Status.net

What is Problem Solving? (Steps, Techniques, Examples)

What is problem solving, definition and importance.

Problem solving is the process of finding solutions to obstacles or challenges you encounter in your life or work. It is a crucial skill that allows you to tackle complex situations, adapt to changes, and overcome difficulties with ease. Mastering this ability will contribute to both your personal and professional growth, leading to more successful outcomes and better decision-making.

Problem-Solving Steps

The problem-solving process typically includes the following steps:

  • Identify the issue : Recognize the problem that needs to be solved.
  • Analyze the situation : Examine the issue in depth, gather all relevant information, and consider any limitations or constraints that may be present.
  • Generate potential solutions : Brainstorm a list of possible solutions to the issue, without immediately judging or evaluating them.
  • Evaluate options : Weigh the pros and cons of each potential solution, considering factors such as feasibility, effectiveness, and potential risks.
  • Select the best solution : Choose the option that best addresses the problem and aligns with your objectives.
  • Implement the solution : Put the selected solution into action and monitor the results to ensure it resolves the issue.
  • Review and learn : Reflect on the problem-solving process, identify any improvements or adjustments that can be made, and apply these learnings to future situations.

Defining the Problem

To start tackling a problem, first, identify and understand it. Analyzing the issue thoroughly helps to clarify its scope and nature. Ask questions to gather information and consider the problem from various angles. Some strategies to define the problem include:

  • Brainstorming with others
  • Asking the 5 Ws and 1 H (Who, What, When, Where, Why, and How)
  • Analyzing cause and effect
  • Creating a problem statement

Generating Solutions

Once the problem is clearly understood, brainstorm possible solutions. Think creatively and keep an open mind, as well as considering lessons from past experiences. Consider:

  • Creating a list of potential ideas to solve the problem
  • Grouping and categorizing similar solutions
  • Prioritizing potential solutions based on feasibility, cost, and resources required
  • Involving others to share diverse opinions and inputs

Evaluating and Selecting Solutions

Evaluate each potential solution, weighing its pros and cons. To facilitate decision-making, use techniques such as:

  • SWOT analysis (Strengths, Weaknesses, Opportunities, Threats)
  • Decision-making matrices
  • Pros and cons lists
  • Risk assessments

After evaluating, choose the most suitable solution based on effectiveness, cost, and time constraints.

Implementing and Monitoring the Solution

Implement the chosen solution and monitor its progress. Key actions include:

  • Communicating the solution to relevant parties
  • Setting timelines and milestones
  • Assigning tasks and responsibilities
  • Monitoring the solution and making adjustments as necessary
  • Evaluating the effectiveness of the solution after implementation

Utilize feedback from stakeholders and consider potential improvements. Remember that problem-solving is an ongoing process that can always be refined and enhanced.

Problem-Solving Techniques

During each step, you may find it helpful to utilize various problem-solving techniques, such as:

  • Brainstorming : A free-flowing, open-minded session where ideas are generated and listed without judgment, to encourage creativity and innovative thinking.
  • Root cause analysis : A method that explores the underlying causes of a problem to find the most effective solution rather than addressing superficial symptoms.
  • SWOT analysis : A tool used to evaluate the strengths, weaknesses, opportunities, and threats related to a problem or decision, providing a comprehensive view of the situation.
  • Mind mapping : A visual technique that uses diagrams to organize and connect ideas, helping to identify patterns, relationships, and possible solutions.

Brainstorming

When facing a problem, start by conducting a brainstorming session. Gather your team and encourage an open discussion where everyone contributes ideas, no matter how outlandish they may seem. This helps you:

  • Generate a diverse range of solutions
  • Encourage all team members to participate
  • Foster creative thinking

When brainstorming, remember to:

  • Reserve judgment until the session is over
  • Encourage wild ideas
  • Combine and improve upon ideas

Root Cause Analysis

For effective problem-solving, identifying the root cause of the issue at hand is crucial. Try these methods:

  • 5 Whys : Ask “why” five times to get to the underlying cause.
  • Fishbone Diagram : Create a diagram representing the problem and break it down into categories of potential causes.
  • Pareto Analysis : Determine the few most significant causes underlying the majority of problems.

SWOT Analysis

SWOT analysis helps you examine the Strengths, Weaknesses, Opportunities, and Threats related to your problem. To perform a SWOT analysis:

  • List your problem’s strengths, such as relevant resources or strong partnerships.
  • Identify its weaknesses, such as knowledge gaps or limited resources.
  • Explore opportunities, like trends or new technologies, that could help solve the problem.
  • Recognize potential threats, like competition or regulatory barriers.

SWOT analysis aids in understanding the internal and external factors affecting the problem, which can help guide your solution.

Mind Mapping

A mind map is a visual representation of your problem and potential solutions. It enables you to organize information in a structured and intuitive manner. To create a mind map:

  • Write the problem in the center of a blank page.
  • Draw branches from the central problem to related sub-problems or contributing factors.
  • Add more branches to represent potential solutions or further ideas.

Mind mapping allows you to visually see connections between ideas and promotes creativity in problem-solving.

Examples of Problem Solving in Various Contexts

In the business world, you might encounter problems related to finances, operations, or communication. Applying problem-solving skills in these situations could look like:

  • Identifying areas of improvement in your company’s financial performance and implementing cost-saving measures
  • Resolving internal conflicts among team members by listening and understanding different perspectives, then proposing and negotiating solutions
  • Streamlining a process for better productivity by removing redundancies, automating tasks, or re-allocating resources

In educational contexts, problem-solving can be seen in various aspects, such as:

  • Addressing a gap in students’ understanding by employing diverse teaching methods to cater to different learning styles
  • Developing a strategy for successful time management to balance academic responsibilities and extracurricular activities
  • Seeking resources and support to provide equal opportunities for learners with special needs or disabilities

Everyday life is full of challenges that require problem-solving skills. Some examples include:

  • Overcoming a personal obstacle, such as improving your fitness level, by establishing achievable goals, measuring progress, and adjusting your approach accordingly
  • Navigating a new environment or city by researching your surroundings, asking for directions, or using technology like GPS to guide you
  • Dealing with a sudden change, like a change in your work schedule, by assessing the situation, identifying potential impacts, and adapting your plans to accommodate the change.
  • How to Resolve Employee Conflict at Work [Steps, Tips, Examples]
  • How to Write Inspiring Core Values? 5 Steps with Examples
  • 30 Employee Feedback Examples (Positive & Negative)

loading

  • Skip to main content
  • Skip to primary sidebar
  • Skip to footer

Additional menu

MindManager Blog

The 5 steps of the solving problem process

August 17, 2023 by MindManager Blog

Whether you run a business, manage a team, or work in an industry where change is the norm, it may feel like something is always going wrong. Thankfully, becoming proficient in the problem solving process can alleviate a great deal of the stress that business issues can create.

Understanding the right way to solve problems not only takes the guesswork out of how to deal with difficult, unexpected, or complex situations, it can lead to more effective long-term solutions.

In this article, we’ll walk you through the 5 steps of problem solving, and help you explore a few examples of problem solving scenarios where you can see the problem solving process in action before putting it to work.

Understanding the problem solving process

When something isn’t working, it’s important to understand what’s at the root of the problem so you can fix it and prevent it from happening again. That’s why resolving difficult or complex issues works best when you apply proven business problem solving tools and techniques – from soft skills, to software.

The problem solving process typically includes:

  • Pinpointing what’s broken by gathering data and consulting with team members.
  • Figuring out why it’s not working by mapping out and troubleshooting the problem.
  • Deciding on the most effective way to fix it by brainstorming and then implementing a solution.

While skills like active listening, collaboration, and leadership play an important role in problem solving, tools like visual mapping software make it easier to define and share problem solving objectives, play out various solutions, and even put the best fit to work.

Before you can take your first step toward solving a problem, you need to have a clear idea of what the issue is and the outcome you want to achieve by resolving it.

For example, if your company currently manufactures 50 widgets a day, but you’ve started processing orders for 75 widgets a day, you could simply say you have a production deficit.

However, the problem solving process will prove far more valuable if you define the start and end point by clarifying that production is running short by 25 widgets a day, and you need to increase daily production by 50%.

Once you know where you’re at and where you need to end up, these five steps will take you from Point A to Point B:

  • Figure out what’s causing the problem . You may need to gather knowledge and evaluate input from different documents, departments, and personnel to isolate the factors that are contributing to your problem. Knowledge visualization software like MindManager can help.
  • Come up with a few viable solutions . Since hitting on exactly the right solution – right away – can be tough, brainstorming with your team and mapping out various scenarios is the best way to move forward. If your first strategy doesn’t pan out, you’ll have others on tap you can turn to.
  • Choose the best option . Decision-making skills, and software that lets you lay out process relationships, priorities, and criteria, are invaluable for selecting the most promising solution. Whether it’s you or someone higher up making that choice, it should include weighing costs, time commitments, and any implementation hurdles.
  • Put your chosen solution to work . Before implementing your fix of choice, you should make key personnel aware of changes that might affect their daily workflow, and set up benchmarks that will make it easy to see if your solution is working.
  • Evaluate your outcome . Now comes the moment of truth: did the solution you implemented solve your problem? Do your benchmarks show you achieved the outcome you wanted? If so, congratulations! If not, you’ll need to tweak your solution to meet your problem solving goal.

In practice, you might not hit a home-run with every solution you execute. But the beauty of a repeatable process like problem solving is that you can carry out steps 4 and 5 again by drawing from the brainstorm options you documented during step 2.

Examples of problem solving scenarios

The best way to get a sense of how the problem solving process works before you try it for yourself is to work through some simple scenarios.

Here are three examples of how you can apply business problem solving techniques to common workplace challenges.

Scenario #1: Manufacturing

Building on our original manufacturing example, you determine that your company is consistently short producing 25 widgets a day and needs to increase daily production by 50%.

Since you’d like to gather data and input from both your manufacturing and sales order departments, you schedule a brainstorming session to discover the root cause of the shortage.

After examining four key production areas – machines, materials, methods, and management – you determine the cause of the problem: the material used to manufacture your widgets can only be fed into your equipment once the machinery warms up to a specific temperature for the day.

Your team comes up with three possible solutions.

  • Leave your machinery running 24 hours so it’s always at temperature.
  • Invest in equipment that heats up faster.
  • Find an alternate material for your widgets.

After weighing the expense of the first two solutions, and conducting some online research, you decide that switching to a comparable but less expensive material that can be worked at a lower temperature is your best option.

You implement your plan, monitor your widget quality and output over the following week, and declare your solution a success when daily production increases by 100%.

Scenario #2: Service Delivery

Business training is booming and you’ve had to onboard new staff over the past month. Now you learn that several clients have expressed concern about the quality of your recent training sessions.

After speaking with both clients and staff, you discover there are actually two distinct factors contributing to your quality problem:

  • The additional conference room you’ve leased to accommodate your expanding training sessions has terrible acoustics
  • The AV equipment you’ve purchased to accommodate your expanding workforce is on back-order – and your new hires have been making do without

You could look for a new conference room or re-schedule upcoming training sessions until after your new equipment arrives. But your team collaboratively determines that the best way to mitigate both issues at once is by temporarily renting the high-quality sound and visual system they need.

Using benchmarks that include several weeks of feedback from session attendees, and random session spot-checks you conduct personally, you conclude the solution has worked.

Scenario #3: Marketing

You’ve invested heavily in product marketing, but still can’t meet your sales goals. Specifically, you missed your revenue target by 30% last year and would like to meet that same target this year.

After collecting and examining reams of information from your sales and accounting departments, you sit down with your marketing team to figure out what’s hindering your success in the marketplace.

Determining that your product isn’t competitively priced, you map out two viable solutions.

  • Hire a third-party specialist to conduct a detailed market analysis.
  • Drop the price of your product to undercut competitors.

Since you’re in a hurry for results, you decide to immediately reduce the price of your product and market it accordingly.

When revenue figures for the following quarter show sales have declined even further – and marketing surveys show potential customers are doubting the quality of your product – you revert back to your original pricing, revisit your problem solving process, and implement the market analysis solution instead.

With the valuable information you gain, you finally arrive at just the right product price for your target market and sales begin to pick up. Although you miss your revenue target again this year, you meet it by the second quarter of the following year.

Kickstart your collaborative brainstorming sessions and  try MindManager for free today !

Ready to take the next step?

MindManager helps boost collaboration and productivity among remote and hybrid teams to achieve better results, faster.

what is the last part of the problem solving process

Why choose MindManager?

MindManager® helps individuals, teams, and enterprises bring greater clarity and structure to plans, projects, and processes. It provides visual productivity tools and mind mapping software to help take you and your organization to where you want to be.

Explore MindManager

How to master the seven-step problem-solving process

In this episode of the McKinsey Podcast , Simon London speaks with Charles Conn, CEO of venture-capital firm Oxford Sciences Innovation, and McKinsey senior partner Hugo Sarrazin about the complexities of different problem-solving strategies.

Podcast transcript

Simon London: Hello, and welcome to this episode of the McKinsey Podcast , with me, Simon London. What’s the number-one skill you need to succeed professionally? Salesmanship, perhaps? Or a facility with statistics? Or maybe the ability to communicate crisply and clearly? Many would argue that at the very top of the list comes problem solving: that is, the ability to think through and come up with an optimal course of action to address any complex challenge—in business, in public policy, or indeed in life.

Looked at this way, it’s no surprise that McKinsey takes problem solving very seriously, testing for it during the recruiting process and then honing it, in McKinsey consultants, through immersion in a structured seven-step method. To discuss the art of problem solving, I sat down in California with McKinsey senior partner Hugo Sarrazin and also with Charles Conn. Charles is a former McKinsey partner, entrepreneur, executive, and coauthor of the book Bulletproof Problem Solving: The One Skill That Changes Everything [John Wiley & Sons, 2018].

Charles and Hugo, welcome to the podcast. Thank you for being here.

Hugo Sarrazin: Our pleasure.

Charles Conn: It’s terrific to be here.

Simon London: Problem solving is a really interesting piece of terminology. It could mean so many different things. I have a son who’s a teenage climber. They talk about solving problems. Climbing is problem solving. Charles, when you talk about problem solving, what are you talking about?

Charles Conn: For me, problem solving is the answer to the question “What should I do?” It’s interesting when there’s uncertainty and complexity, and when it’s meaningful because there are consequences. Your son’s climbing is a perfect example. There are consequences, and it’s complicated, and there’s uncertainty—can he make that grab? I think we can apply that same frame almost at any level. You can think about questions like “What town would I like to live in?” or “Should I put solar panels on my roof?”

You might think that’s a funny thing to apply problem solving to, but in my mind it’s not fundamentally different from business problem solving, which answers the question “What should my strategy be?” Or problem solving at the policy level: “How do we combat climate change?” “Should I support the local school bond?” I think these are all part and parcel of the same type of question, “What should I do?”

I’m a big fan of structured problem solving. By following steps, we can more clearly understand what problem it is we’re solving, what are the components of the problem that we’re solving, which components are the most important ones for us to pay attention to, which analytic techniques we should apply to those, and how we can synthesize what we’ve learned back into a compelling story. That’s all it is, at its heart.

I think sometimes when people think about seven steps, they assume that there’s a rigidity to this. That’s not it at all. It’s actually to give you the scope for creativity, which often doesn’t exist when your problem solving is muddled.

Simon London: You were just talking about the seven-step process. That’s what’s written down in the book, but it’s a very McKinsey process as well. Without getting too deep into the weeds, let’s go through the steps, one by one. You were just talking about problem definition as being a particularly important thing to get right first. That’s the first step. Hugo, tell us about that.

Hugo Sarrazin: It is surprising how often people jump past this step and make a bunch of assumptions. The most powerful thing is to step back and ask the basic questions—“What are we trying to solve? What are the constraints that exist? What are the dependencies?” Let’s make those explicit and really push the thinking and defining. At McKinsey, we spend an enormous amount of time in writing that little statement, and the statement, if you’re a logic purist, is great. You debate. “Is it an ‘or’? Is it an ‘and’? What’s the action verb?” Because all these specific words help you get to the heart of what matters.

Want to subscribe to The McKinsey Podcast ?

Simon London: So this is a concise problem statement.

Hugo Sarrazin: Yeah. It’s not like “Can we grow in Japan?” That’s interesting, but it is “What, specifically, are we trying to uncover in the growth of a product in Japan? Or a segment in Japan? Or a channel in Japan?” When you spend an enormous amount of time, in the first meeting of the different stakeholders, debating this and having different people put forward what they think the problem definition is, you realize that people have completely different views of why they’re here. That, to me, is the most important step.

Charles Conn: I would agree with that. For me, the problem context is critical. When we understand “What are the forces acting upon your decision maker? How quickly is the answer needed? With what precision is the answer needed? Are there areas that are off limits or areas where we would particularly like to find our solution? Is the decision maker open to exploring other areas?” then you not only become more efficient, and move toward what we call the critical path in problem solving, but you also make it so much more likely that you’re not going to waste your time or your decision maker’s time.

How often do especially bright young people run off with half of the idea about what the problem is and start collecting data and start building models—only to discover that they’ve really gone off half-cocked.

Hugo Sarrazin: Yeah.

Charles Conn: And in the wrong direction.

Simon London: OK. So step one—and there is a real art and a structure to it—is define the problem. Step two, Charles?

Charles Conn: My favorite step is step two, which is to use logic trees to disaggregate the problem. Every problem we’re solving has some complexity and some uncertainty in it. The only way that we can really get our team working on the problem is to take the problem apart into logical pieces.

What we find, of course, is that the way to disaggregate the problem often gives you an insight into the answer to the problem quite quickly. I love to do two or three different cuts at it, each one giving a bit of a different insight into what might be going wrong. By doing sensible disaggregations, using logic trees, we can figure out which parts of the problem we should be looking at, and we can assign those different parts to team members.

Simon London: What’s a good example of a logic tree on a sort of ratable problem?

Charles Conn: Maybe the easiest one is the classic profit tree. Almost in every business that I would take a look at, I would start with a profit or return-on-assets tree. In its simplest form, you have the components of revenue, which are price and quantity, and the components of cost, which are cost and quantity. Each of those can be broken out. Cost can be broken into variable cost and fixed cost. The components of price can be broken into what your pricing scheme is. That simple tree often provides insight into what’s going on in a business or what the difference is between that business and the competitors.

If we add the leg, which is “What’s the asset base or investment element?”—so profit divided by assets—then we can ask the question “Is the business using its investments sensibly?” whether that’s in stores or in manufacturing or in transportation assets. I hope we can see just how simple this is, even though we’re describing it in words.

When I went to work with Gordon Moore at the Moore Foundation, the problem that he asked us to look at was “How can we save Pacific salmon?” Now, that sounds like an impossible question, but it was amenable to precisely the same type of disaggregation and allowed us to organize what became a 15-year effort to improve the likelihood of good outcomes for Pacific salmon.

Simon London: Now, is there a danger that your logic tree can be impossibly large? This, I think, brings us onto the third step in the process, which is that you have to prioritize.

Charles Conn: Absolutely. The third step, which we also emphasize, along with good problem definition, is rigorous prioritization—we ask the questions “How important is this lever or this branch of the tree in the overall outcome that we seek to achieve? How much can I move that lever?” Obviously, we try and focus our efforts on ones that have a big impact on the problem and the ones that we have the ability to change. With salmon, ocean conditions turned out to be a big lever, but not one that we could adjust. We focused our attention on fish habitats and fish-harvesting practices, which were big levers that we could affect.

People spend a lot of time arguing about branches that are either not important or that none of us can change. We see it in the public square. When we deal with questions at the policy level—“Should you support the death penalty?” “How do we affect climate change?” “How can we uncover the causes and address homelessness?”—it’s even more important that we’re focusing on levers that are big and movable.

Would you like to learn more about our Strategy & Corporate Finance Practice ?

Simon London: Let’s move swiftly on to step four. You’ve defined your problem, you disaggregate it, you prioritize where you want to analyze—what you want to really look at hard. Then you got to the work plan. Now, what does that mean in practice?

Hugo Sarrazin: Depending on what you’ve prioritized, there are many things you could do. It could be breaking the work among the team members so that people have a clear piece of the work to do. It could be defining the specific analyses that need to get done and executed, and being clear on time lines. There’s always a level-one answer, there’s a level-two answer, there’s a level-three answer. Without being too flippant, I can solve any problem during a good dinner with wine. It won’t have a whole lot of backing.

Simon London: Not going to have a lot of depth to it.

Hugo Sarrazin: No, but it may be useful as a starting point. If the stakes are not that high, that could be OK. If it’s really high stakes, you may need level three and have the whole model validated in three different ways. You need to find a work plan that reflects the level of precision, the time frame you have, and the stakeholders you need to bring along in the exercise.

Charles Conn: I love the way you’ve described that, because, again, some people think of problem solving as a linear thing, but of course what’s critical is that it’s iterative. As you say, you can solve the problem in one day or even one hour.

Charles Conn: We encourage our teams everywhere to do that. We call it the one-day answer or the one-hour answer. In work planning, we’re always iterating. Every time you see a 50-page work plan that stretches out to three months, you know it’s wrong. It will be outmoded very quickly by that learning process that you described. Iterative problem solving is a critical part of this. Sometimes, people think work planning sounds dull, but it isn’t. It’s how we know what’s expected of us and when we need to deliver it and how we’re progressing toward the answer. It’s also the place where we can deal with biases. Bias is a feature of every human decision-making process. If we design our team interactions intelligently, we can avoid the worst sort of biases.

Simon London: Here we’re talking about cognitive biases primarily, right? It’s not that I’m biased against you because of your accent or something. These are the cognitive biases that behavioral sciences have shown we all carry around, things like anchoring, overoptimism—these kinds of things.

Both: Yeah.

Charles Conn: Availability bias is the one that I’m always alert to. You think you’ve seen the problem before, and therefore what’s available is your previous conception of it—and we have to be most careful about that. In any human setting, we also have to be careful about biases that are based on hierarchies, sometimes called sunflower bias. I’m sure, Hugo, with your teams, you make sure that the youngest team members speak first. Not the oldest team members, because it’s easy for people to look at who’s senior and alter their own creative approaches.

Hugo Sarrazin: It’s helpful, at that moment—if someone is asserting a point of view—to ask the question “This was true in what context?” You’re trying to apply something that worked in one context to a different one. That can be deadly if the context has changed, and that’s why organizations struggle to change. You promote all these people because they did something that worked well in the past, and then there’s a disruption in the industry, and they keep doing what got them promoted even though the context has changed.

Simon London: Right. Right.

Hugo Sarrazin: So it’s the same thing in problem solving.

Charles Conn: And it’s why diversity in our teams is so important. It’s one of the best things about the world that we’re in now. We’re likely to have people from different socioeconomic, ethnic, and national backgrounds, each of whom sees problems from a slightly different perspective. It is therefore much more likely that the team will uncover a truly creative and clever approach to problem solving.

Simon London: Let’s move on to step five. You’ve done your work plan. Now you’ve actually got to do the analysis. The thing that strikes me here is that the range of tools that we have at our disposal now, of course, is just huge, particularly with advances in computation, advanced analytics. There’s so many things that you can apply here. Just talk about the analysis stage. How do you pick the right tools?

Charles Conn: For me, the most important thing is that we start with simple heuristics and explanatory statistics before we go off and use the big-gun tools. We need to understand the shape and scope of our problem before we start applying these massive and complex analytical approaches.

Simon London: Would you agree with that?

Hugo Sarrazin: I agree. I think there are so many wonderful heuristics. You need to start there before you go deep into the modeling exercise. There’s an interesting dynamic that’s happening, though. In some cases, for some types of problems, it is even better to set yourself up to maximize your learning. Your problem-solving methodology is test and learn, test and learn, test and learn, and iterate. That is a heuristic in itself, the A/B testing that is used in many parts of the world. So that’s a problem-solving methodology. It’s nothing different. It just uses technology and feedback loops in a fast way. The other one is exploratory data analysis. When you’re dealing with a large-scale problem, and there’s so much data, I can get to the heuristics that Charles was talking about through very clever visualization of data.

You test with your data. You need to set up an environment to do so, but don’t get caught up in neural-network modeling immediately. You’re testing, you’re checking—“Is the data right? Is it sound? Does it make sense?”—before you launch too far.

Simon London: You do hear these ideas—that if you have a big enough data set and enough algorithms, they’re going to find things that you just wouldn’t have spotted, find solutions that maybe you wouldn’t have thought of. Does machine learning sort of revolutionize the problem-solving process? Or are these actually just other tools in the toolbox for structured problem solving?

Charles Conn: It can be revolutionary. There are some areas in which the pattern recognition of large data sets and good algorithms can help us see things that we otherwise couldn’t see. But I do think it’s terribly important we don’t think that this particular technique is a substitute for superb problem solving, starting with good problem definition. Many people use machine learning without understanding algorithms that themselves can have biases built into them. Just as 20 years ago, when we were doing statistical analysis, we knew that we needed good model definition, we still need a good understanding of our algorithms and really good problem definition before we launch off into big data sets and unknown algorithms.

Simon London: Step six. You’ve done your analysis.

Charles Conn: I take six and seven together, and this is the place where young problem solvers often make a mistake. They’ve got their analysis, and they assume that’s the answer, and of course it isn’t the answer. The ability to synthesize the pieces that came out of the analysis and begin to weave those into a story that helps people answer the question “What should I do?” This is back to where we started. If we can’t synthesize, and we can’t tell a story, then our decision maker can’t find the answer to “What should I do?”

Simon London: But, again, these final steps are about motivating people to action, right?

Charles Conn: Yeah.

Simon London: I am slightly torn about the nomenclature of problem solving because it’s on paper, right? Until you motivate people to action, you actually haven’t solved anything.

Charles Conn: I love this question because I think decision-making theory, without a bias to action, is a waste of time. Everything in how I approach this is to help people take action that makes the world better.

Simon London: Hence, these are absolutely critical steps. If you don’t do this well, you’ve just got a bunch of analysis.

Charles Conn: We end up in exactly the same place where we started, which is people speaking across each other, past each other in the public square, rather than actually working together, shoulder to shoulder, to crack these important problems.

Simon London: In the real world, we have a lot of uncertainty—arguably, increasing uncertainty. How do good problem solvers deal with that?

Hugo Sarrazin: At every step of the process. In the problem definition, when you’re defining the context, you need to understand those sources of uncertainty and whether they’re important or not important. It becomes important in the definition of the tree.

You need to think carefully about the branches of the tree that are more certain and less certain as you define them. They don’t have equal weight just because they’ve got equal space on the page. Then, when you’re prioritizing, your prioritization approach may put more emphasis on things that have low probability but huge impact—or, vice versa, may put a lot of priority on things that are very likely and, hopefully, have a reasonable impact. You can introduce that along the way. When you come back to the synthesis, you just need to be nuanced about what you’re understanding, the likelihood.

Often, people lack humility in the way they make their recommendations: “This is the answer.” They’re very precise, and I think we would all be well-served to say, “This is a likely answer under the following sets of conditions” and then make the level of uncertainty clearer, if that is appropriate. It doesn’t mean you’re always in the gray zone; it doesn’t mean you don’t have a point of view. It just means that you can be explicit about the certainty of your answer when you make that recommendation.

Simon London: So it sounds like there is an underlying principle: “Acknowledge and embrace the uncertainty. Don’t pretend that it isn’t there. Be very clear about what the uncertainties are up front, and then build that into every step of the process.”

Hugo Sarrazin: Every step of the process.

Simon London: Yeah. We have just walked through a particular structured methodology for problem solving. But, of course, this is not the only structured methodology for problem solving. One that is also very well-known is design thinking, which comes at things very differently. So, Hugo, I know you have worked with a lot of designers. Just give us a very quick summary. Design thinking—what is it, and how does it relate?

Hugo Sarrazin: It starts with an incredible amount of empathy for the user and uses that to define the problem. It does pause and go out in the wild and spend an enormous amount of time seeing how people interact with objects, seeing the experience they’re getting, seeing the pain points or joy—and uses that to infer and define the problem.

Simon London: Problem definition, but out in the world.

Hugo Sarrazin: With an enormous amount of empathy. There’s a huge emphasis on empathy. Traditional, more classic problem solving is you define the problem based on an understanding of the situation. This one almost presupposes that we don’t know the problem until we go see it. The second thing is you need to come up with multiple scenarios or answers or ideas or concepts, and there’s a lot of divergent thinking initially. That’s slightly different, versus the prioritization, but not for long. Eventually, you need to kind of say, “OK, I’m going to converge again.” Then you go and you bring things back to the customer and get feedback and iterate. Then you rinse and repeat, rinse and repeat. There’s a lot of tactile building, along the way, of prototypes and things like that. It’s very iterative.

Simon London: So, Charles, are these complements or are these alternatives?

Charles Conn: I think they’re entirely complementary, and I think Hugo’s description is perfect. When we do problem definition well in classic problem solving, we are demonstrating the kind of empathy, at the very beginning of our problem, that design thinking asks us to approach. When we ideate—and that’s very similar to the disaggregation, prioritization, and work-planning steps—we do precisely the same thing, and often we use contrasting teams, so that we do have divergent thinking. The best teams allow divergent thinking to bump them off whatever their initial biases in problem solving are. For me, design thinking gives us a constant reminder of creativity, empathy, and the tactile nature of problem solving, but it’s absolutely complementary, not alternative.

Simon London: I think, in a world of cross-functional teams, an interesting question is do people with design-thinking backgrounds really work well together with classical problem solvers? How do you make that chemistry happen?

Hugo Sarrazin: Yeah, it is not easy when people have spent an enormous amount of time seeped in design thinking or user-centric design, whichever word you want to use. If the person who’s applying classic problem-solving methodology is very rigid and mechanical in the way they’re doing it, there could be an enormous amount of tension. If there’s not clarity in the role and not clarity in the process, I think having the two together can be, sometimes, problematic.

The second thing that happens often is that the artifacts the two methodologies try to gravitate toward can be different. Classic problem solving often gravitates toward a model; design thinking migrates toward a prototype. Rather than writing a big deck with all my supporting evidence, they’ll bring an example, a thing, and that feels different. Then you spend your time differently to achieve those two end products, so that’s another source of friction.

Now, I still think it can be an incredibly powerful thing to have the two—if there are the right people with the right mind-set, if there is a team that is explicit about the roles, if we’re clear about the kind of outcomes we are attempting to bring forward. There’s an enormous amount of collaborativeness and respect.

Simon London: But they have to respect each other’s methodology and be prepared to flex, maybe, a little bit, in how this process is going to work.

Hugo Sarrazin: Absolutely.

Simon London: The other area where, it strikes me, there could be a little bit of a different sort of friction is this whole concept of the day-one answer, which is what we were just talking about in classical problem solving. Now, you know that this is probably not going to be your final answer, but that’s how you begin to structure the problem. Whereas I would imagine your design thinkers—no, they’re going off to do their ethnographic research and get out into the field, potentially for a long time, before they come back with at least an initial hypothesis.

Want better strategies? Become a bulletproof problem solver

Want better strategies? Become a bulletproof problem solver

Hugo Sarrazin: That is a great callout, and that’s another difference. Designers typically will like to soak into the situation and avoid converging too quickly. There’s optionality and exploring different options. There’s a strong belief that keeps the solution space wide enough that you can come up with more radical ideas. If there’s a large design team or many designers on the team, and you come on Friday and say, “What’s our week-one answer?” they’re going to struggle. They’re not going to be comfortable, naturally, to give that answer. It doesn’t mean they don’t have an answer; it’s just not where they are in their thinking process.

Simon London: I think we are, sadly, out of time for today. But Charles and Hugo, thank you so much.

Charles Conn: It was a pleasure to be here, Simon.

Hugo Sarrazin: It was a pleasure. Thank you.

Simon London: And thanks, as always, to you, our listeners, for tuning into this episode of the McKinsey Podcast . If you want to learn more about problem solving, you can find the book, Bulletproof Problem Solving: The One Skill That Changes Everything , online or order it through your local bookstore. To learn more about McKinsey, you can of course find us at McKinsey.com.

Charles Conn is CEO of Oxford Sciences Innovation and an alumnus of McKinsey’s Sydney office. Hugo Sarrazin is a senior partner in the Silicon Valley office, where Simon London, a member of McKinsey Publishing, is also based.

Explore a career with us

Related articles.

Want better strategies? Become a bulletproof problem solver

Strategy to beat the odds

firo13_frth

Five routes to more innovative problem solving

  • Bipolar Disorder
  • Therapy Center
  • When To See a Therapist
  • Types of Therapy
  • Best Online Therapy
  • Best Couples Therapy
  • Managing Stress
  • Sleep and Dreaming
  • Understanding Emotions
  • Self-Improvement
  • Healthy Relationships
  • Student Resources
  • Personality Types
  • Sweepstakes
  • Guided Meditations
  • Verywell Mind Insights
  • 2024 Verywell Mind 25
  • Mental Health in the Classroom
  • Editorial Process
  • Meet Our Review Board
  • Crisis Support

Problem-Solving Strategies and Obstacles

JGI / Jamie Grill / Getty Images

  • Application
  • Improvement

From deciding what to eat for dinner to considering whether it's the right time to buy a house, problem-solving is a large part of our daily lives. Learn some of the problem-solving strategies that exist and how to use them in real life, along with ways to overcome obstacles that are making it harder to resolve the issues you face.

What Is Problem-Solving?

In cognitive psychology , the term 'problem-solving' refers to the mental process that people go through to discover, analyze, and solve problems.

A problem exists when there is a goal that we want to achieve but the process by which we will achieve it is not obvious to us. Put another way, there is something that we want to occur in our life, yet we are not immediately certain how to make it happen.

