Essay on Prevention of Global Warming for Students and Children

500 words essay on prevention of global warming.

Global warming is a term you must have heard by now as it is very prevalent in today’s world. Moreover, it has become a very dangerous environmental issue which we must resolve as soon as possible. If we do not prevent it now, soon we will find it hard to survive on this planet.

essay on prevention of global warming

Every person needs to contribute equally to help prevent global warming. Similarly, we must identify the causes that are contributing to this dangerous phenomenon and work hard to find solutions. Furthermore, we must immediately put a halt to all those activities which are causing global warming .

Causes of Global Warming

There are many activities through which global warming is happening. Mostly human activities are contributing to this damaging phenomenon. The carbon dioxide levels are increasing in the air which is causing global warming. Moreover, the increase in greenhouse gases is also contributing to this phenomenon.

Furthermore, the usages of hot water for various purposes like bathing, cleaning and more release gases contribute to it. After that, when we make use of ordinary bulbs instead of LED lights, we contribute majorly to global warming. Similarly, the way people leave their electronic devices unattended when not in use also plays a big role.

Most importantly, deforestation and cutting plants everywhere just make it worse for our planet. The way we burn wood and fossil fuels only makes the condition of global warming worse. Similarly, when we use too much of automobiles that release harmful toxins in the air, the temperature of earth increases and causes global warming. In order to prevent global warming, we must adopt an eco-friendly lifestyle to make the future safe for our future generations.

Get the huge list of more than 500 Essay Topics and Ideas

Ways to Prevent Global Warming

There are many changes we can bring about in our life both big and small to prevent global warming and save our planet. Firstly, we must stop deforestation in all forms. Do not cut down more trees as it will only worsen the level of carbon dioxide in the air. Instead, encourage people to plant even more trees to create a fine balance in nature.

Moreover, it reduces the usage of energy everywhere. It does not matter if you are at your home or at your office, the higher the energy used the more the carbon dioxide produced. Thus, do not waste electricity as it requires the burning of fossil fuels. As a result of the burning of fossil fuels , greenhouse gases in the atmosphere increase rapidly and contribute to global warming. Moreover, reduce the carbon footprint and do not travel through planes that often.

Most importantly, replace all your ordinary bulbs with LED lights. It will help in reducing the use of energy by a massive amount. Similarly, do not waste that energy. Instead of becoming more dependent, we need to reduce our dependence on fossil fuels and electricity right away.

Opt for eco-friendly options like solar energy and win power. Take up the habit of recycling and reusing. Do not throw away things instead learn to reuse them properly. Further, carpool with your neighbors and relatives to not contribute to automobile exhausts and emissions.

FAQs on Prevention of Global Warming

Q.1 What is causing global warming?

A.1 There are many human activities that cause global warming. Some of them are the usage of hot water, old light bulbs, burning fossil fuels, wasting electricity, using excessive automobiles, deforestation and many more.

Q.2 How can we prevent global warming?

A.2 We can prevent global warming by adopting a healthy lifestyle. Try to carpool with your relatives and friends to not produce carbon emissions. Moreover, do not cut down trees unnecessarily and also replace old electronic gadgets.

Customize your course in 30 seconds

Which class are you in.

tutor

  • Travelling Essay
  • Picnic Essay
  • Our Country Essay
  • My Parents Essay
  • Essay on Favourite Personality
  • Essay on Memorable Day of My Life
  • Essay on Knowledge is Power
  • Essay on Gurpurab
  • Essay on My Favourite Season
  • Essay on Types of Sports

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Download the App

Google Play

how can we reduce the effects of global warming essay

Lisa Hupp/USFWS

Arctic Match Live Now!

For a limited time, all gifts are being matched to stop Big Oil from blocking a new once-in-a-lifetime opportunity to protect the Arctic.

How You Can Stop Global Warming

Healing the planet starts in your garage, in your kitchen, and at your dining room table.

A Black man is applying a role of weather tape to an exterior door of a home.

Weatherizing doors and windows by sealing drafts can make your home more energy efficient.

Getty Images

  • Share this page block

Rising sea levels. Raging storms. Searing heat. Ferocious fires. Severe drought. Punishing floods. The effects of climate change are already threatening our health, our communities, our economy, our security, and our children’s future.

What can you do? A whole lot, as it turns out. Americans, on average, produce 21 tons of carbon a year, about four times the global average. Personal action is, of course, no substitute for meaningful government policies. We still must limit carbon pollution and aggressively move away from dirty fossil fuels toward cleaner power.

But it’s important to remember the equally vital contributions that can be made by private citizens—which is to say, by you. “Change only happens when individuals take action,” says clean energy advocate Aliya Haq. “There’s no other way, if it doesn’t start with people.”

Here are a dozen easy, effective ways each one of us can make a difference.

1. Speak up!

What’s the single biggest way you can make an impact on global climate change? “Talk to your friends and family, and make sure your representatives are making good decisions,” Haq says. By voicing your concerns—via social media or, better yet, directly to your elected officials —you send a message that you care about the warming world. Encourage Congress to enact new laws that limit carbon emissions and require polluters to pay for the emissions they produce. “The main reason elected officials do anything difficult is because their constituents make them,” Haq says. You can help protect public lands, stop offshore drilling, and more here .

2. Power your home with renewable energy.

Choose a utility company that generates at least half its power from wind or solar and has been certified by Green-e Energy , an organization that vets renewable energy options. If that isn’t possible for you, take a look at your electric bill; many utilities now list other ways to support renewable sources on their monthly statements and websites.

3. Weatherize, weatherize, weatherize.

“Building heating and cooling are among the biggest uses of energy,” Haq says. Indeed, heating and air-conditioning account for almost half of home energy use. You can make your space more energy efficient by sealing drafts and ensuring it’s adequately insulated. You can also claim federal tax credits for many energy efficiency home improvements. To help you figure out where to start, you could also get a home energy audit, which some utilities offer free of charge. (Alternatively, you can hire a professional to come to your home and perform one; the Inflation Reduction Act offers a partial tax credit for this.) The EPA’s Home Energy Yardstick gives you a simple assessment of your home’s annual energy use compared with similar homes.

4. Invest in energy-efficient appliances.

Since they were first implemented nationally in 1987, efficiency standards for dozens of appliances and products have kept 2.3 billion tons of carbon dioxide out of the air. That’s about the same amount as the annual carbon pollution coughed up by nearly 440 million cars. “Energy efficiency is the lowest-cost way to reduce emissions,” Haq says. When shopping for refrigerators, washing machines, heat pump water heaters , and other appliances, look for the Energy Star label. It will tell you which are the most efficient. (There may also be rebates to earn from your purchase of Energy Star–certified products.)

And when you’re ready to swap out your old machines, don’t just put them on the curb: Recycling an old refrigerator through the EPA’s Responsible Appliance Disposal Program can prevent an additional 10,000 pounds of carbon pollution because the global-warming pollutants in the refrigerants and foam would be properly captured rather than vented to the air.

5. Reduce water waste.

Saving water reduces carbon pollution, too. That's because it takes a lot of energy to pump, heat, and treat your water. So take shorter showers, turn off the tap while brushing your teeth, and switch to WaterSense -labeled fixtures and appliances. The EPA estimates that if just one out of every 100 American homes were retrofitted with water-efficient fixtures, about 100 million kilowatt-hours of electricity per year would be saved—avoiding 80,000 tons of global warming pollution .

6. Actually eat the food you buy—and compost what you can’t.

Approximately 10 percent of U.S. energy use goes into growing, processing, packaging, and shipping food—about 40 percent of which winds up in the landfill. “If you’re wasting less food, you’re likely cutting down on energy consumption,” Haq says. As for the scraps you can’t eat or the leftovers you don’t get to, collect them in a compost bin instead of sending them to the landfill where they release methane. Recycling food and other organic waste into compost provides a range of environmental benefits, including improving soil health, reducing greenhouse gas emissions, recycling nutrients, and mitigating the impact of droughts.

7. Buy better bulbs.

LED light bulbs use one-sixth the amount of energy to deliver the same amount of light as conventional incandescents and last at least 10 times longer. They’re also cheaper in the long run: A 10-watt LED that replaces your traditional 60-watt bulb will save you $125 over the light bulb’s life. And because the average American home has around 40 to 50 light bulbs, this is a simple swap that will reap huge rewards. If every household in the United States replaced just one incandescent with an Energy Star–labeled LED, we would prevent seven billion pounds of carbon pollution per year. That’s equivalent to the emissions of about 648,000 cars.

8. Pull the plug(s).

Taken together, the outlets in your home are likely powering about 65 devices—an average load for a home in the United States. Audio and video devices, cordless vacuums and power tools, and other electronics use energy even when they're not charging. This "idle load" across all U.S. households adds up to the output of 50 large power plants in the country . So don't leave fully charged devices plugged into your home's outlets, unplug rarely used devices or plug them into power strips and timers, and adjust your computers and monitors to automatically power down to the lowest power mode when not in use.

9. Drive a fuel-efficient vehicle.

Gas-smart cars, such as hybrids and fully electric vehicles, save fuel and money . And once all cars and light trucks meet 2025’s clean car standards, which means averaging 54.5 miles per gallon, they’ll be a mainstay. For good reason: Relative to a national fleet of vehicles that averaged only 28.3 miles per gallon in 2011, Americans will spend $80 billion less at the pump each year and cut their automotive emissions by half. Before you buy a new set of wheels, compare fuel-economy performance here .

10. Maintain your ride.

If all Americans kept their tires properly inflated, we could save 1.2 billion gallons of gas each year. A simple tune-up can boost miles per gallon anywhere from 4 percent to 40 percent, and a new air filter can get you a 10 percent boost. Also, remove unnecessary accessories from your car roof. Roof racks and clamshell storage containers can reduce fuel efficiency by as much as 5 percent.

11. Rethink planes, trains, and automobiles.

Choosing to live in walkable smart-growth cities and towns with quality public transportation leads to less driving, less money spent on fuel, and less pollution in the air . Less frequent flying can make a big difference, too. “Air transport is a major source of climate pollution,” Haq says. “If you can take a train instead, do that.” If you must fly, consider purchasing carbon offsets to counterbalance the hefty carbon pollution associated with flying. But not all carbon offset companies are alike. Do your homework to find the best supplier.

12. Reduce, reuse, and recycle.

In the United States, the average person generates 4.5 pounds of trash every day. Fortunately, not all the items we discard end up in landfills; we recycle or compost more than one-third of our trash. In 2014 this saved carbon emissions equivalent to the yearly output of 38 million passenger cars . But we could be doing so much more. “ Reduce should always be the number-one priority,” says NRDC senior resource specialist Darby Hoover . And to reap the environmental benefits of “recyclable” goods, you must recycle according to the rules of your municipality, since systems vary widely by location . Search your municipality’s sanitation department (or equivalent) webpage to learn exactly what you can place in the recycling bin, as counties and cities often differ in what they accept.

This story was originally published on April 20, 2022 and has been updated with new information and links.

This NRDC.org story is available for online republication by news media outlets or nonprofits under these conditions: The writer(s) must be credited with a byline; you must note prominently that the story was originally published by NRDC.org and link to the original; the story cannot be edited (beyond simple things such as grammar); you can’t resell the story in any form or grant republishing rights to other outlets; you can’t republish our material wholesale or automatically—you need to select stories individually; you can’t republish the photos or graphics on our site without specific permission; you should drop us a note to let us know when you’ve used one of our stories.

Related Stories

A man and small child look at a book together on a couch in a home living room

A Consumer Guide to the Inflation Reduction Act

A woman holds a lantern that is connected by a wire to a small solar panel held by a man to her left.

What Are the Solutions to Climate Change?

A man and woman in winter clothing sit on a passenger bus

How to Ditch the Biggest Fossil Fuel Offenders in Your Life

When you sign up, you’ll become a member of NRDC’s Activist Network. We will keep you informed with the latest alerts and progress reports.

  • News, Stories & Speeches
  • Get Involved
  • Structure and leadership
  • Committee of Permanent Representatives
  • UN Environment Assembly
  • Funding and partnerships
  • Policies and strategies
  • Evaluation Office
  • Secretariats and Conventions

A man crouches down with a sapling.

  • Asia and the Pacific
  • Latin America and the Caribbean
  • New York Office
  • North America
  • Climate action
  • Nature action
  • Chemicals and pollution action
  • Digital Transformations
  • Disasters and conflicts
  • Environment under review
  • Environmental rights and governance
  • Extractives
  • Fresh Water
  • Green economy
  • Ocean, seas and coasts
  • Resource efficiency
  • Sustainable Development Goals
  • Youth, education and environment
  • Publications & data

how can we reduce the effects of global warming essay

1. Spread the word

Encourage your friends, family and co-workers to reduce their carbon pollution. Join a global movement like  Count Us In, which aims to inspire 1 billion people to take practical steps and challenge their leaders to act more boldly on climate. Organizers of the platform say that if 1 billion people took action, they could reduce as much as 20 per cent of global carbon emissions. Or you could sign up to the UN’s  #ActNow campaign on climate change and sustainability and add your voice to this critical global debate.

Young women at a climate change protest.

2. Keep up the political pressure

Lobby local politicians and businesses to support efforts to cut emissions and reduce carbon pollution.  #ActNow Speak Up  has sections on political pressure and corporate action - and Count Us In also has  some handy tips  for how to do this. Pick an environmental issue you care about, decide on a specific request for change and then try to arrange a meeting with your local representative. It might seem intimidating but your voice deserves to be heard. If humanity is to succeed in tackling the climate emergency, politicians must be part of the solution. It’s up to all of us to keep up with the pressure. 

Two people riding bikes.

3. Transform your transport

Transport accounts for around a quarter of all greenhouse gas emissions and across the world, many governments are implementing policies to decarbonize travel. You can get a head start: leave your car at home and walk or cycle whenever possible. If the distances are too great, choose public transport, preferably electric options. If you must drive, offer to carpool with others so that fewer cars are on the road. Get ahead of the curve and buy an electric car. Reduce the number of long-haul flights you take. 

Houses with solar panels on their roofs.

4. Rein in your power use

If you can, switch to a zero-carbon or renewable energy provider. Install solar panels on your roof. Be more efficient: turn your heating down a degree or two, if possible. Switch off appliances and lights when you are not using them and better yet buy the most efficient products in the first place (hint: this will save you money!). Insulate your loft or roof: you’ll be warmer in the winter, cooler in the summer and save some money too. 

A vegetarian dish.

5. Tweak your diet

Eat more plant-based meals – your body and the planet will thank you. Today, around 60 per cent of the world’s agricultural land is used for livestock grazing and people in many countries are consuming more animal-sourced food than is healthy. Plant-rich diets can help reduce chronic illnesses, such as heart disease, stroke, diabetes and cancer.

A woman holds strawberries in her hands.

The climate emergency demands action from all of us. We need to get to net zero greenhouse gas emissions by 2050 and everyone has a role to play.

6. Shop local and buy sustainable

To reduce your food’s carbon footprint, buy local and seasonal foods. You’ll be helping small businesses and farms in your area and reducing fossil fuel emissions associated with transport and cold chain storage. Sustainable agriculture uses up to 56 per cent less energy, creates 64 per cent fewer emissions and allows for greater levels of biodiversity than conventional farming. Go one step further and try growing your own fruit, vegetables and herbs. You can plant them in a garden, on a balcony or even on a window sill. Set up a community garden in your neighbourhood to get others involved. 

A rotten banana.

7. Don’t waste food

One-third of all food produced is either lost or wasted. According to UNEP’s  Food Waste Index Report 2021 , people globally waste 1 billion tonnes of food each year, which accounts for around 8-10 per cent of global greenhouse gas emissions. Avoid waste by only buying what you need. Take advantage of every edible part of the foods you purchase. Measure portion sizes of rice and other staples before cooking them, store food correctly (use your freezer if you have one), be creative with leftovers, share extras with your friends and neighbours and contribute to a local food-sharing scheme. Make compost out of inedible remnants and use it to fertilize your garden. Composting is one of the best options for managing organic waste while also reducing environmental impacts.

 A woman sews.

8. Dress (climate) smart

The fashion industry accounts for 8-10 per cent of global carbon emissions – more than all international flights and maritime shipping combined – and ‘fast fashion’ has created a throwaway culture that sees clothes quickly end up in landfills. But we can change this. Buy fewer new clothes and wear them longer. Seek out sustainable labels and use rental services for special occasions rather than buying new items that will only be worn once. Recycle pre-loved clothes and repair when necessary.

An overhead view of a forest.

9. Plant trees  

Every year approximately 12 million hectares of forest are destroyed and this deforestation, together with agriculture and other land use changes, is responsible for roughly 25 per cent of global greenhouse gas emissions. We can all play a part in reversing this trend by planting trees, either individually or as part of a collective. For example, the Plant-for-the-Planet initiative allows people to sponsor tree-planting around the world.

Check out this UNEP guide to see what else you can do as part of the UN Decade on Ecosystem Restoration , a global drive to halt the degradation of land and oceans, protect biodiversity, and rebuild ecosystems. 

Wind turbines at sunset.

10. Focus on planet-friendly investments

Individuals can also spur change through their savings and investments by choosing financial institutions that do not invest in carbon-polluting industries. #ActNow Speak Up  has a section on money and so does  Count Us In . This sends a clear signal to the market and already many financial institutions are offering more ethical investments, allowing you to use your money to support causes you believe in and avoid those you don’t. You can ask your financial institution about their responsible banking policies and find out how they rank in independent research. 

UNEP is at the front in support of the Paris Agreement goal of keeping the global temperature rise well below 2°C, and aiming - to be safe - for 1.5°C, compared to pre-industrial levels. To do this, UNEP has developed a Six-Sector Solution . The Six Sector Solution is a roadmap to reducing emissions across sectors in line with the Paris Agreement commitments and in pursuit of climate stability. The six sectors identified are Energy; Industry; Agriculture & Food; Forests & Land Use; Transport; and Buildings & Cities.

  • Clean fuels
  • Energy Efficiency
  • Sustainable Development

how can we reduce the effects of global warming essay

Further Resources

  • 7 climate action highlights to remember before COP26
  • Climate Action Note - data you need to know
  • Emissions Gap Report 2021
  • Food Waste Index 2021
  • Act Now: the UN campaign for individual action
  • Count Us In
  • Food Loss and Waste Website

Related Content

City Kiev, Ukraine

Related Sustainable Development Goals

how can we reduce the effects of global warming essay

© 2024 UNEP Terms of Use Privacy   Report Project Concern Report Scam Contact Us

Encyclopedia Britannica

  • History & Society
  • Science & Tech
  • Biographies
  • Animals & Nature
  • Geography & Travel
  • Arts & Culture
  • Games & Quizzes
  • On This Day
  • One Good Fact
  • New Articles
  • Lifestyles & Social Issues
  • Philosophy & Religion
  • Politics, Law & Government
  • World History
  • Health & Medicine
  • Browse Biographies
  • Birds, Reptiles & Other Vertebrates
  • Bugs, Mollusks & Other Invertebrates
  • Environment
  • Fossils & Geologic Time
  • Entertainment & Pop Culture
  • Sports & Recreation
  • Visual Arts
  • Demystified
  • Image Galleries
  • Infographics
  • Top Questions
  • Britannica Kids
  • Saving Earth
  • Space Next 50
  • Student Center
  • Introduction & Top Questions
  • Climatic variation since the last glaciation
  • The greenhouse effect
  • Radiative forcing
  • Water vapour
  • Carbon dioxide
  • Surface-level ozone and other compounds
  • Nitrous oxides and fluorinated gases
  • Land-use change
  • Stratospheric ozone depletion
  • Volcanic aerosols
  • Variations in solar output
  • Variations in Earth’s orbit
  • Water vapour feedback
  • Cloud feedbacks
  • Ice albedo feedback
  • Carbon cycle feedbacks
  • Modern observations
  • Prehistorical climate records
  • Theoretical climate models
  • Patterns of warming
  • Precipitation patterns
  • Regional predictions
  • Ice melt and sea level rise
  • Ocean circulation changes
  • Tropical cyclones
  • Environmental consequences of global warming
  • Socioeconomic consequences of global warming

Grinnell Glacier shrinkage

How does global warming work?

Where does global warming occur in the atmosphere, why is global warming a social problem, where does global warming affect polar bears.

Aerial photo from 380 km over earth from the International Space Station over Mindanao Island group, Philippines. Atmosphere, clouds weather sky, limb of the earth

global warming

Our editors will review what you’ve submitted and determine whether to revise the article.

  • U.S. Department of Transportation - Global Warming: A Science Overview
  • NOAA Climate.gov - Climate Change: Global Temperature
  • Natural Resources Defense Council - Global Warming 101
  • American Institute of Physics - The discovery of global warming
  • LiveScience - Causes of Global Warming
  • global warming - Children's Encyclopedia (Ages 8-11)
  • global warming - Student Encyclopedia (Ages 11 and up)
  • Table Of Contents

Grinnell Glacier shrinkage

Human activity affects global surface temperatures by changing Earth ’s radiative balance—the “give and take” between what comes in during the day and what Earth emits at night. Increases in greenhouse gases —i.e., trace gases such as carbon dioxide and methane that absorb heat energy emitted from Earth’s surface and reradiate it back—generated by industry and transportation cause the atmosphere to retain more heat, which increases temperatures and alters precipitation patterns.

Global warming, the phenomenon of increasing average air temperatures near Earth’s surface over the past one to two centuries, happens mostly in the troposphere , the lowest level of the atmosphere, which extends from Earth’s surface up to a height of 6–11 miles. This layer contains most of Earth’s clouds and is where living things and their habitats and weather primarily occur.

Continued global warming is expected to impact everything from energy use to water availability to crop productivity throughout the world. Poor countries and communities with limited abilities to adapt to these changes are expected to suffer disproportionately. Global warming is already being associated with increases in the incidence of severe and extreme weather, heavy flooding , and wildfires —phenomena that threaten homes, dams, transportation networks, and other facets of human infrastructure. Learn more about how the IPCC’s Sixth Assessment Report, released in 2021, describes the social impacts of global warming.

Polar bears live in the Arctic , where they use the region’s ice floes as they hunt seals and other marine mammals . Temperature increases related to global warming have been the most pronounced at the poles, where they often make the difference between frozen and melted ice. Polar bears rely on small gaps in the ice to hunt their prey. As these gaps widen because of continued melting, prey capture has become more challenging for these animals.

Recent News

global warming , the phenomenon of increasing average air temperatures near the surface of Earth over the past one to two centuries. Climate scientists have since the mid-20th century gathered detailed observations of various weather phenomena (such as temperatures, precipitation , and storms) and of related influences on climate (such as ocean currents and the atmosphere’s chemical composition). These data indicate that Earth’s climate has changed over almost every conceivable timescale since the beginning of geologic time and that human activities since at least the beginning of the Industrial Revolution have a growing influence over the pace and extent of present-day climate change .

Giving voice to a growing conviction of most of the scientific community , the Intergovernmental Panel on Climate Change (IPCC) was formed in 1988 by the World Meteorological Organization (WMO) and the United Nations Environment Program (UNEP). The IPCC’s Sixth Assessment Report (AR6), published in 2021, noted that the best estimate of the increase in global average surface temperature between 1850 and 2019 was 1.07 °C (1.9 °F). An IPCC special report produced in 2018 noted that human beings and their activities have been responsible for a worldwide average temperature increase between 0.8 and 1.2 °C (1.4 and 2.2 °F) since preindustrial times, and most of the warming over the second half of the 20th century could be attributed to human activities.

AR6 produced a series of global climate predictions based on modeling five greenhouse gas emission scenarios that accounted for future emissions, mitigation (severity reduction) measures, and uncertainties in the model projections. Some of the main uncertainties include the precise role of feedback processes and the impacts of industrial pollutants known as aerosols , which may offset some warming. The lowest-emissions scenario, which assumed steep cuts in greenhouse gas emissions beginning in 2015, predicted that the global mean surface temperature would increase between 1.0 and 1.8 °C (1.8 and 3.2 °F) by 2100 relative to the 1850–1900 average. This range stood in stark contrast to the highest-emissions scenario, which predicted that the mean surface temperature would rise between 3.3 and 5.7 °C (5.9 and 10.2 °F) by 2100 based on the assumption that greenhouse gas emissions would continue to increase throughout the 21st century. The intermediate-emissions scenario, which assumed that emissions would stabilize by 2050 before declining gradually, projected an increase of between 2.1 and 3.5 °C (3.8 and 6.3 °F) by 2100.

Many climate scientists agree that significant societal, economic, and ecological damage would result if the global average temperature rose by more than 2 °C (3.6 °F) in such a short time. Such damage would include increased extinction of many plant and animal species, shifts in patterns of agriculture , and rising sea levels. By 2015 all but a few national governments had begun the process of instituting carbon reduction plans as part of the Paris Agreement , a treaty designed to help countries keep global warming to 1.5 °C (2.7 °F) above preindustrial levels in order to avoid the worst of the predicted effects. Whereas authors of the 2018 special report noted that should carbon emissions continue at their present rate, the increase in average near-surface air temperature would reach 1.5 °C sometime between 2030 and 2052, authors of the AR6 report suggested that this threshold would be reached by 2041 at the latest.

Combination shot of Grinnell Glacier taken from the summit of Mount Gould, Glacier National Park, Montana in the years 1938, 1981, 1998 and 2006.

The AR6 report also noted that the global average sea level had risen by some 20 cm (7.9 inches) between 1901 and 2018 and that sea level rose faster in the second half of the 20th century than in the first half. It also predicted, again depending on a wide range of scenarios, that the global average sea level would rise by different amounts by 2100 relative to the 1995–2014 average. Under the report’s lowest-emission scenario, sea level would rise by 28–55 cm (11–21.7 inches), whereas, under the intermediate emissions scenario, sea level would rise by 44–76 cm (17.3–29.9 inches). The highest-emissions scenario suggested that sea level would rise by 63–101 cm (24.8–39.8 inches) by 2100.

how can we reduce the effects of global warming essay

The scenarios referred to above depend mainly on future concentrations of certain trace gases, called greenhouse gases , that have been injected into the lower atmosphere in increasing amounts through the burning of fossil fuels for industry, transportation , and residential uses. Modern global warming is the result of an increase in magnitude of the so-called greenhouse effect , a warming of Earth’s surface and lower atmosphere caused by the presence of water vapour , carbon dioxide , methane , nitrous oxides , and other greenhouse gases. In 2014 the IPCC first reported that concentrations of carbon dioxide, methane, and nitrous oxides in the atmosphere surpassed those found in ice cores dating back 800,000 years.

Of all these gases, carbon dioxide is the most important, both for its role in the greenhouse effect and for its role in the human economy. It has been estimated that, at the beginning of the industrial age in the mid-18th century, carbon dioxide concentrations in the atmosphere were roughly 280 parts per million (ppm). By the end of 2022 they had risen to 419 ppm, and, if fossil fuels continue to be burned at current rates, they are projected to reach 550 ppm by the mid-21st century—essentially, a doubling of carbon dioxide concentrations in 300 years.

What's the problem with an early spring?

A vigorous debate is in progress over the extent and seriousness of rising surface temperatures, the effects of past and future warming on human life, and the need for action to reduce future warming and deal with its consequences. This article provides an overview of the scientific background related to the subject of global warming. It considers the causes of rising near-surface air temperatures, the influencing factors, the process of climate research and forecasting, and the possible ecological and social impacts of rising temperatures. For an overview of the public policy developments related to global warming occurring since the mid-20th century, see global warming policy . For a detailed description of Earth’s climate, its processes, and the responses of living things to its changing nature, see climate . For additional background on how Earth’s climate has changed throughout geologic time , see climatic variation and change . For a full description of Earth’s gaseous envelope, within which climate change and global warming occur, see atmosphere .

A cityscape view with reflections of people on windows and a dramatic cloudy sky in the background.

A problem built into our relationship with energy itself. Photo by Ferdinando Scianna/Magnum

Deep warming

Even if we ‘solve’ global warming, we face an older, slower problem. waste heat could radically alter earth’s future.

by Mark Buchanan   + BIO

The world will be transformed. By 2050, we will be driving electric cars and flying in aircraft running on synthetic fuels produced through solar and wind energy. New energy-efficient technologies, most likely harnessing artificial intelligence, will dominate nearly all human activities from farming to heavy industry. The fossil fuel industry will be in the final stages of a terminal decline. Nuclear fusion and other new energy sources may have become widespread. Perhaps our planet will even be orbited by massive solar arrays capturing cosmic energy from sunlight and generating seemingly endless energy for all our needs.

That is one possible future for humanity. It’s an optimistic view of how radical changes to energy production might help us slow or avoid the worst outcomes of global warming. In a report from 1965, scientists from the US government warned that our ongoing use of fossil fuels would cause global warming with potentially disastrous consequences for Earth’s climate. The report, one of the first government-produced documents to predict a major crisis caused by humanity’s large-scale activities, noted that the likely consequences would include higher global temperatures, the melting of the ice caps and rising sea levels. ‘Through his worldwide industrial civilisation,’ the report concluded, ‘Man is unwittingly conducting a vast geophysical experiment’ – an experiment with a highly uncertain outcome, but clear and important risks for life on Earth.

Since then, we’ve dithered and doubted and argued about what to do, but still have not managed to take serious action to reduce greenhouse gas emissions, which continue to rise. Governments around the planet have promised to phase out emissions in the coming decades and transition to ‘green energy’. But global temperatures may be rising faster than we expected: some climate scientists worry that rapid rises could create new problems and positive feedback loops that may accelerate climate destabilisation and make parts of the world uninhabitable long before a hoped-for transition is possible.

Despite this bleak vision of the future, there are reasons for optimists to hope due to progress on cleaner sources of renewable energy, especially solar power. Around 2010, solar energy generation accounted for less than 1 per cent of the electricity generated by humanity. But experts believe that, by 2027, due to falling costs, better technology and exponential growth in new installations, solar power will become the largest global energy source for producing electricity. If progress on renewables continues, we might find a way to resolve the warming problem linked to greenhouse gas emissions. By 2050, large-scale societal and ecological changes might have helped us avoid the worst consequences of our extensive use of fossil fuels.

It’s a momentous challenge. And it won’t be easy. But this story of transformation only hints at the true depth of the future problems humanity will confront in managing our energy use and its influence over our climate.

As scientists are gradually learning, even if we solve the immediate warming problem linked to the greenhouse effect, there’s another warming problem steadily growing beneath it. Let’s call it the ‘deep warming’ problem. This deeper problem also raises Earth’s surface temperature but, unlike global warming, it has nothing to do with greenhouse gases and our use of fossil fuels. It stems directly from our use of energy in all forms and our tendency to use more energy over time – a problem created by the inevitable waste heat that is generated whenever we use energy to do something. Yes, the world may well be transformed by 2050. Carbon dioxide levels may stabilise or fall thanks to advanced AI-assisted technologies that run on energy harvested from the sun and wind. And the fossil fuel industry may be taking its last breaths. But we will still face a deeper problem. That’s because ‘deep warming’ is not created by the release of greenhouse gases into the atmosphere. It’s a problem built into our relationship with energy itself.

F inding new ways to harness more energy has been a constant theme of human development. The evolution of humanity – from early modes of hunter-gathering to farming and industry – has involved large systematic increases in our per-capita energy use. The British historian and archaeologist Ian Morris estimates, in his book Foragers, Farmers, and Fossil Fuels: How Human Values Evolve (2015), that early human hunter-gatherers, living more than 10,000 years ago, ‘captured’ around 5,000 kcal per person per day by consuming food, burning fuel, making clothing, building shelter, or through other activities. Later, after we turned to farming and enlisted the energies of domesticated animals, we were able to harness as much as 30,000 kcal per day. In the late 17th century , the exploitation of coal and steam power marked another leap: by 1970, the use of fossil fuels allowed humans to consume some 230,000 kcal per person per day. (When we think about humanity writ large as ‘humans’, it’s important to acknowledge that the average person in the wealthiest nations consumes up to 100 times more energy than the average person in the poorest nations.) As the global population has risen and people have invented new energy-dependent technologies, our global energy use has continued to climb.

In many respects, this is great. We can now do more with less effort and achieve things that were unimaginable to the 17th-century inventors of steam engines, let alone to our hominin ancestors. We’ve made powerful mining machines, superfast trains, lasers for use in telecommunications and brain-imaging equipment. But these creations, while helping us, are also subtly heating the planet.

All the energy we humans use – to heat our homes, run our factories, propel our automobiles and aircraft, or to run our electronics – eventually ends up as heat in the environment. In the shorter term, most of the energy we use flows directly into the environment. It gets there through hot exhaust gases, friction between tires and roads, the noises generated by powerful engines, which spread out, dissipate, and eventually end up as heat. However, a small portion of the energy we use gets stored in physical changes, such as in new steel, plastic or concrete. It’s stored in our cities and technologies. In the longer term, as these materials break down, the energy stored inside also finds its way into the environment as heat. This is a direct consequence of the well-tested principles of thermodynamics.

Waste heat will pose a problem that is every bit as serious as global warming from greenhouse gases

In the early decades of the 21st century , this heat created by simply using energy, known as ‘waste heat’, is not so serious. It’s equivalent to roughly 2 per cent of the planetary heating imbalance caused by greenhouse gases – for now. But, with the passing of time, the problem is likely to get much more serious. That’s because humans have a historical tendency to consistently discover and produce things, creating entirely new technologies and industries in the process: domesticated animals for farming; railways and automobiles; global air travel and shipping; personal computers, the internet and mobile phones. The result of such activities is that we end up using more and more energy, despite improved energy efficiency in nearly every area of technology.

During the past two centuries at least (and likely for much longer), our yearly energy use has doubled roughly every 30 to 50 years . Our energy use seems to be growing exponentially, a trend that shows every sign of continuing. We keep finding new things to do and almost everything we invent requires more and more energy: consider the enormous energy demands of cryptocurrency mining or the accelerating energy requirements of AI.

If this historical trend continues, scientists estimate waste heat will pose a problem in roughly 150-200 years that is every bit as serious as the current problem of global warming from greenhouse gases. However, deep heating will be more pernicious as we won’t be able to avoid it by merely shifting from one kind energy to another. A profound problem will loom before us: can we set strict limits on all the energy we use? Can we reign in the seemingly inexorable expansion of our activities to avoid destroying our own environment?

Deep warming is a problem hiding beneath global warming, but one that will become prominent if and when we manage to solve the more pressing issue of greenhouse gases. It remains just out of sight, which might explain why scientists only became concerned about the ‘waste heat’ problem around 15 years ago.

O ne of the first people to describe the problem is the Harvard astrophysicist Eric Chaisson, who discussed the issue of waste heat in a paper titled ‘Long-Term Global Heating from Energy Usage’ (2008). He concluded that our technological society may be facing a fundamental limit to growth due to ‘unavoidable global heating … dictated solely by the second law of thermodynamics, a biogeophysical effect often ignored when estimating future planetary warming scenarios’. When I emailed Chaisson to learn more, he told me the history of his thinking on the problem:

It was on a night flight, Paris-Boston [circa] 2006, after a UNESCO meeting on the environment when it dawned on me that the IPCC were overlooking something. While others on the plane slept, I crunched some numbers literally on the back of an envelope … and then hoped I was wrong, that is, hoped that I was incorrect in thinking that the very act of using energy heats the air, however slightly now.

The transformation of energy into heat is among the most ubiquitous processes of physics

Chaisson drafted the idea up as a paper and sent it to an academic journal. Two anonymous reviewers were eager for it to be published. ‘A third tried his damnedest to kill it,’ Chaisson said, the reviewer claiming the findings were ‘irrelevant and distracting’. After it was finally published, the paper got some traction when it was covered by a journalist and ran as a feature story on the front page of The Boston Globe . The numbers Chaisson crunched, predictions of our mounting waste heat, were even run on a supercomputer at the US National Center for Atmospheric Research, by Mark Flanner, a professor of earth system science. Flanner, Chaisson suspected at the time, was likely ‘out to prove it wrong’. But, ‘after his machine crunched for many hours’, he saw the same results that Chaisson had written on the back of an envelope that night in the plane.

Around the same time, also in 2008, two engineers, Nick Cowern and Chihak Ahn, wrote a research paper entirely independent of Chaisson’s work, but with similar conclusions. This was how I first came across the problem. Cowern and Ahn’s study estimated the total amount of waste heat we’re currently releasing to the environment, and found that it is, right now, quite small. But, like Chaisson, they acknowledged that the problem would eventually become serious unless steps were taken to avoid it.

That’s some of the early history of thinking in this area. But these two papers, and a few other analyses since, point to the same unsettling conclusion: what I am calling ‘deep warming’ will be a big problem for humanity at some point in the not-too-distant future. The precise date is far from certain. It might be 150 years , or 400, or 800, but it’s in the relatively near future, not the distant future of, say, thousands or millions of years. This is our future.

T he transformation of energy into heat is among the most ubiquitous processes of physics. As cars drive down roads, trains roar along railways, planes cross the skies and industrial plants turn raw materials into refined products, energy gets turned into heat, which is the scientific word for energy stored in the disorganised motions of molecules at the microscopic level. As a plane flies from Paris to Boston, it burns fuel and thrusts hot gases into the air, generates lots of sound and stirs up contrails. These swirls of air give rise to swirls on smaller scales which in turn make smaller ones until the energy ultimately ends up lost in heat – the air is a little warmer than before, the molecules making it up moving about a little more vigorously. A similar process takes place when energy is used by the tiny electrical currents inside the microchips of computers, silently carrying out computations. Energy used always ends up as heat. Decades ago, research by the IBM physicist Rolf Landauer showed that a computation involving even a single computing bit will release a certain minimum amount of heat to the environment.

How this happens is described by the laws of thermodynamics, which were described in the mid-19th century by scientists including Sadi Carnot in France and Rudolf Clausius in Germany. Two key ‘laws’ summarise its main principles.

The first law of thermodynamics simply states that the total quantity of energy never changes but is conserved. Energy, in other words, never disappears, but only changes form. The energy initially stored in an aircraft’s fuel, for example, can be changed into the energetic motion of the plane. Turn on an electric heater, and energy initially held in electric currents gets turned into heat, which spreads into the air, walls and fabric of your house. The total energy remains the same, but it markedly changes form.

We’re generating waste heat all the time with everything we do

The second law of thermodynamics, equally important, is more subtle and states that, in natural processes, the transformation of energy always moves from more organised and useful forms to less organised and less useful forms. For an aircraft, the energy initially concentrated in jet fuel ends up dissipated in stirred-up winds, sounds and heat spread over vast areas of the atmosphere in a largely invisible way. It’s the same with the electric heater: the organised useful energy in the electric currents gets dissipated and spread into the low-grade warmth of the walls, then leaks into the outside air. Although the amount of energy remains the same, it gradually turns into less organised, less usable forms. The end point of the energy process produces waste heat. And we’re generating it all the time with everything we do.

Data on world energy consumption shows that, collectively, all humans on Earth are currently using about 170,000 terawatt-hours (TWh), which is a lot of energy in absolute terms – a terawatt-hour is the total energy consumed in one hour by any process using energy at a rate of 1 trillion watts. This huge number isn’t surprising, as it represents all the energy being used every day by the billions of cars and homes around the world, as well as by industry, farming, construction, air traffic and so on. But, in the early 21st century , the warming from this energy is still much less than the planetary heating due to greenhouse gases.

Concentrations of greenhouse gases such as CO 2 and methane are quite small, and only make a fractional difference to how much of the Sun’s energy gets trapped in the atmosphere, rather than making it back out to space. Even so, this fractional difference has a huge effect because the stream of energy arriving from the Sun to Earth is so large. Current estimates of this greenhouse energy imbalance come to around 0.87 W per square meter, which translates into a total energy figure about 50 times larger than our waste heat. That’s reassuring. But as Cowern and Ahn wrote in their 2008 paper, things aren’t likely to stay this way over time because our energy usage keeps rising. Unless, that is, we can find some radical way to break the trend of using ever more energy.

O ne common objection to the idea of the deep warming is to claim that the problem won’t really arise. ‘Don’t worry,’ someone might say, ‘with efficient technology, we’re going to find ways to stop using more energy; though we’ll end up doing more things in the future, we’ll use less energy.’ This may sound plausible at first, because we are indeed getting more efficient at using energy in most areas of technology. Our cars, appliances and laptops are all doing more with less energy. If efficiency keeps improving, perhaps we can learn to run these things with almost no energy at all? Not likely, because there are limits to energy efficiency.

Over the past few decades, the efficiency of heating in homes – including oil and gas furnaces, and boilers used to heat water – has increased from less than 50 per cent to well above 90 per cent of what is theoretically possible. That’s good news, but there’s not much more efficiency to be realised in basic heating. The efficiency of lighting has also vastly improved, with modern LED lighting turning something like 70 per cent of the applied electrical energy into light. We will gain some efficiencies as older lighting gets completely replaced by LEDs, but there’s not a lot of room left for future efficiency improvements. Similar efficiency limits arise in the growing or cooking of food; in the manufacturing of cars, bikes and electronic devices; in transportation, as we’re taken from place to place; in the running of search engines, translation software, GPT-4 or other large-language models.

Even if we made significant improvements in the efficiencies of these technologies, we will only have bought a little time. These changes won’t delay by much the date when deep warming becomes a problem we must reckon with.

Optimising efficiencies is just a temporary reprieve, not a radical change in our human future

As a thought experiment, suppose we could immediately improve the energy efficiency of everything we do by a factor of 10 – a fantastically optimistic proposal. That is, imagine the energy output of humans on Earth has been reduced 10 times , from 170,000 TWh to 17,000 TWh . If our energy use keeps expanding, doubling every 30-50 years or so (as it has for centuries), then a 10-fold increase in waste heat will happen in just over three doubling times, which is about 130 years : 17,000 TWh doubles to 34,000 TWh , which doubles to 68,000 TWh , which doubles to 136,000 TWh , and so on. All those improvements in energy efficiency would quickly evaporate. The date when deep warming hits would recede by 130 years or so, but not much more. Optimising efficiencies is just a temporary reprieve, not a radical change in our human future.

Improvements in energy efficiency can also have an inverse effect on our overall energy use. It’s easy to think that if we make a technology more efficient, we’ll then use less energy through the technology. But economists are deeply aware of a paradoxical effect known as ‘rebound’, whereby improved energy efficiency, by making the use of a technology cheaper, actually leads to more widespread use of that technology – and more energy use too. The classic example, as noted by the British economist William Stanley Jevons in his book The Coal Question (1865), is the invention of the steam engine. This new technology could extract energy from burning coal more efficiently, but it also made possible so many new applications that the use of coal increased. A recent study by economists suggests that, across the economy, such rebound effects might easily swallow at least 50 per cent of any efficiency gains in energy use. Something similar has already happened with LED lights, for which people have found thousands of new uses.

If gains in efficiency won’t buy us lots of time, how about other factors, such as a reduction of the global population? Scientists generally believe that the current human population of more than 8 billion people is well beyond the limits of our finite planet, especially if a large fraction of this population aspires to the resource-intensive lifestyles of wealthy nations. Some estimates suggest that a more sustainable population might be more like 2 billion , which could reduce energy use significantly, potentially by a factor of three or four. However, this isn’t a real solution: again, as with the example of improved energy efficiency, a one-time reduction of our energy consumption by a factor of three will quickly be swallowed up by an inexorable rise in energy use. If Earth’s population were suddenly reduced to 2 billion – about a quarter of the current population – our energy gains would initially be enormous. But those gains would be erased in two doubling times, or roughly 60-100 years , as our energy demands would grow fourfold.

S o, why aren’t more people talking about this? The deep warming problem is starting to get more attention. It was recently mentioned on Twitter by the German climate scientist Stefan Rahmstorf, who cautioned that nuclear fusion, despite excitement over recent advances, won’t arrive in time to save us from our waste heat, and might make the problem worse. By providing another cheap source of energy, fusion energy could accelerate both the growth of our energy use and the reckoning of deep warming. A student of Rahmstorf’s, Peter Steiglechner, wrote his master’s thesis on the problem in 2018. Recognition of deep warming and its long-term implications for humanity is spreading. But what can we do about the problem?

Avoiding or delaying deep warming will involve slowing the rise of our waste heat, which means restricting the amount of energy we use and also choosing energy sources that exacerbate the problem as little as possible. Unlike the energy from fossil fuels or nuclear power, which add to our waste energy burden, renewable energy sources intercept energy that is already on its way to Earth, rather than producing additional waste heat. In this sense, the deep warming problem is another reason to pursue renewable energy sources such as solar or wind rather than alternatives such as nuclear fusion, fission or even geothermal power. If we derive energy from any of these sources, we’re unleashing new flows of energy into the Earth system without making a compensating reduction. As a result, all such sources will add to the waste heat problem. However, if renewable sources of energy are deployed correctly, they need not add to our deposition of waste heat in the environment. By using this energy, we produce no more waste heat than would have been created by sunlight in the first place.

Take the example of wind energy. Sunlight first stirs winds into motion by heating parts of the planet unequally, causing vast cells of convection. As wind churns through the atmosphere, blows through trees and over mountains and waves, most of its energy gets turned into heat, ending up in the microscopic motions of molecules. If we harvest some of this wind energy through turbines, it will also be turned into heat in the form of stored energy. But, crucially, no more heat is generated than if there had been no turbines to capture the wind.

The same can hold true for solar energy. In an array of solar cells, if each cell only collects the sunlight falling on it – which would ordinarily have been absorbed by Earth’s surface – then the cells don’t alter how much waste heat gets produced as they generate energy. The light that would have warmed Earth’s surface instead goes into the solar cells, gets used by people for some purpose, and then later ends up as heat. In this way we reduce the amount of heat being absorbed by Earth by precisely the same amount as the energy we are extracting for human use. We are not adding to overall planetary heating. This keeps the waste energy burden unchanged, at least in the relatively near future, even if we go on extracting and using ever larger amounts of energy.

Covering deserts in dark panels would absorb a lot more energy than the desert floor

Chaisson summarised the problem quite clearly in 2008:

I’m now of the opinion … that any energy that’s dug up on Earth – including all fossil fuels of course, but also nuclear and ground-sourced geothermal – will inevitably produce waste heat as a byproduct of humankind’s use of energy. The only exception to that is energy arriving from beyond Earth, this is energy here and now and not dug up, namely the many solar energies (plural) caused by the Sun’s rays landing here daily … The need to avoid waste heat is indeed the single, strongest, scientific argument to embrace solar energies of all types.

But not just any method of gathering solar energy will avoid the deep warming problem. Doing so requires careful engineering. For example, covering deserts with solar panels would add to planetary heating because deserts reflect a lot of incident light back out to space, so it is never absorbed by Earth (and therefore doesn’t produce waste heat). Covering deserts in dark panels would absorb a lot more energy than the desert floor and would heat the planet further.

We’ll also face serious problems in the long run if our energy appetite keeps increasing. Futurists dream of technologies deployed in space where huge panels would absorb sunlight that would otherwise have passed by Earth and never entered our atmosphere. Ultimately, they believe, this energy could be beamed down to Earth. Like nuclear energy, such technologies would add an additional energy source to the planet without any compensating removal of heating from the sunlight currently striking our planet’s surface. Any effort to produce more energy than is normally available from sunlight at Earth’s surface will only make our heating problems worse.

D eep warming is simply a consequence of the laws of physics and our inquisitive nature. It seems to be in our nature to constantly learn and develop new things, changing our environment in the process. For thousands of years, we have harvested and exploited ever greater quantities of energy in this pursuit, and we appear poised to continue along this path with the rapidly expanding use of renewable energy sources – and perhaps even more novel sources such as nuclear fusion. But this path cannot proceed indefinitely without consequences.

The logic that more energy equals more warming sets up a profound dilemma for our future. The laws of physics and the habits ingrained in us from our long evolutionary history are steering us toward trouble. We may have a technological fix for greenhouse gas warming – just shift from fossil fuels to cleaner energy sources – but there is no technical trick to get us out of the deep warming problem. That won’t stop some scientists from trying.

Perhaps, believing that humanity is incapable of reducing its energy usage, we’ll adopt a fantastic scheme to cool the planet, such as planetary-scale refrigeration or using artificially engineered tornadoes to transport heat from Earth’s surface to the upper atmosphere where it can be radiated away to space. As far-fetched as such approaches sound, scientists have given some serious thought to these and other equally bizarre ideas, which seem wholly in the realm of science fiction. They’re schemes that will likely make the problem worse not better.

We will need to transform the human story. It must become a story of doing less, not more

I see several possibilities for how we might ultimately respond. As with greenhouse gas warming, there will probably be an initial period of disbelief, denial and inaction, as we continue with unconstrained technological advance and growing energy use. Our planet will continue warming. Sooner or later, however, such warming will lead to serious disruptions of the Earth environment and its ecosystems. We won’t be able to ignore this for long, and it may provide a natural counterbalance to our energy use, as our technical and social capacity to generate and use ever more energy will be eroded. We may eventually come to some uncomfortable balance in which we just scrabble out a life on a hot, compromised planet because we lack the moral and organisational ability to restrict our energy use enough to maintain a sound environment.

An alternative would require a radical break with our past: using less energy. Finding a way to use less energy would represent a truly fundamental rupture with all of human history, something entirely novel. A rupture of this magnitude won’t come easily. However, if we could learn to view restrictions on our energy use as a non-negotiable element of life on Earth, we may still be able to do many of the things that make us essentially human: learning, discovering, inventing, creating. In this scenario, any helpful new technology that comes into use and begins using lots of energy would require a balancing reduction in energy use elsewhere. In such a way, we might go on with the future being perpetually new, and possibly better.

None of this is easily achieved and will likely mirror our current struggles to come to agreements on greenhouse gas heating. There will be vicious squabbles, arguments and profound polarisation, quite possibly major wars. Humanity will never have faced a challenge of this magnitude, and we won’t face up to it quickly or easily, I expect. But we must. Planetary heating is in our future – the very near future and further out as well. Many people will find this conclusion surprisingly hard to swallow, perhaps because it implies fundamental restrictions on our future here on Earth: we can’t go on forever using more and more energy, and, at the same time, expecting the planet’s climate to remain stable.

The world will likely be transformed by 2050. And, sometime after that, we will need to transform the human story. The narrative arc of humanity must become a tale of continuing innovation and learning, but also one of careful management. It must become a story, in energy terms, of doing less, not more. There’s no technology for entirely escaping waste heat, only techniques.

This is important to remember as we face up to the extremely urgent challenge of heating linked to fossil-fuel use and greenhouse gases. Global warming is just the beginning of our problems. It’s a testing ground to see if we can manage an intelligent and coordinated response. If we can handle this challenge, we might be better prepared, more capable and resilient as a species to tackle an even harder one.

Close-up of a hand gracefully resting on a naked woman’s torso, soft lighting accentuating the skin’s smooth texture against a dark background.

Sex and sexuality

Sexual sensation

What makes touch on some parts of the body erotic but not others? Cutting-edge biologists are arriving at new answers

David J Linden

Photochrom image of a narrow street lined with Middle-Eastern buildings; people are walking down the middle of the street and some are holding umbrellas.

Nations and empires

The paradoxes of Mikha’il Mishaqa

He was a Catholic, then a rationalist, then a Protestant. Most of all, he exemplified the rise of Arab-Ottoman modernity

Aerial view of a large pipeline construction site with machinery and vehicles cutting through green fields and hills under a partly cloudy sky.

Nature and landscape

Land loneliness

To survive, we are asked to forget that our lands and bodies are being violated, policed, ripped up, silenced, sacrificed

Newborn baby being held by a person wearing blue gloves, with another masked individual looking at the baby in a medical setting.

Human reproduction

When babies are born, they cry in the accent of their mother tongue: how does language begin in the womb?

Darshana Narayanan

A black-and-white photo of soldiers in uniform checking documents of several men standing outdoors, with laundry hanging in the background.

Psychiatry and psychotherapy

Decolonising psychology

At times complicit in racism and oppression, psychology has also been a fertile ground for radical and liberatory thought

Rami Gabriel

Aerial view of an industrial site emitting smoke, surrounded by snow-covered buildings and landscape, under a clear blue sky with birds flying overhead.

Politics and government

Governing for the planet

Nation-states are no longer fit for purpose to create a habitable future for humans and nature. Which political system is?

Jonathan S Blake & Nils Gilman

November 26, 2007

10 Solutions for Climate Change

Ten possibilities for staving off catastrophic climate change

By David Biello

how can we reduce the effects of global warming essay

Mark Garlick Getty Images

The enormity of global warming can be daunting and dispiriting. What can one person, or even one nation, do on their own to slow and reverse climate change ? But just as ecologist Stephen Pacala and physicist Robert Socolow, both at Princeton University, came up with 15 so-called " wedges " for nations to utilize toward this goal—each of which is challenging but feasible and, in some combination, could reduce greenhouse gas emissions to safer levels —there are personal lifestyle changes that you can make too that, in some combination, can help reduce your carbon impact. Not all are right for everybody. Some you may already be doing or absolutely abhor. But implementing just a few of them could make a difference.

Forego Fossil Fuels —The first challenge is eliminating the burning of coal , oil and, eventually, natural gas. This is perhaps the most daunting challenge as denizens of richer nations literally eat, wear, work, play and even sleep on the products made from such fossilized sunshine. And citizens of developing nations want and arguably deserve the same comforts, which are largely thanks to the energy stored in such fuels.

On supporting science journalism

If you're enjoying this article, consider supporting our award-winning journalism by subscribing . By purchasing a subscription you are helping to ensure the future of impactful stories about the discoveries and ideas shaping our world today.

Oil is the lubricant of the global economy, hidden inside such ubiquitous items as plastic and corn, and fundamental to the transportation of both consumers and goods. Coal is the substrate, supplying roughly half of the electricity used in the U.S. and nearly that much worldwide—a percentage that is likely to grow, according to the International Energy Agency. There are no perfect solutions for reducing dependence on fossil fuels (for example, carbon neutral biofuels can drive up the price of food and lead to forest destruction, and while nuclear power does not emit greenhouse gases, it does produce radioactive waste), but every bit counts.

So try to employ alternatives when possible—plant-derived plastics, biodiesel, wind power—and to invest in the change, be it by divesting from oil stocks or investing in companies practicing carbon capture and storage.

Infrastructure Upgrade —Buildings worldwide contribute around one third of all greenhouse gas emissions (43 percent in the U.S. alone), even though investing in thicker insulation and other cost-effective, temperature-regulating steps can save money in the long run. Electric grids are at capacity or overloaded, but power demands continue to rise. And bad roads can lower the fuel economy of even the most efficient vehicle. Investing in new infrastructure, or radically upgrading existing highways and transmission lines, would help cut greenhouse gas emissions and drive economic growth in developing countries.

Of course, it takes a lot of cement, a major source of greenhouse gas emissions, to construct new buildings and roads. The U.S. alone contributed 50.7 million metric tons of carbon dioxide to the atmosphere in 2005 from cement production, which requires heating limestone and other ingredients to 1,450 degrees Celsius (2,642 degrees Fahrenheit). Mining copper and other elements needed for electrical wiring and transmission also causes globe-warming pollution.

But energy-efficient buildings and improved cement-making processes (such as using alternative fuels to fire up the kiln) could reduce greenhouse gas emissions in the developed world and prevent them in the developing world.

Move Closer to Work —Transportation is the second leading source of greenhouse gas emissions in the U.S. (burning a single gallon of gasoline produces 20 pounds of CO 2 ). But it doesn't have to be that way.

One way to dramatically curtail transportation fuel needs is to move closer to work, use mass transit, or switch to walking, cycling or some other mode of transport that does not require anything other than human energy. There is also the option of working from home and telecommuting several days a week.

Cutting down on long-distance travel would also help, most notably airplane flights, which are one of the fastest growing sources of greenhouse gas emissions and a source that arguably releases such emissions in the worst possible spot (higher in the atmosphere). Flights are also one of the few sources of globe-warming pollution for which there isn't already a viable alternative: jets rely on kerosene, because it packs the most energy per pound, allowing them to travel far and fast, yet it takes roughly 10 gallons of oil to make one gallon of JetA fuel. Restricting flying to only critical, long-distance trips—in many parts of the world, trains can replace planes for short- to medium-distance trips—would help curb airplane emissions.

Consume Less —The easiest way to cut back on greenhouse gas emissions is simply to buy less stuff. Whether by forgoing an automobile or employing a reusable grocery sack, cutting back on consumption results in fewer fossil fuels being burned to extract, produce and ship products around the globe.

Think green when making purchases. For instance, if you are in the market for a new car, buy one that will last the longest and have the least impact on the environment. Thus, a used vehicle with a hybrid engine offers superior fuel efficiency over the long haul while saving the environmental impact of new car manufacture.

Paradoxically, when purchasing essentials, such as groceries, buying in bulk can reduce the amount of packaging—plastic wrapping, cardboard boxes and other unnecessary materials. Sometimes buying more means consuming less.

Be Efficient —A potentially simpler and even bigger impact can be made by doing more with less. Citizens of many developed countries are profligate wasters of energy, whether by speeding in a gas-guzzling sport-utility vehicle or leaving the lights on when not in a room.

Good driving—and good car maintenance, such as making sure tires are properly inflated—can limit the amount of greenhouse gas emissions from a vehicle and, perhaps more importantly, lower the frequency of payment at the pump.

Similarly, employing more efficient refrigerators, air conditioners and other appliances, such as those rated highly under the U.S. Environmental Protection Agency's Energy Star program, can cut electric bills while something as simple as weatherproofing the windows of a home can reduce heating and cooling bills. Such efforts can also be usefully employed at work, whether that means installing more efficient turbines at the power plant or turning the lights off when you leave the office .

Eat Smart, Go Vegetarian? —Corn grown in the U.S. requires barrels of oil for the fertilizer to grow it and the diesel fuel to harvest and transport it. Some grocery stores stock organic produce that do not require such fertilizers, but it is often shipped from halfway across the globe. And meat, whether beef, chicken or pork, requires pounds of feed to produce a pound of protein.

Choosing food items that balance nutrition, taste and ecological impact is no easy task. Foodstuffs often bear some nutritional information, but there is little to reveal how far a head of lettuce, for example, has traveled.

University of Chicago researchers estimate that each meat-eating American produces 1.5 tons more greenhouse gases through their food choice than do their vegetarian peers. It would also take far less land to grow the crops necessary to feed humans than livestock, allowing more room for planting trees.

Stop Cutting Down Trees —Every year, 33 million acres of forests are cut down . Timber harvesting in the tropics alone contributes 1.5 billion metric tons of carbon to the atmosphere. That represents 20 percent of human-made greenhouse gas emissions and a source that could be avoided relatively easily.

Improved agricultural practices along with paper recycling and forest management—balancing the amount of wood taken out with the amount of new trees growing—could quickly eliminate this significant chunk of emissions.

And when purchasing wood products, such as furniture or flooring, buy used goods or, failing that, wood certified to have been sustainably harvested. The Amazon and other forests are not just the lungs of the earth, they may also be humanity's best short-term hope for limiting climate change.

Unplug —Believe it or not, U.S. citizens spend more money on electricity to power devices when off than when on. Televisions, stereo equipment, computers, battery chargers and a host of other gadgets and appliances consume more energy when seemingly switched off, so unplug them instead.

Purchasing energy-efficient gadgets can also save both energy and money—and thus prevent more greenhouse gas emissions. To take but one example, efficient battery chargers could save more than one billion kilowatt-hours of electricity—$100 million at today's electricity prices—and thus prevent the release of more than one million metric tons of greenhouse gases.

Swapping old incandescent lightbulbs for more efficient replacements, such as compact fluorescents (warning: these lightbulbs contain mercury and must be properly disposed of at the end of their long life), would save billions of kilowatt-hours. In fact, according to the EPA, replacing just one incandescent lightbulb in every American home would save enough energy to provide electricity to three million American homes.

One Child —There are at least 6.6 billion people living today, a number that is predicted by the United Nations to grow to at least nine billion by mid-century. The U.N. Environmental Program estimates that it requires 54 acres to sustain an average human being today—food, clothing and other resources extracted from the planet. Continuing such population growth seems unsustainable.

Falling birth rates in some developed and developing countries (a significant portion of which are due to government-imposed limits on the number of children a couple can have) have begun to reduce or reverse the population explosion. It remains unclear how many people the planet can comfortably sustain, but it is clear that per capita energy consumption must go down if climate change is to be controlled.

Ultimately, a one child per couple rule is not sustainable either and there is no perfect number for human population. But it is clear that more humans means more greenhouse gas emissions.

Future Fuels —Replacing fossil fuels may prove the great challenge of the 21st century. Many contenders exist, ranging from ethanol derived from crops to hydrogen electrolyzed out of water, but all of them have some drawbacks, too, and none are immediately available at the scale needed.

Biofuels can have a host of negative impacts, from driving up food prices to sucking up more energy than they produce. Hydrogen must be created, requiring either reforming natural gas or electricity to crack water molecules. Biodiesel hybrid electric vehicles (that can plug into the grid overnight) may offer the best transportation solution in the short term, given the energy density of diesel and the carbon neutral ramifications of fuel from plants as well as the emissions of electric engines. A recent study found that the present amount of electricity generation in the U.S. could provide enough energy for the country's entire fleet of automobiles to switch to plug-in hybrids , reducing greenhouse gas emissions in the process.

But plug-in hybrids would still rely on electricity, now predominantly generated by burning dirty coal. Massive investment in low-emission energy generation, whether solar-thermal power or nuclear fission , would be required to radically reduce greenhouse gas emissions. And even more speculative energy sources—hyperefficient photovoltaic cells, solar energy stations in orbit or even fusion—may ultimately be required.

The solutions above offer the outline of a plan to personally avoid contributing to global warming. But should such individual and national efforts fail, there is another, potentially desperate solution:

Experiment Earth —Climate change represents humanity's first planetwide experiment. But, if all else fails, it may not be the last. So-called geoengineering , radical interventions to either block sunlight or reduce greenhouse gases, is a potential last resort for addressing the challenge of climate change.

Among the ideas: releasing sulfate particles in the air to mimic the cooling effects of a massive volcanic eruption; placing millions of small mirrors or lenses in space to deflect sunlight; covering portions of the planet with reflective films to bounce sunlight back into space; fertilizing the oceans with iron or other nutrients to enable plankton to absorb more carbon; and increasing cloud cover or the reflectivity of clouds that already form.

All may have unintended consequences, making the solution worse than the original problem. But it is clear that at least some form of geoengineering will likely be required: capturing carbon dioxide before it is released and storing it in some fashion, either deep beneath the earth, at the bottom of the ocean or in carbonate minerals. Such carbon capture and storage is critical to any serious effort to combat climate change.

Additional reporting by Larry Greenemeier and Nikhil Swaminathan .

A person stands in front of a green recycling sign speaking to an audience

Here are the most effective things you can do to fight climate change

how can we reduce the effects of global warming essay

PhD Student, University of Leeds

Disclosure statement

Max Callaghan does not work for, consult, own shares in or receive funding from any company or organisation that would benefit from this article, and has disclosed no relevant affiliations beyond their academic appointment.

University of Leeds provides funding as a founding partner of The Conversation UK.

View all partners

Limiting global warming to 1.5°C above pre-industrial levels requires reaching net zero emissions by the middle of this century. This means that, in less than three decades, we need to reverse more than a century of rising emissions and bring annual emissions down to near zero, while balancing out all remaining unavoidable emissions by actively removing carbon from the atmosphere.

To help speed this process as individuals, we’ve got to do everything we can to cut down our use of fossil fuels. But many people aren’t aware of the most effective ways to do this. Thankfully, the latest report by the UN climate change panel IPCC devotes a chapter to all the ways in which changes in people’s behaviour can accelerate the transition to net zero.

The chapter includes an analysis of 60 individual actions which can help fight climate change, building on research led by Diana Ivanova at the University of Leeds – and to which I contributed. We grouped these actions into three areas: avoiding consumption, shifting consumption and improving consumption (making it more efficient). The charts below, produced for the IPCC report , show what we found.

Five charts showing how reducing different activities could cut emissions

What to avoid

By far the most effective things to avoid involve transport. Living without a car reduces greenhouse gas emissions by an average of 2 tonnes of CO₂ emissions per person per year, while avoiding a single long distance return flight cuts emissions by an average of 1.9 tonnes. That’s equivalent to driving a typical EU car more than 16,000km from Hamburg, Germany to Ulaanbaatar, Mongolia and back.

People seated on an aeroplane viewed from the central back aisle

Since the vast majority of the world’s population do not fly at all – and of those who do, only a small percentage fly frequently – fliers can make very substantial reductions to their carbon footprints with each flight they avoid.

What to shift

But living sustainably is not just about giving things up. Large reductions in emissions can be achieved by shifting to a different way of doing things. Because driving is so polluting, for example, shifting to public transport , walking or cycling can make an enormous change, with added benefits for your personal health and local air pollution levels.

Likewise, because of the high emissions associated with meat and dairy – particularly those produced by farming sheep and cows – shifting towards more sustainable diets can substantially reduce your carbon footprint. A totally vegan diet is the most effective way to do this, but sizeable savings can be made simply by switching from beef and lamb to pork and chicken.

What to improve

Finally, the things we do already could be made more efficient by improving carbon efficiency at home: for example by using insulation and heat pumps , or producing your own renewable energy by installing solar panels . Switching from a combustion car to an electric one – ideally a battery EV, which generates much larger reductions in emissions than hybrid or fuel cell EVs – will make your car journeys more efficient. Plus, its effect on emissions will increase as time goes by and the amount of electricity generated by renewables grows.

A person in a grey jumper holds a bowl of greens on their lap

In the race to net zero, every tonne of CO₂ really does count. If more of us take even a few of these suggestions into account, we’re collectively more likely to be able to achieve the ambitious goals set out in the Paris climate agreement . Of course, these changes will need to be backed by major political action on sustainability at the same time.

If we’re to use less fossil fuel energy, the use of fossil fuels needs to be either restricted or made more expensive. The social consequences of this need to be carefully managed so that carbon pricing schemes can benefit people on lower incomes: which can happen if revenues are redistributed to take the financial burden off poorer households.

But there’s a whole lot more that governments could do to help people to live more sustainably, such as providing better, safer public transport and “ active travel ” infrastructure (such as bike lanes and pedestrian zones) so that people have alternatives to driving and flying.

There’s no avoiding the fact that if political solutions are to address climate change with the urgency our global situation requires, these solutions will limit the extent to which we can indulge in carbon-intensive behaviours. More than anything, we must vote into power those prepared to make such tough decisions for the sake of our planet’s future.

Imagine weekly climate newsletter

Don’t have time to read about climate change as much as you’d like? Get a weekly roundup in your inbox instead. Every Wednesday, The Conversation’s environment editor writes Imagine, a short email that goes a little deeper into just one climate issue. Join the 10,000+ readers who’ve subscribed so far.

  • Fossil fuels
  • Climate change
  • Renewable energy
  • Sustainability
  • Public transport
  • Sustainable living
  • climate mitigation
  • Greenhouse gas emissions (GHG)

how can we reduce the effects of global warming essay

Service Delivery Consultant

how can we reduce the effects of global warming essay

Newsletter and Deputy Social Media Producer

how can we reduce the effects of global warming essay

College Director and Principal | Curtin College

how can we reduce the effects of global warming essay

Head of School: Engineering, Computer and Mathematical Sciences

how can we reduce the effects of global warming essay

Educational Designer

a sunset glow over a glacier in Fiordland National Park. The Tasman Sea

A sunset lights a glacier in New Zealand's Fiordland National Park. Around the world, many glaciers are melting quickly as the planet warms.

  • ENVIRONMENT

Are there real ways to fight climate change? Yes.

Humans have the solutions to fight a global environmental crisis. Do we have the will?

The evidence that humans are causing climate change, with drastic consequences for life on the planet, is overwhelming .

Experts began raising the alarm about global warming in 1979 , a change now referred to under the broader term climate change , preferred by scientists to describe the complex shifts now affecting our planet’s weather and climate systems. Climate change encompasses not only rising average temperatures but also extreme weather events, shifting wildlife populations and habitats, rising seas , and a range of other impacts.  

Over 200 countries—193 countries plus the 27 members of the European Union—have signed the Paris Climate Agreement , a treaty created in 2015 to fight climate change on a global scale. The Intergovernmental Panel on Climate Change (IPCC), which synthesizes the scientific consensus on the issue, has set a goal of keeping warming under 2°C (3.6°F) and pursuing an even lower warming cap of 1.5 °C (2.7° F).

But no country has created policies that will keep the world below 1.5 °C, according to the Climate Action Tracker . Current emissions have the world on track to warm 2.8°C by the end of this century.  

Addressing climate change will require many solutions —there's no magic bullet. Yet nearly all of these solutions exist today. They range from worldwide changes to where we source our electricity to protecting forests from deforestation.  

The promise of new technology

Better technology will help reduce emissions from activities like manufacturing and driving.  

Scientists are working on ways to sustainably produce hydrogen, most of which is currently derived from natural gas, to feed zero-emission fuel cells for transportation and electricity.  

Renewable energy is growing, and in the U.S., a combination of wind, solar, geothermal, and other renewable sources provide 20 percen t of the nation’s electricity.  

New technological developments promise to build better batteries to store that renewable energy, engineer a smarter electric grid, and capture carbon dioxide from power plants and store it underground or turn it into valuable products such as gasoline . Some argue that nuclear power—despite concerns over safety, water use, and toxic waste—should also be part of the solution, because nuclear plants don't contribute any direct air pollution while operating.

Should we turn to geoengineering?

While halting new greenhouse gas emissions is critical, scientists say we need to extract existing carbon dioxide from the atmosphere, effectively sucking it out of the sky.  

Pulling carbon out of the atmosphere is a type of geoengineering , a science that interferes with the Earth’s natural systems, and it’s a controversial approach to fighting climate change.

Other types of geoengineering involve spraying sunlight-reflecting aerosols into the air or blocking the sun with a giant space mirror. Studies suggest we don’t know enough about the potential dangers of geoengineering to deploy it.

a melting iceberg

Restoring nature to protect the planet  

Planting trees, restoring seagrasses, and boosting the use of agricultural cover crops could help clean up significant amounts of carbon dioxide .  

The Amazon rainforest is an important reservoir of the Earth’s carbon, but a study published in 2021, showed deforestation was transforming this reservoir into a source of pollution.  

Restoring and protecting nature may provide as much as   37 percent of the climate mitigation needed to reach the Paris Agreement’s 203o targets. Protecting these ecosystems can also benefit biodiversity, providing a win-win for nature .

Adapt—or else

Communities around the world are already recognizing that adaptation must also be part of the response to climate change . From flood-prone coastal towns to regions facing increased droughts and fires, a new wave of initiatives focuses on boosting resilience . Those include managing or preventing land erosion, building microgrids and other energy systems built to withstand disruptions, and designing buildings with rising sea levels in mind.

Last year, the Inflation Reduction Act was signed into law and was a historic investment in fighting and adapting to climate change.

( Read more about how the bill will dramatically reduce emissions. )

Recent books such as Drawdown and Designing Climate Solutions have proposed bold yet simple plans for reversing our current course. The ideas vary, but the message is consistent: We already have many of the tools needed to address climate change. Some of the concepts are broad ones that governments and businesses must implement, but many other ideas involve changes that anyone can make— eating less   meat , for example, or rethinking your modes of transport .

"We have the technology today to rapidly move to a clean energy system," write the authors of Designing Climate Solutions . "And the price of that future, without counting environmental benefits, is about the same as that of a carbon-intensive future."

Sarah Gibbens contributed reporting to this article.

Related Topics

  • CLIMATE CHANGE
  • ENVIRONMENT AND CONSERVATION
  • AIR POLLUTION
  • RENEWABLE ENERGY

You May Also Like

how can we reduce the effects of global warming essay

Another weapon to fight climate change? Put carbon back where we found it

how can we reduce the effects of global warming essay

Which cities will still be livable in a world altered by climate change?

how can we reduce the effects of global warming essay

Could seaweed be the 'fastest and least expensive' tool to fight climate change?

how can we reduce the effects of global warming essay

Listen to 30 years of climate change transformed into haunting music

how can we reduce the effects of global warming essay

How the historic climate bill will dramatically reduce U.S. emissions

  • Photography
  • Environment

History & Culture

  • History & Culture
  • History Magazine
  • Paid Content
  • Destination Guide
  • Terms of Use
  • Privacy Policy
  • Your US State Privacy Rights
  • Children's Online Privacy Policy
  • Interest-Based Ads
  • About Nielsen Measurement
  • Do Not Sell or Share My Personal Information
  • Nat Geo Home
  • Attend a Live Event
  • Book a Trip
  • Inspire Your Kids
  • Shop Nat Geo
  • Visit the D.C. Museum
  • Learn About Our Impact
  • Support Our Mission
  • Advertise With Us
  • Customer Service
  • Renew Subscription
  • Manage Your Subscription
  • Work at Nat Geo
  • Sign Up for Our Newsletters
  • Contribute to Protect the Planet

Copyright © 1996-2015 National Geographic Society Copyright © 2015-2024 National Geographic Partners, LLC. All rights reserved

An illustration of various actions we can take to slow climate change and its impacts

New to Climate Change?

What can be done about climate change.

It is not too late to take action on climate change.

The Science

Given what we know about the threats that climate change poses to humans, we must take swift action. As a global community, we need to soon level off—and then decrease—the amount of carbon dioxide (CO 2 ) and other greenhouse gases in the atmosphere. The faster we do this, the less damage we will cause to our world and our way of life.

Stopping the Rise in CO2

The fastest way to address the buildup of CO 2 in the atmosphere is to stop adding more. Many vital parts of our economy emit huge amounts of greenhouse gases: the way we generate electricity and heat for our buildings and industry; the oil we burn to power our cars, trucks and planes; the refrigerants we use to preserve our food and cool our buildings; and the intensive manufacturing processes for making concrete and steel .

And yet there are many ways to reduce the CO 2 from these sectors. We can replace high-emitting fuels like coal, oil and gas with nearly “carbon-free” alternatives, such as solar power , wind power , or nuclear power . We can capture the CO 2 from fossil fuel power and manufacturing plants and store it underground. We can also update our buildings and infrastructure, so that it takes less energy to build and use them.

We can add to these efforts by trying to remove some of the CO 2 that is already in the atmosphere: for instance, by reforesting the Earth, by changing our farming practices to store more carbon in the soil , or through “direct air capture” technology. However, these methods will likely not be able to remove CO 2 quicker than we are now adding it to the atmosphere. We must begin with stopping our runaway greenhouse gas emissions.

Adapting to Change

Because human activity has already added such a large amount of greenhouse gases to the atmosphere, the world is now experiencing the early effects of climate change. We need to prepare for and adapt to these changes, so that we can protect human health, water and food supplies, our cities and towns , and natural habitats. A new field of work has emerged to reinforce coastlines to shield them from rising oceans , grow new crops to match regions’ changing climates, protect our infrastructure from wildfires and hurricanes , and plan for shifting supplies of water and food.

Today, these tasks are still manageable. If we get ahead of the regional changes we know are coming, and if we put the needs of the poorest and most vulnerable first, very few parts of the world will be irreparably damaged by the climate change we have already caused.

But unless we also actively cut our greenhouse gas emissions, unchecked climate change could eventually put safe and just adaptation beyond our reach. This possibility has led some scientists to study more extreme and controversial options, like geoengineering; for example, there are proposals that would try to artificially cool the Earth to counter some of the effects of climate change. Urgent action is needed to avoid the need for these riskier options.

Driving Solutions

Great progress can and must be achieved with the low-carbon technologies we have today. And all of us can help speed the pace at which these technologies take root and spread. Individuals can change their behavior and advocate for ambitious new policies. Corporations can drive change across whole industries. Governments can enact laws to make it easier and cheaper to cut greenhouse gas emissions, and to help communities prepare for new challenges. And intergovernmental agreements such as the Paris Agreement have already created a strong framework for international cooperation and aggressive action, if governments around the world step up their commitments .

At the same time, the world does not have a true alternative to fossil fuels that can meet all our current energy needs, let alone meet an increased demand in the future. We severely lack the suite of solutions to address climate change at an economic and social cost that we can agree to bear.

A tremendous amount of work is taking place at MIT and other scientific and engineering institutions around the world to develop these options, in collaboration with the industries and communities that can deploy and scale them. But to quicken the pace of technological breakthroughs, policymakers need to set the stage now for game-changing advances in multiple fields of science, technology, and policy. To take on the hardest challenges in reducing our emissions, in removing CO 2 from the atmosphere, and in adapting to a changing climate, we urgently need new tools.

Seizing the Opportunity

The MIT community fundamentally agrees that climate change presents grave risks that demand society’s urgent attention. The challenge requires an aggressive and pragmatic plan to achieve a net zero carbon global energy system, the sooner the better, for all of humankind.

If academia, business, government, and citizens act together toward this common goal, we can create a pollution-free energy system; form a prosperous, adaptable and resilient society; keep human, animal, and plant life flourishing; and create a better world for ourselves and generations to come.

You may notice that we, the writers on this site, use the word “we” to collectively refer to those who have benefitted in various ways from burning fossil fuels, those who will face the impacts of climate change, and those whose responsibility it is to act. We did this intentionally to create a sense of community in addressing this challenge. However, we acknowledge that people and groups across the globe have not equally benefitted from the use of fossil fuels, and many – including young people and future generations – will disproportionately endure the consequences. We, those who are affiliated with MIT and those who live in developed countries, are often among those whose activities have historically had a disproportionate impact on climate change. Therefore, we see that we have a greater responsibility – as professionals, citizens, community members, and consumers – to act to reverse its course.

Beef up your knowledge on specific climate change impacts and solutions with our quick explanations about clean energy, climate models, and much more, written by MIT experts.

Have Questions?

Whether it's simple or sticky, about science or solutions, ask us! We work with MIT faculty and scientists to get you clear, no-nonsense answers grounded in the best scientific information.

Tinker Around

Create your own set of climate change solutions in this online simulator from Climate Interactive and MIT Sloan’s Sustainability Initiative.

Take a Course

Extend your learning with edX's online courses on clean energy, food security, sustainable architecture, protecting health and many more.

Collections of news, posts, and research around major climate science topics. 

Paris

The Paris Agreement

workers installing solar panels

Renewable Energy

oil refinery

Carbon Pricing

Mit climate news in your inbox.

Facilities Management, Northwestern University

10 ways to stop global warming, want to help stop global warming here are 10 simple things you can do and how much carbon dioxide you'll save doing them..

Change a light Replacing one regular light bulb with a compact fluorescent light bulb will save 150 pounds of carbon dioxide a year. 

Drive less  Walk, bike, carpool or take mass transit more often. You'll save one pound of carbon dioxide for every mile you don't drive!

Recycle more You can save 2,400 pounds of carbon dioxide per year by recycling just half of your household waste.

Check your tires Keeping your tires inflated properly can improve your gas mileage by more than 3 percent. Every gallon of gasoline saved keeps 20 pounds of carbon dioxide out of the atmosphere.

Use less hot water It takes a lot of energy to heat water. Use less hot water by taking shorter and cooler showers and washing your clothes in cold or warm instead of hot water (more than 500 pounds of carbon dioxide saved per year).

Avoid products with a lot of packaging You can save 1,200 pounds of carbon dioxide if you reduce your garbage by 10 percent.

Adjust your thermostat Moving your thermostat down just 2 degrees in winter and up 2 degrees in summer could save about 2,000 pounds of carbon dioxide a year.

Plant a tree A single tree will absorb one ton of carbon dioxide over its lifetime.

Turn off electronic devices Simply turning off your television, DVD player, stereo, and computer, when you're not using them, will save you thousands of pounds of carbon dioxide a year.

6 ways ordinary people can prevent climate change, according to researchers and advocates

Image: The Wider Image: Journey to Antarctica: seals, penguins and glacial beauty

In October, the Intergovernmental Panel on Climate Change, a leading international body on climate change researchers, released an alarming report . The study found that countries around the world have just 12 years to reduce global warming before it reaches catastrophic levels.

Now that we know time may be running out, the question is: What can we do about it?

Understand how climate change will impact you

If current global temperatures rise above 1.5 degrees Celsius, as the report suggests, the warming atmosphere will create more extreme weather patterns across the U.S., according to Ben Strauss, chief scientist of Climate Central, an organization that reports on climate change. He says people across the country can expect hotter summers and milder winters, which will have a direct impact on food crops and the survival of wildlife.

“It’s getting hotter, so we can expect many more days above 90 degrees or 95 degrees, depending on where you live,” says Strauss.

In the West, continued wildfires will have a direct impact on air quality and human health, according to Strauss. In the Southwest, he says droughts will lead to water scarcity, while the East and Midwest will experience more torrential rainstorms. Strauss says people in eastern coastal areas, especially in low-lying communities, will see more flooding due to heavier and longer-lasting hurricanes, which will have an impact on the value of their homes. In the Northeast, he says, warmer weather will bring more tick and mosquito-born illnesses . The region will see fewer snowstorms, but the storms will become more intense due to increased moisture in the air.

One thing will surely impact people equally across the country, according to the scientist: intensifying summer heat. “Many more days that are danger days in terms of human health and that are ‘black flag’ days — you get to a certain combination of heat and humidity,” Strauss says.

What can we do?

Focus on solutions, according to Crystal Chissell , a vice president for Project Drawdown, a coalition of researchers and scientists who are working on climate change solutions.

Chissell says reports of impending doom tend to cause ordinary people to feel hopeless and to shut down .

“We will get a lot further toward solving the problem if we focus on solutions rather than continuing to highlight the problem,” Chissell says.

Project Drawdown recently put together a report highlighting 30 behavioral solutions ordinary people can take to combat climate change. The top three include wasting less food , adopting a plant-rich diet and consuming less energy and water.

how can we reduce the effects of global warming essay

Get Involved How to be an activist for causes you believe in

6 things you can do to combat climate change, according to advocacy groups, 1) waste less food.

Methane from agricultural actives, waste management, and energy use is the second largest cause of climate change behind fossil fuels, according to the Environmental Protection Agency.

Reducing food waste is the number-one thing consumers can do to significantly lessen their climate impact, according to the Project Drawdown report.

“Food that is disposed of and spoiled creates methane, and that’s why it has an impact on greenhouse gases, because methane is such a strong greenhouse gas,” Chissell says. “And that’s why reducing food waste has such a large impact.”

Food waste occurs when we don’t buy produce because it has blemishes or is misshapen, when we discard food because it is a day past the expiration date, or because we simply never get around to eating it, she says.

2) Eat less factory-farmed red meat

Factory farms feed cows grains, which cause them to release methane into the air through their gases, says Chissell.

“It’s not actually natural to their digestive system so it creates more methane,” Chissell explains.

Chissell says adopting a plant-rich diet , and eating more meat from organic farms where animals are fed natural diets, can help reduce methane. “It’s not even necessary to be a vegan or a vegetarian,” she says, “it’s just reducing the amount of meat that we consume and eating plant-based [foods].”

3) Consume less energy and water

“It’s absolutely imperative to also reduce energy usage,” says Chissell. “For instance, switching to LED light bulbs — that has a very large impact, as does any measure that can reduce household water use.”

There are a number of actions you can take to reduce water consumption, according to Chissell, including purchasing low-flow shower heads and sink faucets, taking shorter showers and washing full loads of laundry.

4) Call and meet with your representatives

Constituents who do the extra legwork of calling and meeting with their representatives have a huge influence, according to Flannery Winchester, communications coordinator at Citizens' Climate Lobby, a non-partisan advocacy organization that focuses on national policies that address climate change.

“If they’re not communicating with the people who are elected to represent them, then those people are not going to be prioritizing those issues,” Winchester says.

Many people believe their elected officials won’t be swayed by their concerns, says Winchester. But when people actively lobby their representatives, she says, change does happen.

For example, Winchester says voters influenced both Democrats and Republicans in the U.S. House of Representatives to come together to create the the Climate Solutions Caucus, a bipartisan group focused on climate change solutions.

“Things really are moving,” says Winchester, “and it’s because people are taking the time to talk to their members of Congress.”

5) Open a dialogue and find common ground

While there is major consensus among scientists that climate change is happening, some people may still doubt it’s real, or see climate change policies as “job killers,” according to Winchester.

How people talk to others about climate change is important to solving the problem, Winchester says. She says it’s imperative to avoid arguing about climate change as if it is a partisan issue.

“Really listen, ask open-ended questions and focus on finding common ground ,” Winchester advises. For instance, if someone fears climate change policy will hurt coal industry jobs, re-focus the conversation on how climate change policies can create jobs, she says.

“Focusing on the common ground is the main thing that’s going to make it possible for you to introduce new information into the conversation, because they don’t feel like you’re fighting with them,” Winchester says.

6) Volunteer

A big way to be a part of the solution is to join a nonprofit organization where you live that focuses on helping the environment. Many of these organizations have membership opportunities in states and congressional districts across the country.

how can we reduce the effects of global warming essay

A BETTER Inbox The BETTER newsletter helps you make the most of your mind, your body and your life

Want more tips like these? NBC News BETTER is obsessed with finding easier, healthier and smarter ways to live. Sign up for our newsletter and follow us on Facebook , Twitter and Instagram .

UN logo

Search the United Nations

  • What Is Climate Change
  • Myth Busters
  • Renewable Energy
  • Finance & Justice
  • Initiatives
  • Sustainable Development Goals
  • Paris Agreement
  • Climate Ambition Summit 2023
  • Climate Conferences
  • Press Material
  • Communications Tips

how can we reduce the effects of global warming essay

Causes and Effects of Climate Change

Fossil fuels – coal, oil and gas – are by far the largest contributor to global climate change, accounting for over 75 per cent of global greenhouse gas emissions and nearly 90 per cent of all carbon dioxide emissions. As greenhouse gas emissions blanket the Earth, they trap the sun’s heat. This leads to global warming and climate change. The world is now warming faster than at any point in recorded history. Warmer temperatures over time are changing weather patterns and disrupting the usual balance of nature. This poses many risks to human beings and all other forms of life on Earth. 

Image of a lush winding wetlands

Empowering women and restoring wetlands go hand in hand

Environmentalist and Women Changemaker in the World of Wetlands Cécile Ndjebet says women are crucial for sustainable environmental conservation.

Three boys stand on roof watching the sunset

wikiHow teams up with Verified to empower people with climate information

A woman working in the field points at something out of frame

Sacred plant helps forge a climate-friendly future in Paraguay

Facts and figures.

  • What is climate change?
  • Causes and effects
  • Myth busters

Cutting emissions

  • Explaining net zero
  • High-level expert group on net zero
  • Checklists for credibility of net-zero pledges
  • Greenwashing
  • What you can do

Clean energy

  • Renewable energy – key to a safer future
  • What is renewable energy
  • Five ways to speed up the energy transition
  • Why invest in renewable energy
  • Clean energy stories
  • A just transition

Adapting to climate change

  • Climate adaptation
  • Early warnings for all
  • Youth voices

Financing climate action

  • Finance and justice
  • Loss and damage
  • $100 billion commitment
  • Why finance climate action
  • Biodiversity
  • Human Security

International cooperation

  • What are Nationally Determined Contributions
  • Acceleration Agenda
  • Climate Ambition Summit
  • Climate conferences (COPs)
  • Youth Advisory Group
  • Action initiatives
  • Secretary-General’s speeches
  • Press material
  • Fact sheets
  • Communications tips

News from the Columbia Climate School

You Asked: How Can Students Make a Difference on Climate Change?

Earth Institute

“ You Asked ” is a series where Earth Institute experts tackle reader questions on science and sustainability. In honor of Climate Week NYC and the Covering Climate Now initiative , we’re dedicating a few weeks to focusing on your questions about climate change.

The following question was submitted through our Instagram page by one of our followers:

How can many of us, as younger students, do our part to help limit the effects of climate change?

Response from Meredith Harris, a student in Barnard College and the Jewish Theological Seminary (Class of ’21):

headshot

Students can take action by educating their non-environmentally informed friends about the perils of climate change, and the basic habits they can change in their daily lives (such as eating less meat) to help make an impact. While it is difficult to write policy, or change the minds of adults in power, informing the current and next generation will help prepare society for how we can combat the most life-threatening issue any of us will have to face in the coming years.

Response from Arianna Christina Menzelos, a student in Columbia College (Class of ’21):

There’s no question that I want radical climate action — i.e. upending social, economic, and political orders in favor of a more sustainable status quo overnight. However, I worry that a narrow focus on macro goals (a Green New Deal, international agreements, etc), will prevent me from taking initiative on the impacts that I  can  make as a student. In the past two years, I co-led a campaign with my close friend to urge Columbia to commit to carbon neutrality. Sure, Columbia is not New York City, or the state, or the country, but it is my world (at least for the next two years).

My best advice in taking climate action is to choose a project — no matter the scale — and see it to its completion. Then, you can take up another one. And maybe one day it  will  be on a more global scale!

Note: On September 20, three days before the UN Climate Summit in NYC, millions of young people and adults will strike all across the US and world to demand transformative action be taken to address the climate crisis. Click here to find a climate strike near you.

Got a question about climate change? Feeling curious about conservation? To submit a question, drop a comment below, message us on Instagram , or email us  here .

Related Posts

Venetian Ventures: Exploring Sustainable Development Through Fellowships in Italy

Venetian Ventures: Exploring Sustainable Development Through Fellowships in Italy

Student Spotlight: Prioritizing Environmental Justice and Urban Green Space

Student Spotlight: Prioritizing Environmental Justice and Urban Green Space

High School Students Learn About Microplastic Pollution in Eco Ambassador Program

High School Students Learn About Microplastic Pollution in Eco Ambassador Program

guest

Get the Columbia Climate School Newsletter

how can we reduce the effects of global warming essay

45,000+ students realised their study abroad dream with us. Take the first step today

Here’s your new year gift, one app for all your, study abroad needs, start your journey, track your progress, grow with the community and so much more.

how can we reduce the effects of global warming essay

Verification Code

An OTP has been sent to your registered mobile no. Please verify

how can we reduce the effects of global warming essay

Thanks for your comment !

Our team will review it before it's shown to our readers.

how can we reduce the effects of global warming essay

Essay on Global Warming

how can we reduce the effects of global warming essay

  • Updated on  
  • Apr 27, 2024

how can we reduce the effects of global warming essay

Being able to write an essay is an integral part of mastering any language. Essays form an integral part of many academic and scholastic exams like the SAT, and UPSC amongst many others. It is a crucial evaluative part of English proficiency tests as well like IELTS, TOEFL, etc. Major essays are meant to emphasize public issues of concern that can have significant consequences on the world. To understand the concept of Global Warming and its causes and effects, we must first examine the many factors that influence the planet’s temperature and what this implies for the world’s future. Here’s an unbiased look at the essay on Global Warming and other essential related topics.

Short Essay on Global Warming and Climate Change?

Since the industrial and scientific revolutions, Earth’s resources have been gradually depleted. Furthermore, the start of the world’s population’s exponential expansion is particularly hard on the environment. Simply put, as the population’s need for consumption grows, so does the use of natural resources , as well as the waste generated by that consumption.

Climate change has been one of the most significant long-term consequences of this. Climate change is more than just the rise or fall of global temperatures; it also affects rain cycles, wind patterns, cyclone frequencies, sea levels, and other factors. It has an impact on all major life groupings on the planet.

Also Read: Essay on Yoga Day

Also Read: Speech on Yoga Day

What is Global Warming?

Global warming is the unusually rapid increase in Earth’s average surface temperature over the past century, primarily due to the greenhouse gases released by people burning fossil fuels . The greenhouse gases consist of methane, nitrous oxide, ozone, carbon dioxide, water vapour, and chlorofluorocarbons. The weather prediction has been becoming more complex with every passing year, with seasons more indistinguishable, and the general temperatures hotter.

The number of hurricanes, cyclones, droughts, floods, etc., has risen steadily since the onset of the 21st century. The supervillain behind all these changes is Global Warming. The name is quite self-explanatory; it means the rise in the temperature of the Earth.

Also Read: What is a Natural Disaster?

What are the Causes of Global Warming?

According to recent studies, many scientists believe the following are the primary four causes of global warming:

  • Deforestation 
  • Greenhouse emissions
  • Carbon emissions per capita

Extreme global warming is causing natural disasters , which can be seen all around us. One of the causes of global warming is the extreme release of greenhouse gases that become trapped on the earth’s surface, causing the temperature to rise. Similarly, volcanoes contribute to global warming by spewing excessive CO2 into the atmosphere.

The increase in population is one of the major causes of Global Warming. This increase in population also leads to increased air pollution . Automobiles emit a lot of CO2, which remains in the atmosphere. This increase in population is also causing deforestation, which contributes to global warming.

The earth’s surface emits energy into the atmosphere in the form of heat, keeping the balance with the incoming energy. Global warming depletes the ozone layer, bringing about the end of the world. There is a clear indication that increased global warming will result in the extinction of all life on Earth’s surface.

Also Read: Land, Soil, Water, Natural Vegetation, and Wildlife Resources

Solutions for Global Warming

Of course, industries and multinational conglomerates emit more carbon than the average citizen. Nonetheless, activism and community effort are the only viable ways to slow the worsening effects of global warming. Furthermore, at the state or government level, world leaders must develop concrete plans and step-by-step programmes to ensure that no further harm is done to the environment in general.

Although we are almost too late to slow the rate of global warming, finding the right solution is critical. Everyone, from individuals to governments, must work together to find a solution to Global Warming. Some of the factors to consider are pollution control, population growth, and the use of natural resources.

One very important contribution you can make is to reduce your use of plastic. Plastic is the primary cause of global warming, and recycling it takes years. Another factor to consider is deforestation, which will aid in the control of global warming. More tree planting should be encouraged to green the environment. Certain rules should also govern industrialization. Building industries in green zones that affect plants and species should be prohibited.

Also Read: Essay on Pollution

Effects of Global Warming

Global warming is a real problem that many people want to disprove to gain political advantage. However, as global citizens, we must ensure that only the truth is presented in the media.

This decade has seen a significant impact from global warming. The two most common phenomena observed are glacier retreat and arctic shrinkage. Glaciers are rapidly melting. These are clear manifestations of climate change.

Another significant effect of global warming is the rise in sea level. Flooding is occurring in low-lying areas as a result of sea-level rise. Many countries have experienced extreme weather conditions. Every year, we have unusually heavy rain, extreme heat and cold, wildfires, and other natural disasters.

Similarly, as global warming continues, marine life is being severely impacted. This is causing the extinction of marine species as well as other problems. Furthermore, changes are expected in coral reefs, which will face extinction in the coming years. These effects will intensify in the coming years, effectively halting species expansion. Furthermore, humans will eventually feel the negative effects of Global Warming.

Also Read: Concept of Sustainable Development

Sample Essays on Global Warming

Here are some sample essays on Global Warming:

Essay on Global Warming Paragraph in 100 – 150 words

Global Warming is caused by the increase of carbon dioxide levels in the earth’s atmosphere and is a result of human activities that have been causing harm to our environment for the past few centuries now. Global Warming is something that can’t be ignored and steps have to be taken to tackle the situation globally. The average temperature is constantly rising by 1.5 degrees Celsius over the last few years.

The best method to prevent future damage to the earth, cutting down more forests should be banned and Afforestation should be encouraged. Start by planting trees near your homes and offices, participate in events, and teach the importance of planting trees. It is impossible to undo the damage but it is possible to stop further harm.

Also Read: Social Forestry

Essay on Global Warming in 250 Words

Over a long period, it is observed that the temperature of the earth is increasing. This affected wildlife, animals, humans, and every living organism on earth. Glaciers have been melting, and many countries have started water shortages, flooding, and erosion and all this is because of global warming. 

No one can be blamed for global warming except for humans. Human activities such as gases released from power plants, transportation, and deforestation have increased gases such as carbon dioxide, CFCs, and other pollutants in the earth’s atmosphere.                                              The main question is how can we control the current situation and build a better world for future generations. It starts with little steps by every individual. 

Start using cloth bags made from sustainable materials for all shopping purposes, instead of using high-watt lights use energy-efficient bulbs, switch off the electricity, don’t waste water, abolish deforestation and encourage planting more trees. Shift the use of energy from petroleum or other fossil fuels to wind and solar energy. Instead of throwing out the old clothes donate them to someone so that it is recycled. 

Donate old books, don’t waste paper.  Above all, spread awareness about global warming. Every little thing a person does towards saving the earth will contribute in big or small amounts. We must learn that 1% effort is better than no effort. Pledge to take care of Mother Nature and speak up about global warming.

Also Read: Types of Water Pollution

Essay on Global Warming in 500 Words

Global warming isn’t a prediction, it is happening! A person denying it or unaware of it is in the most simple terms complicit. Do we have another planet to live on? Unfortunately, we have been bestowed with this one planet only that can sustain life yet over the years we have turned a blind eye to the plight it is in. Global warming is not an abstract concept but a global phenomenon occurring ever so slowly even at this moment. Global Warming is a phenomenon that is occurring every minute resulting in a gradual increase in the Earth’s overall climate. Brought about by greenhouse gases that trap the solar radiation in the atmosphere, global warming can change the entire map of the earth, displacing areas, flooding many countries, and destroying multiple lifeforms. Extreme weather is a direct consequence of global warming but it is not an exhaustive consequence. There are virtually limitless effects of global warming which are all harmful to life on earth. The sea level is increasing by 0.12 inches per year worldwide. This is happening because of the melting of polar ice caps because of global warming. This has increased the frequency of floods in many lowland areas and has caused damage to coral reefs. The Arctic is one of the worst-hit areas affected by global warming. Air quality has been adversely affected and the acidity of the seawater has also increased causing severe damage to marine life forms. Severe natural disasters are brought about by global warming which has had dire effects on life and property. As long as mankind produces greenhouse gases, global warming will continue to accelerate. The consequences are felt at a much smaller scale which will increase to become drastic shortly. The power to save the day lies in the hands of humans, the need is to seize the day. Energy consumption should be reduced on an individual basis. Fuel-efficient cars and other electronics should be encouraged to reduce the wastage of energy sources. This will also improve air quality and reduce the concentration of greenhouse gases in the atmosphere. Global warming is an evil that can only be defeated when fought together. It is better late than never. If we all take steps today, we will have a much brighter future tomorrow. Global warming is the bane of our existence and various policies have come up worldwide to fight it but that is not enough. The actual difference is made when we work at an individual level to fight it. Understanding its import now is crucial before it becomes an irrevocable mistake. Exterminating global warming is of utmost importance and each one of us is as responsible for it as the next.  

Also Read: Essay on Library: 100, 200 and 250 Words

Essay on Global Warming UPSC

Always hear about global warming everywhere, but do we know what it is? The evil of the worst form, global warming is a phenomenon that can affect life more fatally. Global warming refers to the increase in the earth’s temperature as a result of various human activities. The planet is gradually getting hotter and threatening the existence of lifeforms on it. Despite being relentlessly studied and researched, global warming for the majority of the population remains an abstract concept of science. It is this concept that over the years has culminated in making global warming a stark reality and not a concept covered in books. Global warming is not caused by one sole reason that can be curbed. Multifarious factors cause global warming most of which are a part of an individual’s daily existence. Burning of fuels for cooking, in vehicles, and for other conventional uses, a large amount of greenhouse gases like carbon dioxide, and methane amongst many others is produced which accelerates global warming. Rampant deforestation also results in global warming as lesser green cover results in an increased presence of carbon dioxide in the atmosphere which is a greenhouse gas.  Finding a solution to global warming is of immediate importance. Global warming is a phenomenon that has to be fought unitedly. Planting more trees can be the first step that can be taken toward warding off the severe consequences of global warming. Increasing the green cover will result in regulating the carbon cycle. There should be a shift from using nonrenewable energy to renewable energy such as wind or solar energy which causes less pollution and thereby hinder the acceleration of global warming. Reducing energy needs at an individual level and not wasting energy in any form is the most important step to be taken against global warming. The warning bells are tolling to awaken us from the deep slumber of complacency we have slipped into. Humans can fight against nature and it is high time we acknowledged that. With all our scientific progress and technological inventions, fighting off the negative effects of global warming is implausible. We have to remember that we do not inherit the earth from our ancestors but borrow it from our future generations and the responsibility lies on our shoulders to bequeath them a healthy planet for life to exist. 

Also Read: Essay on Disaster Management

Climate Change and Global Warming Essay

Global Warming and Climate Change are two sides of the same coin. Both are interrelated with each other and are two issues of major concern worldwide. Greenhouse gases released such as carbon dioxide, CFCs, and other pollutants in the earth’s atmosphere cause Global Warming which leads to climate change. Black holes have started to form in the ozone layer that protects the earth from harmful ultraviolet rays. 

Human activities have created climate change and global warming. Industrial waste and fumes are the major contributors to global warming. 

Another factor affecting is the burning of fossil fuels, deforestation and also one of the reasons for climate change.  Global warming has resulted in shrinking mountain glaciers in Antarctica, Greenland, and the Arctic and causing climate change. Switching from the use of fossil fuels to energy sources like wind and solar. 

When buying any electronic appliance buy the best quality with energy savings stars. Don’t waste water and encourage rainwater harvesting in your community. 

Also Read: Essay on Air Pollution

Tips to Write an Essay

Writing an effective essay needs skills that few people possess and even fewer know how to implement. While writing an essay can be an assiduous task that can be unnerving at times, some key pointers can be inculcated to draft a successful essay. These involve focusing on the structure of the essay, planning it out well, and emphasizing crucial details.

Mentioned below are some pointers that can help you write better structure and more thoughtful essays that will get across to your readers:

  • Prepare an outline for the essay to ensure continuity and relevance and no break in the structure of the essay
  • Decide on a thesis statement that will form the basis of your essay. It will be the point of your essay and help readers understand your contention
  • Follow the structure of an introduction, a detailed body followed by a conclusion so that the readers can comprehend the essay in a particular manner without any dissonance.
  • Make your beginning catchy and include solutions in your conclusion to make the essay insightful and lucrative to read
  • Reread before putting it out and add your flair to the essay to make it more personal and thereby unique and intriguing for readers  

Also Read: I Love My India Essay: 100 and 500+ Words in English for School Students

Ans. Both natural and man-made factors contribute to global warming. The natural one also contains methane gas, volcanic eruptions, and greenhouse gases. Deforestation, mining, livestock raising, burning fossil fuels, and other man-made causes are next.

Ans. The government and the general public can work together to stop global warming. Trees must be planted more often, and deforestation must be prohibited. Auto usage needs to be curbed, and recycling needs to be promoted.

Ans. Switching to renewable energy sources , adopting sustainable farming, transportation, and energy methods, and conserving water and other natural resources.

Relevant Blogs

For more information on such interesting topics, visit our essay writing page and follow Leverage Edu.

' src=

Digvijay Singh

Having 2+ years of experience in educational content writing, withholding a Bachelor's in Physical Education and Sports Science and a strong interest in writing educational content for students enrolled in domestic and foreign study abroad programmes. I believe in offering a distinct viewpoint to the table, to help students deal with the complexities of both domestic and foreign educational systems. Through engaging storytelling and insightful analysis, I aim to inspire my readers to embark on their educational journeys, whether abroad or at home, and to make the most of every learning opportunity that comes their way.

Leave a Reply Cancel reply

Save my name, email, and website in this browser for the next time I comment.

Contact no. *

This was really a good essay on global warming… There has been used many unic words..and I really liked it!!!Seriously I had been looking for a essay about Global warming just like this…

Thank you for the comment!

I want to learn how to write essay writing so I joined this page.This page is very useful for everyone.

Hi, we are glad that we could help you to write essays. We have a beginner’s guide to write essays ( https://leverageedu.com/blog/essay-writing/ ) and we think this might help you.

It is not good , to have global warming in our earth .So we all have to afforestation program on all the world.

thank you so much

Very educative , helpful and it is really going to strength my English knowledge to structure my essay in future

Thank you for the comment, please follow our newsletter to get more insights on studying abroad and exams!

Global warming is the increase in 𝓽𝓱𝓮 ᴀᴠᴇʀᴀɢᴇ ᴛᴇᴍᴘᴇʀᴀᴛᴜʀᴇs ᴏғ ᴇᴀʀᴛʜ🌎 ᴀᴛᴍᴏsᴘʜᴇʀᴇ

browse success stories

Leaving already?

8 Universities with higher ROI than IITs and IIMs

Grab this one-time opportunity to download this ebook

Connect With Us

45,000+ students realised their study abroad dream with us. take the first step today..

how can we reduce the effects of global warming essay

Resend OTP in

how can we reduce the effects of global warming essay

Need help with?

Study abroad.

UK, Canada, US & More

IELTS, GRE, GMAT & More

Scholarship, Loans & Forex

Country Preference

New Zealand

Which English test are you planning to take?

Which academic test are you planning to take.

Not Sure yet

When are you planning to take the exam?

Already booked my exam slot

Within 2 Months

Want to learn about the test

Which Degree do you wish to pursue?

When do you want to start studying abroad.

September 2024

January 2025

What is your budget to study abroad?

how can we reduce the effects of global warming essay

How would you describe this article ?

Please rate this article

We would like to hear more.

What evidence exists that Earth is warming and that humans are the main cause?

We know the world is warming because people have been recording daily high and low temperatures at thousands of weather stations worldwide, over land and ocean, for many decades and, in some locations, for more than a century. When different teams of climate scientists in different agencies (e.g., NOAA and NASA) and in other countries (e.g., the U.K.’s Hadley Centre) average these data together, they all find essentially the same result: Earth’s average surface temperature has risen by about 1.8°F (1.0°C) since 1880. 

Bar graph of global temperature anomalies with an overlay of a line graph of atmospheric carbon dioxide from 1850-2023

( bar chart ) Yearly temperature compared to the twentieth-century average from 1850–2023. Red bars mean warmer-than-average years; blue bars mean colder-than-average years. (line graph) Atmospheric carbon dioxide amounts: 1850-1958 from IAC , 1959-2023 from NOAA Global Monitoring Lab . NOAA Climate.gov graph, adapted from original by Dr. Howard Diamond (NOAA ARL).

In addition to our surface station data, we have many different lines of evidence that Earth is warming ( learn more ). Birds are migrating earlier, and their migration patterns are changing.  Lobsters  and  other marine species  are moving north. Plants are blooming earlier in the spring. Mountain glaciers are melting worldwide, and snow cover is declining in the Northern Hemisphere (Learn more  here  and  here ). Greenland’s ice sheet—which holds about 8 percent of Earth’s fresh water—is melting at an accelerating rate ( learn more ). Mean global sea level is rising ( learn more ). Arctic sea ice is declining rapidly in both thickness and extent ( learn more ).

Aerial photo of glacier front with a graph overlay of Greenland ice mass over time

The Greenland Ice Sheet lost mass again in 2020, but not as much as it did 2019. Adapted from the 2020 Arctic Report Card, this graph tracks Greenland mass loss measured by NASA's GRACE satellite missions since 2002. The background photo shows a glacier calving front in western Greenland, captured from an airplane during a NASA Operation IceBridge field campaign. Full story.

We know this warming is largely caused by human activities because the key role that carbon dioxide plays in maintaining Earth’s natural greenhouse effect has been understood since the mid-1800s. Unless it is offset by some equally large cooling influence, more atmospheric carbon dioxide will lead to warmer surface temperatures. Since 1800, the amount of carbon dioxide in the atmosphere  has increased  from about 280 parts per million to 410 ppm in 2019. We know from both its rapid increase and its isotopic “fingerprint” that the source of this new carbon dioxide is fossil fuels, and not natural sources like forest fires, volcanoes, or outgassing from the ocean.

DIgital image of a painting of a fire burning in a coal pile in a small village

Philip James de Loutherbourg's 1801 painting, Coalbrookdale by Night , came to symbolize the start of the Industrial Revolution, when humans began to harness the power of fossil fuels—and to contribute significantly to Earth's atmospheric greenhouse gas composition. Image from Wikipedia .

Finally, no other known climate influences have changed enough to account for the observed warming trend. Taken together, these and other lines of evidence point squarely to human activities as the cause of recent global warming.

USGCRP (2017). Climate Science Special Report: Fourth National Climate Assessment, Volume 1 [Wuebbles, D.J., D.W. Fahey, K.A. Hibbard, D.J. Dokken, B.C. Stewart, and T.K. Maycock (eds.)]. U.S. Global Change Research Program, Washington, DC, USA, 470 pp, doi:  10.7930/J0J964J6 .

National Fish, Wildlife, and Plants Climate Adaptation Partnership (2012):  National Fish, Wildlife, and Plants Climate Adaptation Strategy . Association of Fish and Wildlife Agencies, Council on Environmental Quality, Great Lakes Indian Fish and Wildlife Commission, National Oceanic and Atmospheric Administration, and U.S. Fish and Wildlife Service. Washington, D.C. DOI: 10.3996/082012-FWSReport-1

IPCC (2019). Summary for Policymakers. In: IPCC Special Report on the Ocean and Cryosphere in a Changing Climate. [H.-O. Pörtner, D.C. Roberts, V. Masson-Delmotte, P. Zhai, M. Tignor, E. Poloczanska, K. Mintenbeck, A. Alegría, M. Nicolai, A. Okem, J. Petzold, B. Rama, N.M. Weyer (eds.)]. In press.

NASA JPL: "Consensus: 97% of climate scientists agree."  Global Climate Change . A website at NASA's Jet Propulsion Laboratory (climate.nasa.gov/scientific-consensus). (Accessed July 2013.)

We value your feedback

Help us improve our content

Related Content

News & features, 2017 state of the climate: mountain glaciers, warming waters shift fish communities northward in the arctic, climate & fish sticks, maps & data, past climate, future climate, land - terrestrial climate variables, teaching climate, toolbox for teaching climate & energy, student climate & conservation congress (sc3), climate youth engagement, climate resilience toolkit, arctic oceans, sea ice, and coasts, alaska and the arctic, food safety and nutrition.

Newsroom Post

Climate change widespread, rapid, and intensifying – ipcc.

GENEVA, Aug 9 – Scientists are observing changes in the Earth’s climate in every region and across the whole climate system, according to the latest Intergovernmental Panel on Climate Change (IPCC) Report, released today. Many of the changes observed in the climate are unprecedented in thousands, if not hundreds of thousands of years, and some of the changes already set in motion—such as continued sea level rise—are irreversible over hundreds to thousands of years.

However, strong and sustained reductions in emissions of carbon dioxide (CO 2 ) and other greenhouse gases would limit climate change. While benefits for air quality would come quickly, it could take 20-30 years to see global temperatures stabilize, according to the IPCC Working Group I report, Climate Change 2021: the Physical Science Basis , approved on Friday by 195 member governments of the IPCC, through a virtual approval session that was held over two weeks starting on July 26.

The Working Group I report is the first instalment of the IPCC’s Sixth Assessment Report (AR6), which will be completed in 2022.

“This report reflects extraordinary efforts under exceptional circumstances,” said Hoesung Lee, Chair of the IPCC. “The innovations in this report, and advances in climate science that it reflects, provide an invaluable input into climate negotiations and decision-making.”

Faster warming

The report provides new estimates of the chances of crossing the global warming level of 1.5°C in the next decades, and finds that unless there are immediate, rapid and large-scale reductions in greenhouse gas emissions, limiting warming to close to 1.5°C or even 2°C will be beyond reach.

The report shows that emissions of greenhouse gases from human activities are responsible for approximately 1.1°C of warming since 1850-1900, and finds that averaged over the next 20 years, global temperature is expected to reach or exceed 1.5°C of warming. This assessment is based on improved observational datasets to assess historical warming, as well progress in scientific understanding of the response of the climate system to human-caused greenhouse gas emissions.

“This report is a reality check,” said IPCC Working Group I Co-Chair Valérie Masson-Delmotte. “We now have a much clearer picture of the past, present and future climate, which is essential for understanding where we are headed, what can be done, and how we can prepare.”

Every region facing increasing changes

Many characteristics of climate change directly depend on the level of global warming, but what people experience is often very different to the global average. For example, warming over land is larger than the global average, and it is more than twice as high in the Arctic.

“Climate change is already affecting every region on Earth, in multiple ways. The changes we experience will increase with additional warming,” said IPCC Working Group I Co-Chair Panmao Zhai.

The report projects that in the coming decades climate changes will increase in all regions. For 1.5°C of global warming, there will be increasing heat waves, longer warm seasons and shorter cold seasons. At 2°C of global warming, heat extremes would more often reach critical tolerance thresholds for agriculture and health, the report shows.

But it is not just about temperature. Climate change is bringing multiple different changes in different regions – which will all increase with further warming. These include changes to wetness and dryness, to winds, snow and ice, coastal areas and oceans. For example:

  • Climate change is intensifying the water cycle. This brings more intense rainfall and associated flooding, as well as more intense drought in many regions.
  • Climate change is affecting rainfall patterns. In high latitudes, precipitation is likely to increase, while it is projected to decrease over large parts of the subtropics. Changes to monsoon precipitation are expected, which will vary by region.
  • Coastal areas will see continued sea level rise throughout the 21st century, contributing to more frequent and severe coastal flooding in low-lying areas and coastal erosion. Extreme sea level events that previously occurred once in 100 years could happen every year by the end of this century.
  • Further warming will amplify permafrost thawing, and the loss of seasonal snow cover, melting of glaciers and ice sheets, and loss of summer Arctic sea ice.
  • Changes to the ocean, including warming, more frequent marine heatwaves, ocean acidification, and reduced oxygen levels have been clearly linked to human influence. These changes affect both ocean ecosystems and the people that rely on them, and they will continue throughout at least the rest of this century.
  • For cities, some aspects of climate change may be amplified, including heat (since urban areas are usually warmer than their surroundings), flooding from heavy precipitation events and sea level rise in coastal cities.

For the first time, the Sixth Assessment Report provides a more detailed regional assessment of climate change, including a focus on useful information that can inform risk assessment, adaptation, and other decision-making, and a new framework that helps translate physical changes in the climate – heat, cold, rain, drought, snow, wind, coastal flooding and more – into what they mean for society and ecosystems.

This regional information can be explored in detail in the newly developed Interactive Atlas interactive-atlas.ipcc.ch as well as regional fact sheets, the technical summary, and underlying report.

Human influence on the past and future climate

“It has been clear for decades that the Earth’s climate is changing, and the role of human influence on the climate system is undisputed,” said Masson-Delmotte. Yet the new report also reflects major advances in the science of attribution – understanding the role of climate change in intensifying specific weather and climate events such as extreme heat waves and heavy rainfall events.

The report also shows that human actions still have the potential to determine the future course of climate. The evidence is clear that carbon dioxide (CO 2 ) is the main driver of climate change, even as other greenhouse gases and air pollutants also affect the climate.

“Stabilizing the climate will require strong, rapid, and sustained reductions in greenhouse gas emissions, and reaching net zero CO 2 emissions. