...
3 Strong Argumentative Essay Examples, Analyzed
What is an Argumentative Essay? How to Write it (with ...
The Writing Process | 5 Steps with Examples & Tips
Academic journals, archives, and repositories are seeing an increasing number of questionable research papers clearly produced using generative AI. They are often created with widely available, general-purpose AI applications, most likely ChatGPT, and mimic scientific writing. Google Scholar easily locates and lists these questionable papers alongside reputable, quality-controlled research.
How to Write an Essay Outline | Guidelines & Examples