Maybe you want a better relationship with your spouse or another family member but you're not sure how to improve it. Or you want to start a business but are unsure what steps to take. Problem-solving helps you figure out how to achieve these desires.

The problem-solving process involves:

  • Discovery of the problem
  • Deciding to tackle the issue
  • Seeking to understand the problem more fully
  • Researching available options or solutions
  • Taking action to resolve the issue

Before problem-solving can occur, it is important to first understand the exact nature of the problem itself. If your understanding of the issue is faulty, your attempts to resolve it will also be incorrect or flawed.

Problem-Solving Mental Processes

Several mental processes are at work during problem-solving. Among them are:

  • Perceptually recognizing the problem
  • Representing the problem in memory
  • Considering relevant information that applies to the problem
  • Identifying different aspects of the problem
  • Labeling and describing the problem

Problem-Solving Strategies

There are many ways to go about solving a problem. Some of these strategies might be used on their own, or you may decide to employ multiple approaches when working to figure out and fix a problem.

An algorithm is a step-by-step procedure that, by following certain "rules" produces a solution. Algorithms are commonly used in mathematics to solve division or multiplication problems. But they can be used in other fields as well.

In psychology, algorithms can be used to help identify individuals with a greater risk of mental health issues. For instance, research suggests that certain algorithms might help us recognize children with an elevated risk of suicide or self-harm.

One benefit of algorithms is that they guarantee an accurate answer. However, they aren't always the best approach to problem-solving, in part because detecting patterns can be incredibly time-consuming.

There are also concerns when machine learning is involved—also known as artificial intelligence (AI)—such as whether they can accurately predict human behaviors.

Heuristics are shortcut strategies that people can use to solve a problem at hand. These "rule of thumb" approaches allow you to simplify complex problems, reducing the total number of possible solutions to a more manageable set.

If you find yourself sitting in a traffic jam, for example, you may quickly consider other routes, taking one to get moving once again. When shopping for a new car, you might think back to a prior experience when negotiating got you a lower price, then employ the same tactics.

While heuristics may be helpful when facing smaller issues, major decisions shouldn't necessarily be made using a shortcut approach. Heuristics also don't guarantee an effective solution, such as when trying to drive around a traffic jam only to find yourself on an equally crowded route.

Trial and Error

A trial-and-error approach to problem-solving involves trying a number of potential solutions to a particular issue, then ruling out those that do not work. If you're not sure whether to buy a shirt in blue or green, for instance, you may try on each before deciding which one to purchase.

This can be a good strategy to use if you have a limited number of solutions available. But if there are many different choices available, narrowing down the possible options using another problem-solving technique can be helpful before attempting trial and error.

In some cases, the solution to a problem can appear as a sudden insight. You are facing an issue in a relationship or your career when, out of nowhere, the solution appears in your mind and you know exactly what to do.

Insight can occur when the problem in front of you is similar to an issue that you've dealt with in the past. Although, you may not recognize what is occurring since the underlying mental processes that lead to insight often happen outside of conscious awareness .

Research indicates that insight is most likely to occur during times when you are alone—such as when going on a walk by yourself, when you're in the shower, or when lying in bed after waking up.

How to Apply Problem-Solving Strategies in Real Life

If you're facing a problem, you can implement one or more of these strategies to find a potential solution. Here's how to use them in real life:

  • Create a flow chart . If you have time, you can take advantage of the algorithm approach to problem-solving by sitting down and making a flow chart of each potential solution, its consequences, and what happens next.
  • Recall your past experiences . When a problem needs to be solved fairly quickly, heuristics may be a better approach. Think back to when you faced a similar issue, then use your knowledge and experience to choose the best option possible.
  • Start trying potential solutions . If your options are limited, start trying them one by one to see which solution is best for achieving your desired goal. If a particular solution doesn't work, move on to the next.
  • Take some time alone . Since insight is often achieved when you're alone, carve out time to be by yourself for a while. The answer to your problem may come to you, seemingly out of the blue, if you spend some time away from others.

Obstacles to Problem-Solving

Problem-solving is not a flawless process as there are a number of obstacles that can interfere with our ability to solve a problem quickly and efficiently. These obstacles include:

  • Assumptions: When dealing with a problem, people can make assumptions about the constraints and obstacles that prevent certain solutions. Thus, they may not even try some potential options.
  • Functional fixedness : This term refers to the tendency to view problems only in their customary manner. Functional fixedness prevents people from fully seeing all of the different options that might be available to find a solution.
  • Irrelevant or misleading information: When trying to solve a problem, it's important to distinguish between information that is relevant to the issue and irrelevant data that can lead to faulty solutions. The more complex the problem, the easier it is to focus on misleading or irrelevant information.
  • Mental set: A mental set is a tendency to only use solutions that have worked in the past rather than looking for alternative ideas. A mental set can work as a heuristic, making it a useful problem-solving tool. However, mental sets can also lead to inflexibility, making it more difficult to find effective solutions.

How to Improve Your Problem-Solving Skills

In the end, if your goal is to become a better problem-solver, it's helpful to remember that this is a process. Thus, if you want to improve your problem-solving skills, following these steps can help lead you to your solution:

  • Recognize that a problem exists . If you are facing a problem, there are generally signs. For instance, if you have a mental illness , you may experience excessive fear or sadness, mood changes, and changes in sleeping or eating habits. Recognizing these signs can help you realize that an issue exists.
  • Decide to solve the problem . Make a conscious decision to solve the issue at hand. Commit to yourself that you will go through the steps necessary to find a solution.
  • Seek to fully understand the issue . Analyze the problem you face, looking at it from all sides. If your problem is relationship-related, for instance, ask yourself how the other person may be interpreting the issue. You might also consider how your actions might be contributing to the situation.
  • Research potential options . Using the problem-solving strategies mentioned, research potential solutions. Make a list of options, then consider each one individually. What are some pros and cons of taking the available routes? What would you need to do to make them happen?
  • Take action . Select the best solution possible and take action. Action is one of the steps required for change . So, go through the motions needed to resolve the issue.
  • Try another option, if needed . If the solution you chose didn't work, don't give up. Either go through the problem-solving process again or simply try another option.

You can find a way to solve your problems as long as you keep working toward this goal—even if the best solution is simply to let go because no other good solution exists.

Sarathy V. Real world problem-solving .  Front Hum Neurosci . 2018;12:261. doi:10.3389/fnhum.2018.00261

Dunbar K. Problem solving . A Companion to Cognitive Science . 2017. doi:10.1002/9781405164535.ch20

Stewart SL, Celebre A, Hirdes JP, Poss JW. Risk of suicide and self-harm in kids: The development of an algorithm to identify high-risk individuals within the children's mental health system . Child Psychiat Human Develop . 2020;51:913-924. doi:10.1007/s10578-020-00968-9

Rosenbusch H, Soldner F, Evans AM, Zeelenberg M. Supervised machine learning methods in psychology: A practical introduction with annotated R code . Soc Personal Psychol Compass . 2021;15(2):e12579. doi:10.1111/spc3.12579

Mishra S. Decision-making under risk: Integrating perspectives from biology, economics, and psychology . Personal Soc Psychol Rev . 2014;18(3):280-307. doi:10.1177/1088868314530517

Csikszentmihalyi M, Sawyer K. Creative insight: The social dimension of a solitary moment . In: The Systems Model of Creativity . 2015:73-98. doi:10.1007/978-94-017-9085-7_7

Chrysikou EG, Motyka K, Nigro C, Yang SI, Thompson-Schill SL. Functional fixedness in creative thinking tasks depends on stimulus modality .  Psychol Aesthet Creat Arts . 2016;10(4):425‐435. doi:10.1037/aca0000050

Huang F, Tang S, Hu Z. Unconditional perseveration of the short-term mental set in chunk decomposition .  Front Psychol . 2018;9:2568. doi:10.3389/fpsyg.2018.02568

National Alliance on Mental Illness. Warning signs and symptoms .

Mayer RE. Thinking, problem solving, cognition, 2nd ed .

Schooler JW, Ohlsson S, Brooks K. Thoughts beyond words: When language overshadows insight. J Experiment Psychol: General . 1993;122:166-183. doi:10.1037/0096-3445.2.166

By Kendra Cherry, MSEd Kendra Cherry, MS, is a psychosocial rehabilitation specialist, psychology educator, and author of the "Everything Psychology Book."

Join our FREE training and learn the 5 things you can do to become a top 1% facilitator

What is problem-solving and how to do it right steps, processes, exercises.

The better your problem-solving skills are, the better (and easier!) your life will be. Organized problem-solving is a killer career skill - learn all about it here.

Whether we’re trying to solve a technical problem at work, or trying to navigate around a roadblock that Google Maps doesn’t see – most people are problem-solving every single day . 

But how effective are you at tackling the challenges in your life? Do you have a bullet-proof process you follow that ensures solid outcomes, or... Do you act on a whim of inspiration (or lack thereof) to resolve your pressing problems?

Here’s the thing: the better your problem-solving skills are - the better (and easier!) your life will be (both professionally and personally). Organized problem-solving is a killer career (and life!) skill, so if you want to learn how to do it in the most efficient way possible, you’ve come to the right place.  

Read along to learn more about the steps, techniques and exercises of the problem-solving process.

  • 1. Do you want a Career in UX? 
  •  Learn the Principles of UX Design
  • Master a UX Design Tool ‍

What is Problem-Solving?

We’re faced with the reality of having to solve problems every day, both in our private and professional lives. So why do we even need to learn about problem-solving? Aren’t we versed in it well enough already?

Well, what separates problem-solving from dealing with the usual day-to-day issues is that it’s a distinct process that allows you to go beyond the standard approaches to solving a problem and allows you to come up with more effective and efficient solutions. Or in other words, problem-solving allows you to knock out those problems with less effort. 

Just like with any other skill, there’s an efficient way to solve problems, and a non-efficient one. While it might be tempting to go for the quickest fix for your challenge without giving it much thought, it will only end up costing you more time down the road. Quick fixes are rarely (if ever!) effective and end up being massive time wasters. 

What separates problem-solving from dealing with the usual day-to-day issues is that it’s a distinct process that allows you to go beyond the standard approaches to solving a problem and allows you to come up with more effective and efficient solutions.

On the other hand, following a systemized clear process for problem-solving allows you to shortcut inefficiencies and time-wasters, turn your challenges into opportunities, and tackle problems of any scope without the usual stress and hassle. 

What is the process that you need to follow, then? We’re glad you asked...

The Five Stages of Problem-Solving

So what’s the best way to move through the problem-solving process? There’s a 5-step process that you can follow that will allow you to solve your challenges more efficiently and effectively. In short, you need to move through these 5 steps: 

  • Defining a problem
  • Ideating on a solution
  • Committing to a course of action
  • Implementing your solution
  • And finally – analyzing the results. 

The 5 stages of problem-solving

Let’s look at each of those stages in detail.

Step 1: Defining The Problem

The first step might sound obvious, but trust us, you don’t want to skip it! Clearly defining and framing your challenge will help you guide your efforts and make sure you’re focussing on the things that matter, instead of being distracted by a myriad of other options, problems and issues that come up. 

For once, you have to make sure you’re trying to solve the root cause, and not trying to mend the symptoms of it. For instance, if you keep losing users during your app onboarding process, you might jump to the conclusion that you need to tweak the process itself: change the copy, the screens, or the sequence of steps.

But unless you have clear evidence that confirms your hypothesis, your challenge might have an entirely different root cause, e.g. in confusing marketing communication prior to the app download. 

Clearly defining and framing your challenge will help you guide your efforts and make sure you’re focussing on the things that matter, all the while ensuring that you’re trying to solve the root cause, and not trying to mend the symptoms of it

That’s why it’s essential you take a close look at the entire problem, not just at a fraction of it.

There are several exercises that can help you get a broader, more holistic view of the problem, some of our all-time favorites include Expert Interviews, How Might We, or The Map. Check out the step-by-step instructions on how to run them (along with 5 more exercises for framing your challenge!) here. 

When in doubt, map out your challenge, and always try to tackle the bottlenecks that are more upstream - it’s likely that solving them will solve a couple of other challenges down the flow.

You also have to be mindful of how you frame the challenge: resist the urge to include a pre-defined solution into your problem statement. Priming your solutions to a predestined outcome destroys the purpose of following a step-by-step process in the first place!  

Steer clear of formulations like:

We need to change the onboarding process... or We need to improve ad copy to increase conversions. 

Instead, opt for more neutral, problem-oriented statements that don’t include a solution suggestion in them:

The drop off rate during the onboarding process is too high or Our ad conversion rates are below the norm.

Pro tip: Reframing your challenge as a ‘How Might We’ statement is a great way to spark up new ideas, opening your problem to a broader set of solutions, and is just a great way to reframe your problem into a more positive statement (without implying the possible solution!)

For example, following the onboarding drop-off rate problem we mentioned earlier, instead of framing it as a problem, you could opt for:

How Might We decrease the drop-off rate during the onboarding process? 

Find out more about the best exercises for problem framing here!

Now that you have a clear idea of what you’re trying to solve, it’s move on to the next phase of the problem-solving process.

Learn more about facilitation and workshopping in our FREE FACILITATION COMMUNITY

Step 2: ideating a solution.

Get ready to roll up your sleeves and challenge the status quo! This step of the problem-solving process is all about thinking outside of the box, challenging old assumptions, and thinking laterally. 

This stage is the one that tends to cause the most overwhelm in teams because it requires just the right balance of creativity and critical thinking, which tends to cause a lot of friction.

Our best advice?

Let go of the pressure to produce a polished, thought-through solution at this stage. You can hash out the details at a later point. Our goal right now is to come up with a direction, a prototype if you may, of where we want to move towards. 

Embrace the “quantity over quality” motto, and let your creative juices flow! Now, we’re not saying you should roll with sub-par ideas. But you shouldn’t get too fixated on feasibility and viability just yet . 

Your main goal during this step is to spark ideas, kick off your thinking process in the right direction, venture out of the familiar territories and think outside the box. 

For the ideation to be the most effective your team will have to feel safe to challenge the norm and wide-spread assumptions. So lay judgment by side, there is no space for “that’s the way it’s always been done” in this step.

For your ideation sessions to be as efficient as possible, we highly recommend to run them in a workshop setting: this helps reduce the usual drawbacks of open discussions in teams (i.e. groupthink & team politics!)

Our favorite exercises to run during this phase include Lightning Demos, Sketching, and variations of Brainstorming.  We crafted an entire article on how to run and facilitate these exercises in a separate article, so check it out of you’re going to be running an ideation session anytime soon!

Step 3: Choosing the Best Strategy & Committing

It’s time to decide which of the ideas that you generated in the last step will be the one you’ll implement. 

This step is arguably the hardest one to complete smoothly: groupthink, team politics, differences in opinions and communication styles all make it very hard to align a team on a common course of action. 

If you want to avoid the usual pitfalls of team decision-making, we recommend you steer clear of open unstructured discussion. While it’s useful in some scenarios, it’s a poor choice for when you need to make a decision, because it tends to reward the loudest people in the room, rather than give way to the best ideas. 

It’s crucial you not only commit to a course of action but get full buy-in from the team. If your team members don’t understand the reasons for a decision, or are not fully onboard, the implementation of your decision will be half-hearted, and that’s definitely not what you want! 

To achieve that, opt for anonymized, multi-layered voting, and include guided exercises like Storyboarding to prioritize your ideas. 

We’ve gathered the list of our top-rated decision-making exercises, along with step-by-step instructions on how to run them in this article!

As a bonus tip, we recommend you involve a facilitator throughout the entire process. They will help align the team, and guide them through prioritizing and de-prioritizing solutions, as well as defining the next steps. 

Pro tip : If you’re not the ultimate decision maker on the issue you’re trying to solve, make sure they’re in the room when the call is being made! Having a Decider in the room ensures that the decisions you come to will actually get executed on after, instead of getting shut down by your superiors after. 

Join our FREE community and connect with other Facilitators and Workshoppers

Step 4: implementing your solution.

Here’s a truth that might be hard to swallow: it doesn’t matter how innovative, creative, or original your idea is, if your execution is weak. 

One of our favourite illustrations of how this works in practice comes from the book “ Anything you want ” by Derek Sivers. He reveals that ideas should be treated as multipliers of execution. What this means is that a mediocre, “so-so” idea could be worth millions if executed well, while a “brilliant” idea can completely flop with bad execution. 

That’s why this step is crucial if you want to really master the problem-solving process. 

What do we mean by execution? Everything that happens after the whiteboards are wiped clean and your team starts to action the outcomes of your sessions, be it prototyping, development, or promotion. 

But don’t just take our word for it, look at the example of how execution affected Nintendo’s sales:

In the past few years, Nintendo has come up with 3 products: the Wii, the Wii U and the Switch. Check out their sales figures on the graph below - Wii is the clear-cut leader, followed by Switch, and finally Wii U lagging behind.

Nintendo's sales figure for 2018

The Wii was unbelievably successful - it was a genuinely unique, “brilliant”-level idea and it had a “brilliant” execution (20x $10 million = $200 million). It is  one of the fastest selling game consoles of all time and it completely took over the market.

The next product was called Wii U and it was a “great” concept but the execution was absolutely terrible. So even though this product was very interesting and innovative, the end result was 15x $1,000 = $15,000. 

Finally, Nintendo took the Wii U concept and tried it again with the Switch. The idea was “so so” as it was already done before, but the execution was “brilliant”. So, 5x $10 million = $50 million! Much better.

Excellent execution is more important than a good idea.

Bottom line?  

The same idea can either make no dent in the market and damage your share price OR become a market hit and increase your share price dramatically. The only difference between the two scenarios – execution.

So shift your focus from coming up with crazy, innovative, outlandish ideas that will disrupt the market, and concentrate on really nailing down your execution instead. 

This is likely the least “workshoppy” step out of the entire problem-solving process because it requires less alignment and decision-making and more..well.. Execution!

But hey, we wouldn’t be called “Workshopper” if we didn't offer you at least one way to optimize and workshopify (yup, we’re making it a thing) your execution process. 

Cue in….prototyping. 

We’re huge fans of prototyping all big solutions (and testing them!) The main reason?

This saves us time AND money! Prototyping and testing your solutions (especially if they’re time and investment-demanding) is a great way to make sure you’re creating something that is actually needed. 

The key with prototyping the right way is to keep it simple. Don’t invest too much time, or resources into it. The goal is to gather data for your future decisions, not to create a near-to-perfect mockup of your solution.  

There are LOADS of prototyping forms and techniques, and if you’d like to learn more on the subject you should definitely check out our extensive prototyping guide.  

Step 5: Analyzing the Results

You’re nearly done, woo! Now that you have defined the right problem to tackle, brainstormed the solutions, aligned your team on the course of action, and put your plan into action it’s time to take stock of your efforts. 

Seek feedback from all involved parties, analyze the data you’ve gathered, look at the bottom line of your efforts, and  take a hard look at your problem: did it get solved? And even more than that, did the process feel smoother, easier, and more efficient than it normally is?

Running a retrospective is a great way to highlight things that went well and that you should keep for your next round of problem.solving, as well as pinpoint inefficiencies that you can eliminate.

‍ But which kind of retrospective should you run? There are loads of options, and it’s easy to feel overwhelmed by them all, so we gathered our favorite retrospective variations in this article.

And there you have it, you just completed the cycle of  problem-solving. We highly recommend you follow through with all the steps, without leaving any out. They all complement and build on each other, and it’s the combination of all 5 of them that makes the process effective. 

Now that you have the problem solving process down, you might be wondering…

Do I need any special skills in order to be able to move through that process?

And the answer is… sort of! More in this in the next section.

Problem-Solving Skills 

While your skill set will need to adapt and change based on the challenges you’ll be working on, most efficient problem-solvers have a solid foundation of these key skills:   

  • Active listening. While you might be the expert in the area of your challenge, there’s not a single person on Earth that knows it all! Being open to others’ perspectives and practicing active listening will come in very handy during step 1 of the process, as you’re trying to define the scope and the exact angle of the problem you’re working on.
  • Analytical approach. Your analytical skills will help you understand problems and effectively develop solutions. You will also need analytical skills during research to help distinguish between effective and ineffective solutions.
  • Communication. Is there a single area of expertise that DOESN’T require strong communication skills? We honestly don’t think so! Just like with any other life area, clear communication can make or break your problem-solving process. Being able to clearly communicate why you need to solve this challenge to your team, as well as align your team on the course of action are crucial for the success of the process. 
  • Decision-making. Ultimately, you will need to make a decision about how to solve problems that arise. A process without outcomes–regardless of how well thought-out and elaborate–is useless! If you want your problem-solving huddles to be effective, you have to come to grips with prioritization techniques and decision-making frameworks. 
  • Facilitation. Problem-solving revolves around being able to guide a group or a team to a common decision, and facilitation skills are essential in making that happen. Knowing how to facilitate will make it easy to keep the group focussed on the challenge, shortcut circular discussions, and make sure you’re moving along to solving the problem instead of just treading waters with fruitless discussions. 

Not checking every single skill of your list just yet? Not to worry, the next section will give you practical tools on how to level up and improve your problem-solving skills.

How to Improve Your Problem-Solving Skills

Just like with any other skill, problem-solving is not an innate talent that you either have or you don’t.  There are concrete steps you can take to improve your skills. 

Here are some things that will get you closer to mastering the problem-solving process:

  • Practice, Practice, Practice

Practice makes perfect, and problem-solving skills are no exception! Seek opportunities to utilize and develop these skills any time you can. 

If you don’t know where or how to start just yet, here’s a suggestion that will get you up and running in no time: run a quick problem-solving session on a challenge that has been bothering your team for a while now. 

It doesn’t need to be the big strategic decision or the issue defining the future of the company. Something easy and manageable (like optimizing office space or improving team communication) will do. 

As you start feeling more comfortable with the problem-solving techniques, you can start tackling bigger challenges. Before you know it, you’ll master the art of creative problem-solving!

  • Use a tried and tested problem-solving workshop

Facilitation is one of the essential skills for problem-solving. But here’s the thing… Facilitation skills on their own won’t lead you to a solved challenge.

While being able to shortcut aimless discussions is a great skill, you have to make sure your problem-solving session has tangible outcomes. Using a tried and tested method, a workshop, is one of the easiest ways to do that. 

Our best advice is to get started with a tried and tested problem-solving workshop like the Lightning Decision Jam . The LDJ has all the right ingredients for quick, effective problem solving that leads to tangible outcomes. Give it a go!

  • Learn from your peers

You may have colleagues who are skilled problem solvers. Observing how those colleagues solve problems can help you improve your own skills. 

If possible, ask one of your more experienced colleagues if you can observe their techniques. Ask them relevant questions and try to apply as many of the new found skills i your career as possible. 

  • Learn & Practice the best problem-solving exercises

Having a toolbox of problem-solving exercises to pull from that can fit any type of challenge will make you a more versatile problem-solver and will make solving challenges that much easier for you! 

Once you get used to the groove of learning how to combine them into effective sessions or workshops, there’ll be no stopping you. What are some of the most effective problem-solving exercises? Glad you asked! We’ve gathered our favorite ones here, check it out! 

And there you have it, you’re now fully equipped for running creative problem-sessions with confidence and ease! Whichever method or exercise you choose, remember to keep track of your wins, and learn as much as you can from your losses! 

Anastasia Ushakova

Brand Strategist, Digital Marketer, and a Workshopper.

what is the last part of the problem solving process

When Do You Need a Facilitator?

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Suspendisse varius enim in eros elementum tristique. Duis cursus.

what is the last part of the problem solving process

The Ultimate Facilitation Glossary: 50 Facilitation Terms You Should Know (From A-Z)

what is the last part of the problem solving process

How To Improve Team Collaboration

25 Year Anniversary_logo.png

  • Miles Anthony Smith
  • Sep 12, 2022
  • 12 min read

The Ultimate Problem-Solving Process Guide: 31 Steps and Resources

Updated: Jan 24, 2023

GOT CHALLENGES WITH YOUR PROBLEM-SOLVING PROCESS? ARE YOU FRUSTRATED?

prob·lem-solv·ing noun -the process of finding solutions to difficult or complex issues. It sounds so simple, doesn’t it? But in reality problem-solving is hard. It's almost always more complex than it seems. That's why problem-solving can be so frustrating sometimes. You can feel like you’re spinning your wheels, arguing in circles, or just failing to find answers that actually work. And when you've got a group working on a problem, it can get even muddier …differences of opinions, viewpoints colored by different backgrounds, history, life experiences, you name it. We’re all looking at life and work from different angles, and that often means disagreement. Sometimes sharp disagreement. That human element, figuring out how to take ourselves out of the equation and make solid, fact-based decisions , is precisely why there’s been so much written on problem-solving. Which creates its own set of problems. Whose method is best? How can you possibly sift through them all? Are we to have one person complete the entire problem-solving process by themselves or rely on a larger team to find answers to our most vexing challenges in the workplace ? Today, we’re going to make sense of it all. We’ll take a close look at nine top problem-solving methods. Then we’ll grab the best elements of all of them to give you a process that will have your team solving problems faster, with better results , and maybe with less sharp disagreement. Ready to dive in? Let’s go!

9 PROFITABLE PROBLEM-SOLVING TECHNIQUES AND METHODS

While there are loads of methods to choose from, we are going to focus on nine of the more common ones. You can use some of these problem-solving techniques reactively to solve a known issue or proactively to find more efficient or effective ways of performing tasks. If you want to explore other methods, check out this resource here . A helpful bit of advice here is to reassure people that you aren’t here to identify the person that caused the problem . You’re working to surface the issue, solve it and make sure it doesn’t happen again, regardless of the person working on the process. It can’t be understated how important it is to continually reassure people of this so that you get unfiltered access to information. Without this, people will often hide things to protect themselves . After all, nobody wants to look bad, do they? With that said, let’s get started...

1. CREATIVE PROBLEM SOLVING (CPS)

Alex Osborn coined the term “Creative Problem Solving” in the 1940s with this simple four-step process:

Clarify : Explore the vision, gather data, and formulate questions.

Ideate : This stage should use brainstorming to generate divergent thinking and ideas rather than the random ideas normally associated with brainstorming.

Develop : Formulate solutions as part of an overall plan.

Implement : Put the plan into practice and communicate it to all parties.

2. APPRECIATIVE INQUIRY

Appreciative Inquiry 4D Cycle

Source: http://www.davidcooperrider.com/ai-process/ This method seeks, first and foremost, to identify the strengths in people and organizations and play to that “positive core” rather than focus our energies on improving weaknesses . It starts with an “affirmative topic,” followed by the “positive core (strengths).” Then this method delves into the following stages:

Discovery (fact-finding)

Dream (visioning the future)

Design (strategic purpose)

Destiny (continuous improvement)

3. “FIVE WHYS” METHOD

This method simply suggests that we ask “Why” at least five times during our review of the problem and in search of a fix. This helps us dig deeper to find the the true reason for the problem, or the root cause. Now, this doesn’t mean we just keeping asking the same question five times. Once we get an answer to our first “why”, we ask why to that answer until we get to five “whys”.

Using the “five whys” is part of the “Analyze” phase of Six Sigma but can be used with or without the full Six Sigma process.

Review this simple Wikipedia example of the 5 Whys in action:

The vehicle will not start. (the problem)

Why? - The battery is dead. (First why)

Why? - The alternator is not functioning. (Second why)

Why? - The alternator belt has broken. (Third why)

Why? - The alternator belt was well beyond its useful service life and not replaced. (Fourth why)

Why? - The vehicle was not maintained according to the recommended service schedule. (Fifth why, a root cause)

4. LEAN SIX SIGMA (DMAIC METHOD)

Define, Measure, Analyze, Design, Verify

While many people have at least heard of Lean or Six Sigma, do we know what it is? Like many problem-solving processes, it has five main steps to follow.

Define : Clearly laying out the problem and soliciting feedback from those who are customers of the process is necessary to starting off on the right foot.

Measure : Quantifying the current state of the problem is a key to measuring how well the fix performed once it was implemented.

Analyze : Finding out the root cause of the problem (see number 5 “Root Cause Analysis” below) is one of the hardest and least explored steps of Six Sigma.

Improve : Crafting, executing, and testing the solution for measureable improvement is key. What doesn’t get implemented and measured really won’t make a difference.

Control : Sustaining the fix through a monitoring plan will ensure things continue to stay on track rather than being a short-lived solution.

5. ROOT CAUSE ANALYSIS

Compared to other methods, you’ll more often find this technique in a reactive problem-solving mode, but it is helpful nonetheless. Put simply, it requires a persistent approach to finding the highest-level cause, since most reasons you’ll uncover for a problem don’t tell the whole story.

Most of the time, there are many factors that contributed to an issue. The main reason is often shrouded in either intentional or unintentional secrecy. Taking the time to drill down to the root of the issue is key to truly solving the problem.

6. DEMING-SHEWHART CYCLE: PLAN-DO-CHECK-ACT (PDCA)

Named for W. Edwards Deming and Walter A. Shewhart, this model follows a four-step process:

Plan: Establish goals and objectives at the outset to gain agreement. It’s best to start on a small scale in order to test results and get a quick win.

Do: This step is all about the implementation and execution of the solution.

Check: Study and compare actual to expected results. Chart this data to identify trends.

Act/Adjust: If the check phase showed different results, then adjust accordingly. If worse than expected, then try another fix. If the same or better than expected, then use that as the new baseline for future improvements.

7. 8D PROBLEM-SOLVING

Man Drawing 8 Circles in a Circle

While this is named “8D” for eight disciplines, there are actually nine , because the first is listed as step zero. Each of the disciplines represents a phase of this process. Its aim is to implement a quick fix in the short term while working on a more permanent solution with no recurring issues.

Prepare and Plan : Collecting initial information from the team and preparing your approach to the process is a necessary first step.

Form a Team : Select a cross-functional team of people, one leader to run meetings and the process, and one champion/sponsor who will be the final decision-maker.

Describe the Problem : Using inductive and deductive reasoning approaches, lay out the precise issue to be corrected.

Interim Containment Action : Determine if an interim solution needs to be implemented or if it can wait until the final fix is firmed up. If necessary, the interim action is usually removed once the permanent solution is ready for implementation.

Root Cause Analysis and Escape Point : Finding the root of the issue and where in the process it could’ve been found but was not will help identify where and why the issue happened.

Permanent Corrective Action : Incorporating key criteria into the solution, including requirements and wants, will help ensure buy-in from the team and your champion.

Implement and Validate the Permanent Corrective Action : Measuring results from the fix implemented validates it or sends the team back to the drawing board to identity a more robust solution.

Prevent Recurrence : Updating work procedure documents and regular communication about the changes are important to keep old habits in check.

Closure and Team Celebration : Taking time to praise the team for their efforts in resolving the problem acknowledges the part each person played and offers a way to move forward.

8. ARMY PROBLEM SOLVING PROCESS

The US Army has been solving problems for more than a couple of centuries , so why not take a look at the problem-solving process they’ve refined over many years? They recommend this five step process:

Identify the Problem : Take time to understand the situation and define a scope and limitations before moving forward.

Gather Information : Uncover facts, assumptions, and opinions about the problem, and challenge them to get to the truth.

Develop Screening and Evaluation Criteria :

Five screening items should be questioned. Is it feasible, acceptable, distinguishable, and complete?

Evaluation criteria should have these 5 elements: short title, definition, unit of measure, benchmark, and formula.

Generate, Analyze, and Compare Possible Solutions : Most fixes are analyzed, but do you compare yours to one another as a final vetting method?

Choose a Solution and Implement : Put the fix into practice and follow up to ensure it is being followed consistently and having the desired effect.

9. HURSON'S PRODUCTIVE THINKING MODEL

Thinking Man

Tim Hurson introduced this model in 2007 with his book, Think Better. It consists of the following six actions.

Ask "What is going on?" : Define the impact of the problem and the aim of its solution.

Ask "What is success?" : Spell out the expected outcome, what should not be in fix, values to be considered, and how things will be evaluated.

Ask "What is the question?" : Tailor questions to the problem type. Valuable resources can be wasted asking questions that aren’t truly relevant to the issue.

Generate answers : Prioritize answers that are the most relevant to solutions, without excluding any suggestion to present to the decision-makers.

Forge the solution : Refine the raw list of prioritized fixes, looking for ways to combine them for a more powerful solution or eliminate fixes that don’t fit the evaluation criteria.

Align resources: Identify resources, team, and stakeholders needed to implement and maintain the solution.

STEAL THIS THOROUGH 8-STEP PROBLEM-SOLVING PROCESS

Little Girl Reaching For Strawberries On The Counter

Now that we’ve reviewed a number of problem-solving methods, we’ve compiled the various steps into a straightforward, yet in-depth, s tep-by-step process to use the best of all methods.

1. DIG DEEP: IDENTIFY, DEFINE, AND CLARIFY THE ISSUE

“Elementary, my dear Watson,” you might say.

This is true, but we often forget the fundamentals before trying to solve a problem. So take some time to gain understanding of critical stakeholder’s viewpoints to clarify the problem and cement consensus behind what the issue really is.

Sometimes it feels like you’re on the same page, but minor misunderstandings mean you’re not really in full agreement.. It’s better to take the time to drill down on an issue before you get too far into solving a problem that may not be the exact problem . Which leads us to…

2. DIG DEEPER: ROOT CAUSE ANALYSIS

Root Cause Analysis

This part of the process involves identifying these three items :

What happened?

Why did it happen?

What process do we need to employ to significantly reduce the chances of it happening again ?

You’ll usually need to sort through a series of situations to find the primary cause. So be careful not to stop at the first cause you uncover . Dig further into the situation to expose the root of the issue. We don’t want to install a solution that only fixes a surface-level issue and not the root. T here are typically three types of causes :

Physical: Perhaps a part failed due to poor design or manufacturing.

Human error: A person either did something wrong or didn’t do what needed to be done.

Organizational: This one is mostly about a system, process, or policy that contributed to the error .

When searching for the root cause, it is important to ensure people that you aren’t there to assign blame to a person but rather identify the problem so a fix can prevent future issues.

3. PRODUCE A VARIETY OF SOLUTION OPTIONS

So far, you’ve approached the problem as a data scientist, searching for clues to the real issue. Now, it’s important to keep your eyes and ears open, in case you run across a fix suggested by one of those involved in the process failure. Because they are closest to the problem, they will often have an idea of how to fix things. In other cases, they may be too close, and unable to see how the process could change.

The bottom line is to solicit solution ideas from a variety of sources , both close to and far away from the process you’re trying to improve.

You just never know where the top fix might come from!

4. FULLY EVALUATE AND SELECT PLANNED FIX(ES)

"Time To Evaluate" Written on a Notepad with Pink Glasses & Pen

Evaluating solutions to a defined problem can be tricky since each one will have cost, political, or other factors associated with it. Running each fix through a filter of cost and impact is a vital step toward identifying a solid solution and hopefully settling on the one with the highest impact and low or acceptable cost.

Categorizing each solution in one of these four categoriescan help teams sift through them:

High Cost/Low Impact: Implement these last, if at all, since t hey are expensive and won’t move the needle much .

Low Cost/Low Impact: These are cheap, but you won’t get much impact.

High Cost/High Impact: These can be used but should be second to the next category.

Low Cost/High Impact: Getting a solid “bang for your buck” is what these fixes are all about. Start with these first .

5. DOCUMENT THE FINAL SOLUTION AND WHAT SUCCESS LOOKS LIKE

Formalize a document that all interested parties (front-line staff, supervisors, leadership, etc.) agree to follow. This will go a long way towards making sure everyone fully understands what the new process looks like, as well as what success will look like .

While it might seem tedious, try to be overly descriptive in the explanation of the solution and how success will be achieved. This is usually necessary to gain full buy-in and commitment to continually following the solution. We often assume certain things that others may not know unless we are more explicit with our communications.

6. SUCCESSFULLY SELL AND EXECUTE THE FIX

Execution Etched In to a Gear

Arriving at this stage in the process only to forget to consistently apply the solution would be a waste of time, yet many organizations fall down in the execution phase . Part of making sure that doesn’t happen is to communicate the fix and ask for questions multiple times until all parties have a solid grasp on what is now required of them.

One often-overlooked element of this is the politics involved in gaining approval for your solution. Knowing and anticipating objections of those in senior or key leadership positions is central to gaining buy-in before fix implementation.

7. RINSE AND REPEAT: EVALUATE, MONITOR, AND FOLLOW UP

Next, doing check-ins with the new process will ensure that the solution is working (or identity if further reforms are necessary) . You’ll also see if the measure of predefined success has been attained (or is making progress in that regard).

Without regularly monitoring the fix, you can only gauge the success or failure of the solution by speculation and hearsay. And without hard data to review, most people will tell their own version of the story.

8. COLLABORATIVE CONTINGENCIES, ITERATION, AND COURSE CORRECTION

Man Looking Up at a Success Roadmap

Going into any problem-solving process, we should take note that we will not be done once the solution is implemented (or even if it seems to be working better at the moment). Any part of any process will always be subject to the need for future iterations and course corrections . To think otherwise would be either foolish or naive.

There might need to be slight, moderate, or wholesale changes to the solution previously implemented as new information is gained, new technologies are discovered, etc.

14 FRUITFUL RESOURCES AND EXERCISES FOR YOUR PROBLEM-SOLVING JOURNEY

Resources | People Working Together At A Large Table With Laptops, Tablets & Paperwork Everywhere

Want to test your problem-solving skills?

Take a look at these twenty case study scenario exercises to see how well you can come up with solutions to these problems.

Still have a desire to discover more about solving problems?

Check out these 14 articles and books...

1. THE LEAN SIX SIGMA POCKET TOOLBOOK: A QUICK REFERENCE GUIDE TO NEARLY 100 TOOLS FOR IMPROVING QUALITY AND SPEED

This book is like a Bible for Lean Six Sigma , all in a pocket-sized package.

2. SOME SAGE PROBLEM SOLVING ADVICE

Hands Holding Up a Comment Bubble That Says "Advice"

The American Society for Quality has a short article on how it’s important to focus on the problem before searching for a solution.

3. THE SECRET TO BETTER PROBLEM SOLVING: HARVARD BUSINESS REVIEW

Wondering if you are solving the right problems? Check out this Harvard Business Review article.

4. PROBLEM SOLVING 101 : A SIMPLE BOOK FOR SMART PEOPLE

Looking for a fun and easy problem-solving book that was written by a McKinsey consultant? Take a look!

5. THE BASICS OF CREATIVE PROBLEM SOLVING – CPS

A Drawn Lightbulb Where The Lightbulb is a Crumbled Piece Of Yellow Paper

If you want a deeper dive into the seven steps of Creative Problem Solving , see this article.

6. APPRECIATIVE INQUIRY : A POSITIVE REVOLUTION IN CHANGE

Appreciative Inquiry has been proven effective in organizations ranging from Roadway Express and British Airways to the United Nations and the United States Navy. Review this book to join the positive revolution.

7. PROBLEM SOLVING: NINE CASE STUDIES AND LESSONS LEARNED

The Seattle Police Department has put together nine case studies that you can practice solving . While they are about police work, they have practical application in the sleuthing of work-related problems.

8. ROOT CAUSE ANALYSIS : THE CORE OF PROBLEM SOLVING AND CORRECTIVE ACTION

Need a resource to delve further into Root Cause Analysis? Look no further than this book for answers to your most vexing questions .

9. SOLVING BUSINESS PROBLEMS : THE CASE OF POOR FRANK

Business Team Looking At Multi-Colored Sticky Notes On A Wall

This solid case study illustrates the complexities of solving problems in business.

10. THE 8-DISCIPLINES PROBLEM SOLVING METHODOLOGY

Learn all about the “8Ds” with this concise primer.

11. THE PROBLEM-SOLVING PROCESS THAT PREVENTS GROUPTHINK HBR

Need to reduce groupthink in your organization’s problem-solving process ? Check out this article from the Harvard Business Review.

12. THINK BETTER : AN INNOVATOR'S GUIDE TO PRODUCTIVE THINKING

Woman Thinking Against A Yellow Wall

Tim Hurson details his own Productive Thinking Model at great length in this book from the author.

13. 5 STEPS TO SOLVING THE PROBLEMS WITH YOUR PROBLEM SOLVING INC MAGAZINE

This simple five-step process will help you break down the problem, analyze it, prioritize solutions, and sell them internally.

14. CRITICAL THINKING : A BEGINNER'S GUIDE TO CRITICAL THINKING, BETTER DECISION MAKING, AND PROBLEM SOLVING!

LOOKING FOR ASSISTANCE WITH YOUR PROBLEM-SOLVING PROCESS?

There's a lot to take in here, but following some of these methods are sure to improve your problem-solving process. However, if you really want to take problem-solving to the next level, InitiativeOne can come alongside your team to help you solve problems much faster than you ever have before.

There are several parts to this leadership transformation process provided by InitiativeOne, including a personal profile assessment, cognitive learning, group sessions with real-world challenges, personal discovery, and a toolkit to empower leaders to perform at their best.

There are really only two things stopping good teams from being great. One is how they make decisions and two is how they solve problems. Contact us today to grow your team’s leadership performance by making decisions and solving problems more swiftly than ever before!

  • Featured Post

Recent Posts

Does Your Leadership Deserve Two Thumbs Up?

3 Ways to Harness the Power of Inspiration

Leadership Self-Check

  • Skip to main content
  • Skip to primary sidebar
  • Skip to footer

Psychology Spot

All About Psychology

The 5 phases of problem solving

phases of problem solving

Problem solving is a complex psychological process through which we try to find the best way to overcome an obstacle or face a challenge. Unfortunately, this process is not always linear, but can follow tortuous paths, plunging us into a situation of psychological anguish when we believe that there is no possible solution.

On the other hand, knowing the phases of problem solving will save us a lot of headaches. Providing a coherent structure to the situation that concerns us, and having a common thread that guides us along the way, will help us to put some order in the mental chaos that problems usually generate.

To Solve a Problem, Experience Does not Always Work in Our Favor

Experience can be a plus or, on the contrary, become an impediment to solving problems. Psychologists from the universities of Hong Kong and Princeton examined how we implement problem-solving strategies by asking a group of people to solve a series of problems with matches.

Participants were presented with a series of linked squares. Each square in the matrix was made up of separate pieces, and people had to remove a certain number of matches while keeping a specified number of squares intact. The interesting thing about these types of problems is that they generally have more than one solution, different strategies can be used and these must change according to the configuration of the matrix, just as it usually happens with life problems.

These researchers found that participants went through two major stages in problem solving. At first they let themselves be carried away by the perceptual characteristics of the problem and began to explore different strategies, some successful and others not.

In a second moment they used the accumulated experience to narrow their options of strategies, focusing on those that were more successful. The problem is that the more the participants trusted their strategic knowledge, the more difficulties they had in solving problems that demanded the application of novel strategies. In practice, they suffered from a kind of functional fixation.

These series of experiments show us that to solve a problem we must keep an open mind because along the way circumstances are likely to change and we need the mental flexibility necessary to change our problem-solving strategies.

The Stages of Problem Solving We Can All Apply

1. Identify the problem

It may seem like a truism, but the truth is that identifying the real problem is not as easy as it seems, especially when it comes to a situation that affects us emotionally. In fact, when the problem is too scary or we sense that we do not have the psychological tools to solve it, we usually put into practice defense mechanisms such as displacement that allow us to erase the problematic situation from our conscious mind.

Instead, being able to identify the problem is the first step in finding a solution. Many times that means stopping looking outside for the culprits and searching within, wondering why a situation is particularly bothering or hindering us.

2. Understand the problem

Many times the problem brings with it the seed of the solution. So one of the steps in solving a problem is making sure we understand it. It is not enough to identify the problem, we need to define it. For this we need to analyze it from different perspectives.

For example, if we are trying to carry out a professional project that does not finish taking off, we have to clarify the reasons. Do we need more training? Are we in an overly competitive sector? Do we have enough resources? We need to understand the source of the problem.

Organizing the information available is another crucial step in the problem-solving process. We have to ask ourselves both, what we know about the problem and everything we do not know. Ultimately, the accuracy of the solution will largely depend on the amount of information available.

3. Assume a psychological distance

Most of the major problems in life have the potential to generate an emotional tsunami. However, many times that affective involvement obfuscates and prevents us from thinking clearly. That is why on many occasions one of the most important but least known phases for solving problems consists of moving away from what concerns us. To assume a psychological distance , we can take a few days away from the problematic environment or try to stop thinking about what worries us for a while.

During that time the unconscious mind will continue to work and is likely to generate creative and perfectly valid insights that lead to the solution of the problem. That distance to allow us to overcome the functional fixations that prevent us from thinking outside the box, giving way to a mental restructuring that will allow us to see the problem from another perspective.

4. Find solutions and develop strategies

Each problem is different, so it will require a specific solution. A solution cannot always be reached by insight, so it will be necessary to think of possible alternatives to solve the problem. Synectics , for example, is a problem-solving method that uses creativity to find original solutions.

The next step is to develop a strategy, since solutions that do not materialize in concrete steps are very difficult to implement. Therefore, we must ask ourselves how we are going to implement our solution. In this phase of problem solving it is important to be honest with ourselves and “land” that strategy taking into account our resources and real availability. It is useless to develop a great strategy if we cannot apply it later.

5. Evaluation of progress

Very few problems are solved overnight. These are generally complex situations that we must patiently “unwind” over time. Therefore, another of the phases to solve a problem consists of monitoring the results that we are achieving. This way we make sure that we are on the right track and we are not wasting energy and time uselessly.

In this last stage of problem solving it is important to be able to adapt our expectations. It is difficult for a professional project to take off in the blink of an eye, so we must focus on the small steps that indicate that the solution is paying off. To do this, it is important to sit down and reflect on the impact of the solution from time to time.

We must also bear in mind that circumstances often change, so we may need to make adjustments to our initial solution. This requires great mental flexibility to change course when we realize that the strategy is not as effective as we would like.

Fedor, A. et. Al. (2015) Problem solving stages in the five square problem.  Front. Psychol ; 6: 1050.

Louis Lee, N. Y. & Johnson-Laird, P. N. (2013) Strategic changes in problem solving.  Journal of Cognitive Psychology ; 25: 165–173. 

Gillen, G. (2009) Managing Executive Function Impairments to Optimize Function.  Cognitive and Perceptual Rehabilitation ; 245-283.

Jennifer Delgado

Psychologist Jennifer Delgado

I am a psychologist and I spent several years writing articles for scientific journals specialized in Health and Psychology. I want to help you create great experiences. Learn more about me .

what is the last part of the problem solving process

Navigating the Complexities of Insurance and Billing in Psychology Practices

30/08/2024 By Jennifer Delgado

what is the last part of the problem solving process

How to deal with emotional vampires at work?

what is the last part of the problem solving process

How do you know if your psychologist is good? 10 warning signs

29/08/2024 By Jennifer Delgado

lls-logo-main

The Art of Effective Problem Solving: A Step-by-Step Guide

Author's Avatar

Author: Daniel Croft

Daniel Croft is an experienced continuous improvement manager with a Lean Six Sigma Black Belt and a Bachelor's degree in Business Management. With more than ten years of experience applying his skills across various industries, Daniel specializes in optimizing processes and improving efficiency. His approach combines practical experience with a deep understanding of business fundamentals to drive meaningful change.

Whether we realise it or not, problem solving skills are an important part of our daily lives. From resolving a minor annoyance at home to tackling complex business challenges at work, our ability to solve problems has a significant impact on our success and happiness. However, not everyone is naturally gifted at problem-solving, and even those who are can always improve their skills. In this blog post, we will go over the art of effective problem-solving step by step.

You will learn how to define a problem, gather information, assess alternatives, and implement a solution, all while honing your critical thinking and creative problem-solving skills. Whether you’re a seasoned problem solver or just getting started, this guide will arm you with the knowledge and tools you need to face any challenge with confidence. So let’s get started!

Problem Solving Methodologies

Individuals and organisations can use a variety of problem-solving methodologies to address complex challenges. 8D and A3 problem solving techniques are two popular methodologies in the Lean Six Sigma framework.

Methodology of 8D (Eight Discipline) Problem Solving:

The 8D problem solving methodology is a systematic, team-based approach to problem solving. It is a method that guides a team through eight distinct steps to solve a problem in a systematic and comprehensive manner.

The 8D process consists of the following steps:

8D Problem Solving2 - Learnleansigma

  • Form a team: Assemble a group of people who have the necessary expertise to work on the problem.
  • Define the issue: Clearly identify and define the problem, including the root cause and the customer impact.
  • Create a temporary containment plan: Put in place a plan to lessen the impact of the problem until a permanent solution can be found.
  • Identify the root cause: To identify the underlying causes of the problem, use root cause analysis techniques such as Fishbone diagrams and Pareto charts.
  • Create and test long-term corrective actions: Create and test a long-term solution to eliminate the root cause of the problem.
  • Implement and validate the permanent solution: Implement and validate the permanent solution’s effectiveness.
  • Prevent recurrence: Put in place measures to keep the problem from recurring.
  • Recognize and reward the team: Recognize and reward the team for its efforts.

Download the 8D Problem Solving Template

A3 Problem Solving Method:

The A3 problem solving technique is a visual, team-based problem-solving approach that is frequently used in Lean Six Sigma projects. The A3 report is a one-page document that clearly and concisely outlines the problem, root cause analysis, and proposed solution.

The A3 problem-solving procedure consists of the following steps:

  • Determine the issue: Define the issue clearly, including its impact on the customer.
  • Perform root cause analysis: Identify the underlying causes of the problem using root cause analysis techniques.
  • Create and implement a solution: Create and implement a solution that addresses the problem’s root cause.
  • Monitor and improve the solution: Keep an eye on the solution’s effectiveness and make any necessary changes.

Subsequently, in the Lean Six Sigma framework, the 8D and A3 problem solving methodologies are two popular approaches to problem solving. Both methodologies provide a structured, team-based problem-solving approach that guides individuals through a comprehensive and systematic process of identifying, analysing, and resolving problems in an effective and efficient manner.

Step 1 – Define the Problem

The definition of the problem is the first step in effective problem solving. This may appear to be a simple task, but it is actually quite difficult. This is because problems are frequently complex and multi-layered, making it easy to confuse symptoms with the underlying cause. To avoid this pitfall, it is critical to thoroughly understand the problem.

To begin, ask yourself some clarifying questions:

  • What exactly is the issue?
  • What are the problem’s symptoms or consequences?
  • Who or what is impacted by the issue?
  • When and where does the issue arise?

Answering these questions will assist you in determining the scope of the problem. However, simply describing the problem is not always sufficient; you must also identify the root cause. The root cause is the underlying cause of the problem and is usually the key to resolving it permanently.

Try asking “why” questions to find the root cause:

  • What causes the problem?
  • Why does it continue?
  • Why does it have the effects that it does?

By repeatedly asking “ why ,” you’ll eventually get to the bottom of the problem. This is an important step in the problem-solving process because it ensures that you’re dealing with the root cause rather than just the symptoms.

Once you have a firm grasp on the issue, it is time to divide it into smaller, more manageable chunks. This makes tackling the problem easier and reduces the risk of becoming overwhelmed. For example, if you’re attempting to solve a complex business problem, you might divide it into smaller components like market research, product development, and sales strategies.

To summarise step 1, defining the problem is an important first step in effective problem-solving. You will be able to identify the root cause and break it down into manageable parts if you take the time to thoroughly understand the problem. This will prepare you for the next step in the problem-solving process, which is gathering information and brainstorming ideas.

Step 2 – Gather Information and Brainstorm Ideas

Brainstorming - Learnleansigma

Gathering information and brainstorming ideas is the next step in effective problem solving. This entails researching the problem and relevant information, collaborating with others, and coming up with a variety of potential solutions. This increases your chances of finding the best solution to the problem.

Begin by researching the problem and relevant information. This could include reading articles, conducting surveys, or consulting with experts. The goal is to collect as much information as possible in order to better understand the problem and possible solutions.

Next, work with others to gather a variety of perspectives. Brainstorming with others can be an excellent way to come up with new and creative ideas. Encourage everyone to share their thoughts and ideas when working in a group, and make an effort to actively listen to what others have to say. Be open to new and unconventional ideas and resist the urge to dismiss them too quickly.

Finally, use brainstorming to generate a wide range of potential solutions. This is the place where you can let your imagination run wild. At this stage, don’t worry about the feasibility or practicality of the solutions; instead, focus on generating as many ideas as possible. Write down everything that comes to mind, no matter how ridiculous or unusual it may appear. This can be done individually or in groups.

Once you’ve compiled a list of potential solutions, it’s time to assess them and select the best one. This is the next step in the problem-solving process, which we’ll go over in greater detail in the following section.

Step 3 – Evaluate Options and Choose the Best Solution

Once you’ve compiled a list of potential solutions, it’s time to assess them and select the best one. This is the third step in effective problem solving, and it entails weighing the advantages and disadvantages of each solution, considering their feasibility and practicability, and selecting the solution that is most likely to solve the problem effectively.

To begin, weigh the advantages and disadvantages of each solution. This will assist you in determining the potential outcomes of each solution and deciding which is the best option. For example, a quick and easy solution may not be the most effective in the long run, whereas a more complex and time-consuming solution may be more effective in solving the problem in the long run.

Consider each solution’s feasibility and practicability. Consider the following:

  • Can the solution be implemented within the available resources, time, and budget?
  • What are the possible barriers to implementing the solution?
  • Is the solution feasible in today’s political, economic, and social environment?

You’ll be able to tell which solutions are likely to succeed and which aren’t by assessing their feasibility and practicability.

Finally, choose the solution that is most likely to effectively solve the problem. This solution should be based on the criteria you’ve established, such as the advantages and disadvantages of each solution, their feasibility and practicability, and your overall goals.

It is critical to remember that there is no one-size-fits-all solution to problems. What is effective for one person or situation may not be effective for another. This is why it is critical to consider a wide range of solutions and evaluate each one based on its ability to effectively solve the problem.

Step 4 – Implement and Monitor the Solution

Communication the missing peice from Lean Six Sigma - Learnleansigma

When you’ve decided on the best solution, it’s time to put it into action. The fourth and final step in effective problem solving is to put the solution into action, monitor its progress, and make any necessary adjustments.

To begin, implement the solution. This may entail delegating tasks, developing a strategy, and allocating resources. Ascertain that everyone involved understands their role and responsibilities in the solution’s implementation.

Next, keep an eye on the solution’s progress. This may entail scheduling regular check-ins, tracking metrics, and soliciting feedback from others. You will be able to identify any potential roadblocks and make any necessary adjustments in a timely manner if you monitor the progress of the solution.

Finally, make any necessary modifications to the solution. This could entail changing the solution, altering the plan of action, or delegating different tasks. Be willing to make changes if they will improve the solution or help it solve the problem more effectively.

It’s important to remember that problem solving is an iterative process, and there may be times when you need to start from scratch. This is especially true if the initial solution does not effectively solve the problem. In these situations, it’s critical to be adaptable and flexible and to keep trying new solutions until you find the one that works best.

To summarise, effective problem solving is a critical skill that can assist individuals and organisations in overcoming challenges and achieving their objectives. Effective problem solving consists of four key steps: defining the problem, generating potential solutions, evaluating alternatives and selecting the best solution, and implementing the solution.

You can increase your chances of success in problem solving by following these steps and considering factors such as the pros and cons of each solution, their feasibility and practicability, and making any necessary adjustments. Furthermore, keep in mind that problem solving is an iterative process, and there may be times when you need to go back to the beginning and restart. Maintain your adaptability and try new solutions until you find the one that works best for you.

  • Novick, L.R. and Bassok, M., 2005.  Problem Solving . Cambridge University Press.

Was this helpful?

Picture of Daniel Croft

Daniel Croft

Hi im Daniel continuous improvement manager with a Black Belt in Lean Six Sigma and over 10 years of real-world experience across a range sectors, I have a passion for optimizing processes and creating a culture of efficiency. I wanted to create Learn Lean Siigma to be a platform dedicated to Lean Six Sigma and process improvement insights and provide all the guides, tools, techniques and templates I looked for in one place as someone new to the world of Lean Six Sigma and Continuous improvement.

Green Belt Exam - Feature Image - Learnleansigma

Preparation Strategies for the Green Belt Exam

What every lean six sigma green belt should know - feature image - Learnleansigma

What Every Lean Six Sigma Green Belt Should Know

Free lean six sigma templates.

Improve your Lean Six Sigma projects with our free templates. They're designed to make implementation and management easier, helping you achieve better results.

Practice Exams-Sidebar

Understanding Process Performance: Pp and Ppk

Understand Process Performance (Pp) and Process Performance Index (Ppk) to assess and improve manufacturing processes.…

LIFO or FIFO for Stock Management?

Choosing between LIFO and FIFO for stock management depends on factors like product nature, market…

Are There Any Official Standards for Six Sigma?

Are there any official standards for Six Sigma? While Six Sigma is a well-defined methodology…

5S Floor Marking Best Practices

In lean manufacturing, the 5S System is a foundational tool, involving the steps: Sort, Set…

How to Measure the ROI of Continuous Improvement Initiatives

When it comes to business, knowing the value you’re getting for your money is crucial,…

8D Problem-Solving: Common Mistakes to Avoid

In today’s competitive business landscape, effective problem-solving is the cornerstone of organizational success. The 8D…

Cart

  • SUGGESTED TOPICS
  • The Magazine
  • Newsletters
  • Managing Yourself
  • Managing Teams
  • Work-life Balance
  • The Big Idea
  • Data & Visuals
  • Reading Lists
  • Case Selections
  • HBR Learning
  • Topic Feeds
  • Account Settings
  • Email Preferences

Data-visuals-icon,

Data & Visuals

what is the last part of the problem solving process

Partner Center

Humor That Works

The 5 Steps of Problem Solving

5-steps-of-problem-solving-humor-that-works-3

Problem solving is a critical skill for success in business – in fact it’s often what you are hired and paid to do. This article explains the five problem solving steps and provides strategies on how to execute each one.

Defining Problem Solving

Before we talk about the stages of problem solving, it’s important to have a definition of what it is. Let’s look at the two roots of problem solving — problems and solutions.

Problem – a state of desire for reaching a definite goal from a present condition [1] Solution – the management of a problem in a way that successfully meets the goals set for treating it

[1] Problem solving on Wikipedia

One important call-out is the importance of having a goal. As defined above, the solution may not completely solve problem, but it does meet the goals you establish for treating it–you may not be able to completely resolve the problem (end world hunger), but you can have a goal to help it (reduce the number of starving children by 10%).

The Five Steps of Problem Solving

With that understanding of problem solving, let’s talk about the steps that can get you there. The five problem solving steps are shown in the chart below:

problem solving steps

However this chart as is a little misleading. Not all problems follow these steps linearly, especially for very challenging problems. Instead, you’ll likely move back and forth between the steps as you continue to work on the problem, as shown below:

problem solving steps iterative

Let’s explore of these steps in more detail, understanding what it is and the inputs and outputs of each phase.

1. Define the Problem

aka What are you trying to solve? In addition to getting clear on what the problem is, defining the problem also establishes a goal for what you want to achieve.

Input:  something is wrong or something could be improved. Output: a clear definition of the opportunity and a goal for fixing it.

2. Brainstorm Ideas

aka What are some ways to solve the problem? The goal is to create a list of possible solutions to choose from. The harder the problem, the more solutions you may need.

Input: a goal; research of the problem and possible solutions; imagination. Output: pick-list of possible solutions that would achieve the stated goal.

3. Decide on a Solution

aka What are you going to do? The ideal solution is effective (it will meet the goal), efficient (is affordable), and has the fewest side effects (limited consequences from implementation).

Input:  pick-list of possible solutions; decision-making criteria. Output: decision of what solution you will implement.

4. Implement the Solution

aka What are you doing? The implementation of a solution requires planning and execution. It’s often iterative, where the focus should be on short implementation cycles with testing and feedback, not trying to get it “perfect” the first time.

Input:  decision; planning; hard work. Output:  resolution to the problem.

5. Review the Results

aka What did you do? To know you successfully solved the problem, it’s important to review what worked, what didn’t and what impact the solution had. It also helps you improve long-term problem solving skills and keeps you from re-inventing the wheel.

Input:  resolutions; results of the implementation. Output: insights; case-studies; bullets on your resume.

Improving Problem Solving Skills

Once you understand the five steps of problem solving, you can build your skill level in each one. Often we’re naturally good at a couple of the phases and not as naturally good at others. Some people are great at generating ideas but struggle implementing them. Other people have great execution skills but can’t make decisions on which solutions to use. Knowing the different problem solving steps allows you to work on your weak areas, or team-up with someone who’s strengths complement yours.

Want to improve your problem solving skills? Want to perfect the art of problem solving?  Check out our training programs or try these 20 problem solving activities to improve creativity .

THIS FREE 129 SECOND QUIZ WILL SHOW YOU

what is your humor persona?

Humor is a skill that can be learned. And when used correctly, it is a superpower that can be your greatest asset for building a happier, healthier and more productive life.  See for yourself...

you might also be interested in...

what is the last part of the problem solving process

10 Frisson-Inducing Songs (And the Definition of Frisson)

Frisson is a word that comes from French meaning “a sudden, passing sensation of excitement; a shudder of emotion;” It […]

humor for climate workers

Humor for Climate Work

A few months after Pablo Suarez’s successful case study of humor for humanitarian work, he wanted to share the value […]

Researching Humor, An Interview with Vandād Pourbahrami

On this episode of Humor Talks, we interview Vandād Pourbahrami. Vandād is a humor researcher / consultant / facilitator for […]

22 thoughts on “The 5 Steps of Problem Solving”

what is the last part of the problem solving process

very helpful and informative training

what is the last part of the problem solving process

Thank you for the information

what is the last part of the problem solving process

YOU ARE AFOOL

what is the last part of the problem solving process

I’m writing my 7th edition of Effective Security Management. I would like to use your circular graphic illustration in a new chapter on problem solving. You’re welcome to phone me at — with attribution.

what is the last part of the problem solving process

Sure thing, shoot us an email at [email protected] .

what is the last part of the problem solving process

i love your presentation. It’s very clear. I think I would use it in teaching my class problem solving procedures. Thank you

what is the last part of the problem solving process

It is well defined steps, thank you.

what is the last part of the problem solving process

these step can you email them to me so I can print them out these steps are very helpful

what is the last part of the problem solving process

I like the content of this article, it is really helpful. I would like to know much on how PAID process (i.e. Problem statement, Analyze the problem, Identify likely causes, and Define the actual causes) works in Problem Solving.

what is the last part of the problem solving process

very useful information on problem solving process.Thank you for the update.

Pingback: Let’s Look at Work Is Working with the Environment | #EnviroSociety

what is the last part of the problem solving process

It makes sense that a business would want to have an effective problem solving strategy. Things could get bad if they can’t find solutions! I think one of the most important things about problem solving is communication.

what is the last part of the problem solving process

Well in our school teacher teach us –

1) problem ldentification 2) structuring the problem 3) looking for possible solutions 4) lmplementation 5) monitoring or seeking feedback 6) decision making

Pleace write about it …

what is the last part of the problem solving process

I teach Professional communication (Speech) and I find the 5 steps to problem solving as described here the best method. Your teacher actually uses 4 steps. The Feedback and decision making are follow up to the actual implementation and solving of the problem.

what is the last part of the problem solving process

i know the steps of doing some guideline for problem solving

what is the last part of the problem solving process

steps are very useful to solve my problem

what is the last part of the problem solving process

The steps given are very effective. Thank you for the wonderful presentation of the cycle/steps/procedure and their connections.

what is the last part of the problem solving process

I like the steps for problem solving

what is the last part of the problem solving process

It is very useful for solving difficult problem i would reccomend it to a friend

what is the last part of the problem solving process

this is very interesting because once u have learned you will always differentiate the right from the wrong.

what is the last part of the problem solving process

I like the contents of the problem solving steps. informative.

Leave a Comment Cancel Reply

Your email address will not be published. Required fields are marked *

Humor Persona - Template B2B

I make an effort to appreciate the humor of everyday life....

This question helps us further the advancement of humor research to make it more equitable.

Humor Persona - Main B2C

Building future workplaces

5 Simple Steps to Effective Problem Solving

5 Steps to Problem Solving

The ability to solve problems is a crucial skill in the modern workplace. It can make the difference between success and failure, and it can help you navigate the complexities of a fast-paced environment. But what exactly is effective problem solving? And how can you develop the skills needed to solve problems efficiently and effectively?

Effective problem solving involves several key steps that can help you identify the root cause of a problem, develop a plan of action, and implement that plan to achieve a successful outcome . Here are five simple steps you can take to develop your problem-solving skills and tackle any challenge that comes your way in the workplace.

Introduction

Have you ever found yourself in a situation where you’re faced with a workplace problem, and you’re not sure where to start? Whether it’s a customer complaint, a team conflict, or a project delay, it’s essential to address it promptly to maintain productivity and morale. In this article, we’ll provide practical steps that can help you effectively solve problems at your workplace.

what is the last part of the problem solving process

Step 1: Define the Problem

The first step in effective problem solving is to define the problem clearly. Take the time to analyze the issue and gather as much information as possible. It’s crucial to identify the cause of the problem and its impact on your team or organization. For example, if a team member is underperforming, it’s essential to understand the root cause of the issue and how it’s affecting the team’s productivity. Is it a lack of training, motivation, or resources? Are there external factors, such as personal issues or workload, that are affecting their performance?

Once you have a clear understanding of the problem, you can begin to develop a plan of action to address it. It’s important to involve all stakeholders in this process, including those who are directly affected by the problem, to ensure that you have a complete picture of the situation. Involving others in the process can also help you gain different perspectives and insights, which can be valuable in developing an effective solution.

Step 2: Brainstorm Possible Solutions

After identifying the problem, the next step is to brainstorm possible solutions. It’s important to be creative and come up with as many solutions as possible, even if they seem unrealistic or impractical. Brainstorming can be done individually or in a group setting, where team members can bounce ideas off each other. In a group setting, it’s important to create an open and safe environment where everyone feels comfortable sharing their ideas. Remember to focus on generating ideas, without evaluating or criticizing them during the brainstorming session.

Once you have a list of possible solutions, evaluate each one based on their feasibility, potential impact, and costs. It’s important to consider the pros and cons of each solution before selecting the most appropriate one. Keep in mind that the solution may not be perfect, but it should be the best one available given the resources and constraints. By considering different options, you can increase the chances of finding an effective solution that addresses the problem.

Step 3: Evaluate the Solutions

When evaluating the solutions, it’s important to keep an open mind and consider different perspectives. Seek feedback from other team members or colleagues who may have a different point of view. It’s also important to consider the long-term effects of each solution, rather than just the immediate impact. For instance, while changing the project scope may seem like a quick fix to a delayed project, it could cause further delays or even impact the project’s success in the long run.

During the evaluation process, it’s essential to prioritize solutions based on their impact on the problem and their feasibility. Consider the resources, time, and effort required to implement each solution. Some solutions may be quick fixes that can be implemented immediately, while others may require more planning and preparation. It’s important to choose a solution that addresses the problem effectively while also being feasible to implement within the given resources and timeframe.

It’s also important to remember that not all solutions may work as expected. Be prepared to modify or pivot to a different solution if the initial solution does not yield the desired results. Additionally, ensure that the chosen solution aligns with the company’s policies and values and does not violate any ethical standards.

Step 4: Implement the Solution

Implementing the chosen solution requires careful planning and execution. The team needs to work together to ensure that the solution is implemented smoothly and efficiently. The plan should include a timeline, specific tasks, and deadlines. Assigning roles and responsibilities to each team member is crucial to ensure that everyone understands their role in the implementation process.

Effective communication is also essential during the implementation phase. The team should communicate regularly to discuss progress, identify any obstacles, and adjust the plan if necessary. For example, if the team decides to implement a new customer service strategy, they should train the customer service team, provide them with the necessary tools, and communicate the new strategy to customers.

It’s also important to track the progress of the implementation to ensure that everything is on track. Regular check-ins can help identify any problems early on and provide an opportunity to address them before they become bigger issues.

Step 5: Monitor and Adjust

Monitoring and adjusting the solution is crucial in ensuring that the problem is fully resolved. It’s essential to track the progress of the solution and evaluate its effectiveness. If the solution is not working as planned, it’s important to adjust it accordingly. This step requires flexibility and open communication among team members.

For example, if the team decided to adjust the project timeline, they should monitor the progress regularly and make adjustments if necessary. They should also communicate any changes to the stakeholders involved in the project. If the new timeline is not working, the team should be open to making further adjustments, such as revising the project scope or adding more resources.

Feedback plays a vital role in this step. It’s important to gather feedback from team members and stakeholders to ensure that the solution is meeting their needs. Feedback can also help identify any potential issues that may arise and allow the team to address them promptly.

Learning from mistakes is also an important aspect of effective problem solving. Every problem presents an opportunity to learn and grow. By reflecting on the process and the outcome, team members can identify areas for improvement and apply them in future problem-solving situations.

So, there you have it – a five-step process to solve any workplace problem like a pro! Whether it’s a pesky customer complaint, a tricky team conflict, or a stubborn project delay, you can tackle it with ease.

Remember, the first step is to define the problem – analyze it, gather information, and understand the root cause. Next, brainstorm possible solutions, even if they seem unrealistic or impractical. Get creative and come up with as many solutions as possible!

After that, evaluate the solutions by identifying their pros and cons, and choose the one that’s most feasible and practical. Make sure to consider the potential risks and benefits of each solution. Then, it’s time to implement the most practical solution. Develop a plan, communicate it to everyone involved, and assign roles and responsibilities.

Last but not least, monitor the progress and adjust the solution if necessary. Keep track of the progress and be open to feedback. Remember, learning from your mistakes is the key to success!

So, the next time you face a workplace problem, take a deep breath and follow these simple steps. You’ll be able to find a solution that works for everyone and become a valuable asset to your team or organization. With effective problem solving skills, you can maintain productivity, boost morale, and achieve success!

  • DISC Certification
  • Emotional Intelligence Using DISC
  • DISC Insights for First-Time Managers
  • Team Building Using DISC
  • Sales Training with DISC
  • DISC for Customer Service
  • Conflict Management Using DISC
  • Communication Skills Using DISC
  • Vision Mission Values Workshop
  • Competency Mapping
  • Agile Culture
  • Micro Learning Labs™
  • Coaching Skills For Managers
  • BEI Certification Program
  • Design Thinking Certification
  • Synergogy Blog
  • Leadership Immersion Retreat

what is the last part of the problem solving process

problem-solving

What Is Problem-Solving? How to Use Problem-Solving Skills to Resolve Issues

Great businesses don’t exist to simply grow and make money. Instead, they solve the world’s problems , from tiny issues to giant dilemmas. Problem-solving is essentially the main function of organizations. An effective organization will have systems and processes in place to reach their goals and solve problems. If a company has team members and leaders who have poor problem-solving skills, that means they’re ineffective at one of the core functions of a business.

What Is Problem-Solving?

What is the general process of problem-solving, 1. define the problem, 2. brainstorm possible solutions, 3. research several options.

After you’ve come up with several possible alternative solutions, pick two or three that seem the most promising using your analytical skills. Then you’ll need to buckle down and do some research to see which one to pursue. Conduct your research using primary and secondary resources.

4. Select a Solution

In order to make the most objective decision:

5. Develop an Action Plan

When the right choice is made, and the solution is placed into the overall strategy, start developing an action plan . Lay out the “who,” “what,” “when,” “why,” and “how.” Visualize exactly what success looks like with this new plan. When working through the problem-solving process, write all the details down. This helps leaders construct action items and delegate them accordingly. Never leave this part of the process empty-handed. Your team needs a clear picture of expectations so they can properly implement the solution. And if everything works, you can use this problem-solving model in the future.

The Best Problem-Solving Strategies and Tools

One of the best ways to discover the root cause of a problem is by utilizing the 5 Whys method. This strategy was developed by Sakichi Toyoda, founder of Toyota Industries. It’s as simple as it sounds. When a problem occurs, ask why it happened five times. In theory, the last answer should get to the heart of the issue.

First Principles Thinking

When one engages in first principles thinking , they end up questioning what everyone just assumes to be true. It effectively removes those assumptions , breaking things down into their most basic elements that are probably true. It’s all about getting to that core foundation of truth and building out from there. Problem-solving skills should always include first principles thinking.

Steve Jobs’ Problem-Solving Method

What to do when a problem feels too big to solve.

Tackling a problem that feels too big to solve requires a can-do, positive mindset. In order to improve your problem-solving, you’ll need to take remember these steps. Imagine what is possible instead of focusing on what seems impossible. As you do so, you’ll become skilled in solving all sorts of problems while also improving your decision-making.

what is the last part of the problem solving process

The Five-Step Problem-Solving Process

Sometimes when you’re faced with a complex problem, it’s best to pause and take a step back. A break from…

The Five Step Problem Solving Process

Sometimes when you’re faced with a complex problem, it’s best to pause and take a step back. A break from routine will help you think creatively and objectively. Doing too much at the same time increases the chances of burnout.

Solving problems is easier when you align your thoughts with your actions. If you’re in multiple places at once mentally, you’re more likely to get overwhelmed under pressure. So, a problem-solving process follows specific steps to make it approachable and straightforward. This includes breaking down complex problems, understanding what you want to achieve, and allocating responsibilities to different people to ease some of the pressure.

The problem-solving process will help you measure your progress against factors like budget, timelines and deliverables. The point is to get the key stakeholders on the same page about the ‘what’, ‘why’ and ‘how’ of the process. ( Xanax ) Let’s discuss the five-step problem-solving process that you can adopt.

Problems at a workplace need not necessarily be situations that have a negative impact, such as a product failure or a change in government policy. Making a decision to alter the way your team works may also be a problem. Launching new products, technological upgrades, customer feedback collection exercises—all of these are also “problems” that need to be “solved”.

Here are the steps of a problem-solving process:

1. Defining the Problem

The first step in the process is often overlooked. To define the problem is to understand what it is that you’re solving for. This is also where you outline and write down your purpose—what you want to achieve and why. Making sure you know what the problem is can make it easier to follow up with the remaining steps. This will also help you identify which part of the problem needs more attention than others.

2. Analyzing the Problem

Analyze why the problem occurred and go deeper to understand the existing situation.  If it’s a product that has malfunctioned, assess factors like raw material, assembly line, and people involved to identify the problem areas. This will help you figure out if the problem will persist or recur. You can measure the solution against existing factors to assess its future viability.

3. Weighing the Options

Once you’ve figured out what the problem is and why it occurred, you can move on to generating multiple options as solutions. You can combine your existing knowledge with research and data to come up with viable and effective solutions. Thinking objectively and getting inputs from those involved in the process will broaden your perspective of the problem. You’ll be able to come up with better options if you’re open to ideas other than your own.

4. Implementing The Best Solution

Implementation will depend on the type of data at hand and other variables. Consider the big picture when you’re selecting the best option. Look at factors like how the solution will impact your budget, how soon you can implement it, and whether it can withstand setbacks or failures. If you need to make any tweaks or upgrades, make them happen in this stage.

5. Monitoring Progress

The problem-solving process doesn’t end at implementation. It requires constant monitoring to watch out for recurrences and relapses. It’s possible that something doesn’t work out as expected on implementation. To ensure the process functions smoothly, you can make changes as soon as you catch a miscalculation. Always stay on top of things by monitoring how far you’ve come and how much farther you have to go.

You can learn to solve any problem—big or small—with experience and patience. Adopt an impartial and analytical approach that has room for multiple perspectives. In the workplace, you’re often faced with situations like an unexpected system failure or a key employee quitting in the middle of a crucial project.

Problem-solving skills will help you face these situations head-on. Harappa Education’s Structuring Problems course will show you how to classify and categorize problems to discover effective solutions. Equipping yourself with the right knowledge will help you navigate work-related problems in a calm and competent manner.

Explore topics such as  Problem Solving , the  PICK Chart ,  How to Solve Problems  & the  Barriers to Problem Solving  from our Harappa Diaries blog section and develop your skills.

Thriversitybannersidenav

Salene M. W. Jones Ph.D.

Cognitive Behavioral Therapy

Solving problems the cognitive-behavioral way, problem solving is another part of behavioral therapy..

Posted February 2, 2022 | Reviewed by Ekua Hagan

  • What Is Cognitive Behavioral Therapy?
  • Take our Your Mental Health Today Test
  • Find a therapist who practices CBT
  • Problem-solving is one technique used on the behavioral side of cognitive-behavioral therapy.
  • The problem-solving technique is an iterative, five-step process that requires one to identify the problem and test different solutions.
  • The technique differs from ad-hoc problem-solving in its suspension of judgment and evaluation of each solution.

As I have mentioned in previous posts, cognitive behavioral therapy is more than challenging negative, automatic thoughts. There is a whole behavioral piece of this therapy that focuses on what people do and how to change their actions to support their mental health. In this post, I’ll talk about the problem-solving technique from cognitive behavioral therapy and what makes it unique.

The problem-solving technique

While there are many different variations of this technique, I am going to describe the version I typically use, and which includes the main components of the technique:

The first step is to clearly define the problem. Sometimes, this includes answering a series of questions to make sure the problem is described in detail. Sometimes, the client is able to define the problem pretty clearly on their own. Sometimes, a discussion is needed to clearly outline the problem.

The next step is generating solutions without judgment. The "without judgment" part is crucial: Often when people are solving problems on their own, they will reject each potential solution as soon as they or someone else suggests it. This can lead to feeling helpless and also discarding solutions that would work.

The third step is evaluating the advantages and disadvantages of each solution. This is the step where judgment comes back.

Fourth, the client picks the most feasible solution that is most likely to work and they try it out.

The fifth step is evaluating whether the chosen solution worked, and if not, going back to step two or three to find another option. For step five, enough time has to pass for the solution to have made a difference.

This process is iterative, meaning the client and therapist always go back to the beginning to make sure the problem is resolved and if not, identify what needs to change.

Andrey Burmakin/Shutterstock

Advantages of the problem-solving technique

The problem-solving technique might differ from ad hoc problem-solving in several ways. The most obvious is the suspension of judgment when coming up with solutions. We sometimes need to withhold judgment and see the solution (or problem) from a different perspective. Deliberately deciding not to judge solutions until later can help trigger that mindset change.

Another difference is the explicit evaluation of whether the solution worked. When people usually try to solve problems, they don’t go back and check whether the solution worked. It’s only if something goes very wrong that they try again. The problem-solving technique specifically includes evaluating the solution.

Lastly, the problem-solving technique starts with a specific definition of the problem instead of just jumping to solutions. To figure out where you are going, you have to know where you are.

One benefit of the cognitive behavioral therapy approach is the behavioral side. The behavioral part of therapy is a wide umbrella that includes problem-solving techniques among other techniques. Accessing multiple techniques means one is more likely to address the client’s main concern.

Salene M. W. Jones Ph.D.

Salene M. W. Jones, Ph.D., is a clinical psychologist in Washington State.

  • Find a Therapist
  • Find a Treatment Center
  • Find a Psychiatrist
  • Find a Support Group
  • Find Online Therapy
  • United States
  • Brooklyn, NY
  • Chicago, IL
  • Houston, TX
  • Los Angeles, CA
  • New York, NY
  • Portland, OR
  • San Diego, CA
  • San Francisco, CA
  • Seattle, WA
  • Washington, DC
  • Asperger's
  • Bipolar Disorder
  • Chronic Pain
  • Eating Disorders
  • Passive Aggression
  • Personality
  • Goal Setting
  • Positive Psychology
  • Stopping Smoking
  • Low Sexual Desire
  • Relationships
  • Child Development
  • Self Tests NEW
  • Therapy Center
  • Diagnosis Dictionary
  • Types of Therapy

July 2024 magazine cover

Sticking up for yourself is no easy task. But there are concrete skills you can use to hone your assertiveness and advocate for yourself.

  • Emotional Intelligence
  • Gaslighting
  • Affective Forecasting
  • Neuroscience

Calculate for all schools

Your chance of acceptance, your chancing factors, extracurriculars, camp teacher programs for high school students.

Hi, I'm a high schooler exploring my options and I've come across this topic of camp teacher programs for students. Could anyone shed some light on what these programs are like? More specifically, do they provide any benefits or experiences that universities look favorably upon during admissions?

Camp teaching programs for high school students typically involve students working at summer camps, often in positions that allow them to teach or lead activities for younger students. This could be in various fields, depending on the nature of the camp – from nature camps to coding camps, to art or theater camps.

Like any extracurricular, being a camp counselor can be viewed in a positive light by universities, especially if you demonstrate significant responsibility, leadership, or expertise in a particular area. For instance, if you're teaching coding to kids at a camp, it can demonstrate your proficiency in computer science which would be especially relevant if you're applying for a related major.

You would be looked upon as someone capable of mentoring and leading others, which is always a plus. Moreover, being a part of such a program can also demonstrate skills such as teamwork, communication, problem-solving, and initiative.

For instance, if you happen to work in a theater camp and directed a play or ran a workshop, it shows leadership and creativity that would definitely stand out in your application.

Also, if you can correlate your experience to your essay topics or in relation to your chosen major or career path, it can create a compelling narrative and show a depth of interest in your field.

To maximize this experience, my advice is that you don't just participate, but also strive to take on leadership roles or projects within these camps, and remember to reflect on these experiences and include them in your essays.

In sum, while being a camp teacher is an excellent way to gain valuable experiences and skills, what will truly set you apart in the admission process is how you use this opportunity to demonstrate your passion, dedication, leadership skills, and growth in an area that aligns with your goals and the profile the college is looking for. In the tier-based extracurriculars system used by colleges, this may fall into Tier 3 or Tier 2, highlighting interests and showcasing some form of leadership respectively.

About CollegeVine’s Expert FAQ

CollegeVine’s Q&A seeks to offer informed perspectives on commonly asked admissions questions. Every answer is refined and validated by our team of admissions experts to ensure it resonates with trusted knowledge in the field.

NASA Logo

Suggested Searches

  • Climate Change
  • Expedition 64
  • Mars perseverance
  • SpaceX Crew-2
  • International Space Station
  • View All Topics A-Z

Humans in Space

Earth & climate, the solar system, the universe, aeronautics, learning resources, news & events.

Hubble Zooms into the Rosy Tendrils of Andromeda

Hubble Zooms into the Rosy Tendrils of Andromeda

NASA’s Near-Earth Object Surveyor shows a reflection of principal optical engineer Brian Monacelli

Work Is Under Way on NASA’s Next-Generation Asteroid Hunter

Galaxy Illustration

NASA’s Roman Space Telescope to Investigate Galactic Fossils

  • Search All NASA Missions
  • A to Z List of Missions
  • Upcoming Launches and Landings
  • Spaceships and Rockets
  • Communicating with Missions
  • James Webb Space Telescope
  • Hubble Space Telescope
  • Why Go to Space
  • Commercial Space
  • Destinations
  • Living in Space
  • Explore Earth Science
  • Earth, Our Planet
  • Earth Science in Action
  • Earth Multimedia
  • Earth Science Researchers
  • Pluto & Dwarf Planets
  • Asteroids, Comets & Meteors
  • The Kuiper Belt
  • The Oort Cloud
  • Skywatching
  • The Search for Life in the Universe
  • Black Holes
  • The Big Bang
  • Dark Energy & Dark Matter
  • Earth Science
  • Planetary Science
  • Astrophysics & Space Science
  • The Sun & Heliophysics
  • Biological & Physical Sciences
  • Lunar Science
  • Citizen Science
  • Astromaterials
  • Aeronautics Research
  • Human Space Travel Research
  • Science in the Air
  • NASA Aircraft
  • Flight Innovation
  • Supersonic Flight
  • Air Traffic Solutions
  • Green Aviation Tech
  • Drones & You
  • Technology Transfer & Spinoffs
  • Space Travel Technology
  • Technology Living in Space
  • Manufacturing and Materials
  • Science Instruments
  • For Kids and Students
  • For Educators
  • For Colleges and Universities
  • For Professionals
  • Science for Everyone
  • Requests for Exhibits, Artifacts, or Speakers
  • STEM Engagement at NASA
  • NASA's Impacts
  • Centers and Facilities
  • Directorates
  • Organizations
  • People of NASA
  • Internships
  • Our History
  • Doing Business with NASA
  • Get Involved

NASA en Español

  • Aeronáutica
  • Ciencias Terrestres
  • Sistema Solar
  • All NASA News
  • Video Series on NASA+
  • Newsletters
  • Social Media
  • Media Resources
  • Upcoming Launches & Landings
  • Virtual Guest Program
  • Image of the Day
  • Sounds and Ringtones
  • Interactives
  • STEM Multimedia

NASA’s Europa Clipper

NASA’s Europa Clipper Gets Set of Super-Size Solar Arrays

Boeing's Starliner spacecraft that launched NASA's Crew Flight Test astronauts Butch Wilmore and Suni Williams to the International Space Station is pictured docked to the Harmony module's forward port. This view is from a window on the SpaceX Dragon Endeavour spacecraft docked to the port adjacent to the Starliner.

FAQ: NASA’s Boeing Crew Flight Test Return Status

Technicians are building tooling in High Bay 2 at NASA Kennedy that will allow NASA and Boeing, the SLS core stage lead contractor, to vertically integrate the core stage.

NASA, Boeing Optimizing Vehicle Assembly Building High Bay for Future SLS Stage Production

what is the last part of the problem solving process

NASA Seeks Input for Astrobee Free-flying Space Robots

The crew of the Human Exploration Research Analog’s Campaign 7 Mission 1 clasp hands above their simulated space habitat’s elevator shaft.

NASA Funds Studies to Support Crew Performance on Long-Duration Missions

A prototype of a robot built to access underwater areas where Antarctic ice shelves meet land is lowered through the ice during a field test north of Alaska in March.

NASA JPL Developing Underwater Robots to Venture Deep Below Polar Ice

Long golden tendrils of a soft coral drift toward the camera, surrounded by purple sea fans. These sea fans, many slightly larger than a dinner plate, are rounded and so flat they are almost two dimensional. The corals sit on a reef surrounded by vibrant blue water, and are tall enough to almost touch the ocean surface just above them.

NASA Project in Puerto Rico Trains Students in Marine Biology

NASA Discovers a Long-Sought Global Electric Field on Earth

NASA Discovers a Long-Sought Global Electric Field on Earth

NASA, ESA Missions Help Scientists Uncover How Solar Wind Gets Energy

NASA, ESA Missions Help Scientists Uncover How Solar Wind Gets Energy

September’s Night Sky Notes: Marvelous Moons

September’s Night Sky Notes: Marvelous Moons

Rob Zellem speaking into a microphone

Amendment 45: New Opportunity: A.60 Ecological Conservation

A white Gulfstream IV airplane flies to the left of the frame over a tan desert landscape below and blue mountain ranges in the back of the image. The plane’s tail features the NASA logo, and its wings have winglets. Visible in the lower right third of the image, directly behind the airplane’s wingtip is the Mojave Air and Space Port in Mojave, California. 

NASA G-IV Plane Will Carry Next-Generation Science Instrument

A white helicopter with blue stripe and NASA logo sits inside of an aircraft hangar with grey cement floors and white roofing with metal beams. The helicopter has four grey blades and has a black base. A white cube is attached to the black base and holds wires and cameras. No one sits inside the helicopter, but the door is open, and a grey seat is shown along with four black, tinted windows. There is an American flag on the helicopter’s tail.

NASA Develops Pod to Help Autonomous Aircraft Operators 

Automated fiber placement machine on an industrial robot

NASA Composite Manufacturing Initiative Gains Two New Members

First NASA-Supported Researcher to Fly on Suborbital Rocket in reclined chair handles tubes attached to his thighs while woman watches.

First NASA-Supported Researcher to Fly on Suborbital Rocket

Madyson Knox experiments with UV-sensitive beads.

How Do I Navigate NASA Learning Resources and Opportunities?

Aaron Vigil stands in front of spacecraft hardware in the Goddard cleanroom. He wears a full cleanroom suit.

Aaron Vigil Helps Give SASS to Roman Space Telescope

Portrait (1785) of William Herschel by Lemuel Francis Abbott

235 Years Ago: Herschel Discovers Saturn’s Moon Enceladus

Preguntas frecuentes: estado del retorno de la prueba de vuelo tripulado boeing de la nasa.

NASA Astronaut Official Portrait Frank Rubio

Astronauta de la NASA Frank Rubio

2021 Astronaut Candidates Stand in Recognition

Diez maneras en que los estudiantes pueden prepararse para ser astronautas

Nasa decides to bring starliner spacecraft back to earth without crew .

The headshot image of Jessica Taveau

Jessica Taveau

Nasa headquarters.

A group of NASA leaders sit at a table to conduct a live news conference at NASA Johnson.

NASA will return Boeing’s Starliner to Earth without astronauts Butch Wilmore and Suni Williams aboard the spacecraft, the agency announced Saturday. The uncrewed return allows NASA and Boeing to continue gathering testing data on Starliner during its upcoming flight home, while also not accepting more risk than necessary for its crew.

Wilmore and Williams, who flew to the International Space Station in June aboard NASA’s Boeing Crew Flight Test, have been busy supporting station research, maintenance, and Starliner system testing and data analysis, among other activities.

“Spaceflight is risky, even at its safest and most routine. A test flight, by nature, is neither safe, nor routine. The decision to keep Butch and Suni aboard the International Space Station and bring Boeing’s Starliner home uncrewed is the result of our commitment to safety: our core value and our North Star,” said NASA Administrator Bill Nelson. “I’m grateful to both the NASA and Boeing teams for all their incredible and detailed work.”

Wilmore and Williams will continue their work formally as part of the Expedition 71/72 crew through February 2025. They will fly home aboard a Dragon spacecraft with two other crew members assigned to the agency’s SpaceX Crew-9 mission. Starliner is expected to depart from the space station and make a safe, controlled autonomous re-entry and landing in early September.

NASA and Boeing identified helium leaks and experienced issues with the spacecraft reaction control thrusters on June 6 as Starliner approached the space station. Since then, engineering teams have completed a significant amount of work , including reviewing a collection of data, conducting flight and ground testing, hosting independent reviews with agency propulsion experts, and developing various return contingency plans. The uncertainty and lack of expert concurrence does not meet the agency’s safety and performance requirements for human spaceflight, thus prompting NASA leadership to move the astronauts to the Crew-9 mission.

“Decisions like this are never easy, but I want to commend our NASA and Boeing teams for their thorough analysis, transparent discussions, and focus on safety during the Crew Flight Test,” said Ken Bowersox, associate administrator for NASA’s Space Operations Mission Directorate. “We’ve learned a lot about the spacecraft during its journey to the station and its docked operations. We also will continue to gather more data about Starliner during the uncrewed return and improve the system for future flights to the space station.”

NASA's Boeing Crew Flight Test astronauts (from top) Butch Wilmore and Suni Williams pose on June 13, 2024 for a portrait inside the vestibule between the forward port on the International Space Station's Harmony module and Boeing's Starliner spacecraft.

Starliner is designed to operate autonomously and previously completed two uncrewed flights. NASA and Boeing will work together to adjust end-of-mission planning and Starliner’s systems to set up for the uncrewed return in the coming weeks. Starliner must return to Earth before the Crew-9 mission launches to ensure a docking port is available on station.

“Starliner is a very capable spacecraft and, ultimately, this comes down to needing a higher level of certainty to perform a crewed return,” said Steve Stich, manager of NASA’s Commercial Crew Program. “The NASA and Boeing teams have completed a tremendous amount of testing and analysis, and this flight test is providing critical information on Starliner’s performance in space. Our efforts will help prepare for the uncrewed return and will greatly benefit future corrective actions for the spacecraft.”

NASA’s Commercial Crew Program requires spacecraft fly a crewed test flight to prove the system is ready for regular flights to and from the space station. Following Starliner’s return, the agency will review all mission-related data to inform what additional actions are required to meet NASA’s certification requirements.

The agency’s SpaceX Crew-9 mission, originally slated with four crew members , will launch no earlier than Tuesday, Sept. 24. The agency will share more information about the Crew-9 complement when details are finalized. 

NASA and SpaceX currently are working several items before launch, including reconfiguring seats on the Crew-9 Dragon, and adjusting the manifest to carry additional cargo, personal effects, and Dragon-specific spacesuits for Wilmore and Williams. In addition, NASA and SpaceX now will use new facilities at Space Launch Complex-40 at Cape Canaveral Space Force Station in Florida to launch Crew-9, which provides increased operational flexibility around NASA’s planned Europa Clipper launch.

The Crew-9 mission will be the ninth rotational mission to the space station under NASA’s Commercial Crew Program, which works with the American aerospace industry to meet the goal of safe, reliable, and cost-effective transportation to and from the orbital outpost on American-made rockets and spacecraft launching from American soil.

For more than two decades, people have lived and worked continuously aboard the International Space Station, advancing scientific knowledge and demonstrating new technologies, making research breakthroughs not possible on Earth. The station is a critical testbed for NASA to understand and overcome the challenges of long-duration spaceflight and to expand commercial opportunities in low Earth orbit. As commercial companies focus on providing human space transportation services and destinations as part of a robust low Earth orbit economy , NASA’s Artemis campaign is underway at the Moon where the agency is preparing for future human exploration of Mars.

Find more information on NASA’s Commercial Crew Program at:

https://www.nasa.gov/commercialcrew

-end- 

Meira Bernstein / Josh Finch Headquarters, Washington 202-358-1100 [email protected] / [email protected]

Steve Siceloff / Danielle Sempsrott / Stephanie Plucinsky Kennedy Space Center, Florida 321-867-2468 [email protected] / [email protected] / [email protected]

Leah Cheshier / Sandra Jones Johnson Space Center, Houston 281-483-5111 [email protected] / [email protected]

Related Terms

  • International Space Station (ISS)
  • Commercial Crew
  • Kennedy Space Center

COMMENTS

  1. THE PROBLEM-SOLVING PROCESS Flashcards

    Problem solving, and the techniques used to gain clarity, are most effective if the solution remains in place and is updated to respond to future changes. Study with Quizlet and memorize flashcards containing terms like Problem solving, The problem solving process, Step 1: Define the Problem and more.

  2. The Problem-Solving Process

    Problem-solving is a mental process that involves discovering, analyzing, and solving problems. The ultimate goal of problem-solving is to overcome obstacles and find a solution that best resolves the issue. The best strategy for solving a problem depends largely on the unique situation. In some cases, people are better off learning everything ...

  3. What is Problem Solving? (Steps, Techniques, Examples)

    The problem-solving process typically includes the following steps: Identify the issue: Recognize the problem that needs to be solved. Analyze the situation: Examine the issue in depth, gather all relevant information, and consider any limitations or constraints that may be present. Generate potential solutions: Brainstorm a list of possible ...

  4. What is Problem Solving? Steps, Process & Techniques

    1. Define the problem. Diagnose the situation so that your focus is on the problem, not just its symptoms. Helpful problem-solving techniques include using flowcharts to identify the expected steps of a process and cause-and-effect diagrams to define and analyze root causes.. The sections below help explain key problem-solving steps.

  5. The Problem-Solving Process

    Problem-solving is an important part of planning and decision-making. The process has much in common with the decision-making process, and in the case of complex decisions, can form part of the process itself. We face and solve problems every day, in a variety of guises and of differing complexity. Some, such as the resolution of a serious ...

  6. The 5 steps of the solving problem process

    The problem solving process typically includes: Pinpointing what's broken by gathering data and consulting with team members. Figuring out why it's not working by mapping out and troubleshooting the problem. Deciding on the most effective way to fix it by brainstorming and then implementing a solution. While skills like active listening ...

  7. How to master the seven-step problem-solving process

    Iterative problem solving is a critical part of this. Sometimes, people think work planning sounds dull, but it isn't. It's how we know what's expected of us and when we need to deliver it and how we're progressing toward the answer. ... Hugo Sarrazin: At every step of the process. In the problem definition, when you're defining the ...

  8. Problem-Solving Strategies and Obstacles

    Problem-solving is a vital skill for coping with various challenges in life. This webpage explains the different strategies and obstacles that can affect how you solve problems, and offers tips on how to improve your problem-solving skills. Learn how to identify, analyze, and overcome problems with Verywell Mind.

  9. What Is Problem-Solving? Steps, Processes, Exercises to do it Right

    There's a 5-step process that you can follow that will allow you to solve your challenges more efficiently and effectively. In short, you need to move through these 5 steps: Defining a problem. Ideating on a solution. Committing to a course of action. Implementing your solution. And finally - analyzing the results.

  10. The Ultimate Problem-Solving Process Guide: 31 Steps & Resources

    Then this method delves into the following stages: Discovery (fact-finding) Dream (visioning the future) Design (strategic purpose) Destiny (continuous improvement) 3. "FIVE WHYS" METHOD. This method simply suggests that we ask "Why" at least five times during our review of the problem and in search of a fix.

  11. The 5 phases of problem solving

    Many times that means stopping looking outside for the culprits and searching within, wondering why a situation is particularly bothering or hindering us. 2. Understand the problem. Many times the problem brings with it the seed of the solution. So one of the steps in solving a problem is making sure we understand it.

  12. The Art of Effective Problem Solving: A Step-by-Step Guide

    Step 1 - Define the Problem. The definition of the problem is the first step in effective problem solving. This may appear to be a simple task, but it is actually quite difficult. This is because problems are frequently complex and multi-layered, making it easy to confuse symptoms with the underlying cause.

  13. Polya's Problem Solving Process

    Polya's four step method for problem solving is. 1) Understand the Problem-Make sure you understand what the question is asking and what information will be used to solve the problem. 2) Devise a ...

  14. PDF The 4-Step Problem-Solving Process

    The 4-Step Problem-Solving Process. This document is the third in a series intended to help school and district leaders maximize the effectiveness and fluidity of their multi-tiered system of supports (MTSS) across different learning environments. Specifically, the document is designed to support the use of problem solving to improve outcomes ...

  15. The 5 Stages of Problem-Solving

    Find new ideas and classic advice on strategy, innovation and leadership, for global leaders from the world's best business and management experts.

  16. The 5 Steps of Problem Solving

    The implementation of a solution requires planning and execution. It's often iterative, where the focus should be on short implementation cycles with testing and feedback, not trying to get it "perfect" the first time. Input: decision; planning; hard work. Output: resolution to the problem. 5.

  17. What is 8D? Eight Disciplines Problem Solving Process

    The eight disciplines (8D) model is a problem solving approach typically employed by quality engineers or other professionals, and is most commonly used by the automotive industry but has also been successfully applied in healthcare, retail, finance, government, and manufacturing. The purpose of the 8D methodology is to identify, correct, and ...

  18. Effective Problem Solving in 5 Simple Steps by Synergogy

    The first step in effective problem solving is to define the problem clearly. Take the time to analyze the issue and gather as much information as possible. It's crucial to identify the cause of the problem and its impact on your team or organization. For example, if a team member is underperforming, it's essential to understand the root ...

  19. What Is Problem-Solving? How to Use Problem-Solving Skills to Resolve

    The key to cultivating excellent problem-solving skills is having a distinct process designed to produce solutions. While it may seem like problem-solving involves a complex strategy, it features several steps that are easy to follow. The following steps represent a general problem-solving process you can use when you need to find a solution. 1.

  20. 5 Step Problem Solving Process

    The problem-solving process will help you measure your progress against factors like budget, timelines and deliverables. The point is to get the key stakeholders on the same page about the 'what', 'why' and 'how' of the process. ... This will also help you identify which part of the problem needs more attention than others. 2 ...

  21. Solving Problems the Cognitive-Behavioral Way

    Problem-solving is one technique used on the behavioral side of cognitive-behavioral therapy. The problem-solving technique is an iterative, five-step process that requires one to identify the ...

  22. Rapid Problem-Solving Process

    What is a best practice when meeting with management to develop a plan of action to solve a complex customer concern? -Research all pertinent data before the meeting. -Set a time for follow-up after the issue is addressed. -Develop one or more courses of action before the meeting. -Provide solutions and ask for the manager's feedback.

  23. The Problem Solving Process

    The Problem Solving Process was developed to make the perception-action cycle easier to bring into the classroom. It was designed to support teachers as facilitators and students as authors of their own ideas and sense-makers of mathematics. One area where you can see the Problem Solving Process in action is during a Puzzle Talk.

  24. Camp Teacher Programs for High School Students?

    Moreover, being a part of such a program can also demonstrate skills such as teamwork, communication, problem-solving, and initiative. For instance, if you happen to work in a theater camp and directed a play or ran a workshop, it shows leadership and creativity that would definitely stand out in your application.

  25. NASA Decides to Bring Starliner Spacecraft Back to Earth Without Crew

    NASA will return Boeing's Starliner to Earth without astronauts Butch Wilmore and Suni Williams aboard the spacecraft, the agency announced Saturday. The uncrewed return allows NASA and Boeing to continue gathering testing data on Starliner during its upcoming flight home, while also not accepting more risk than necessary for its crew.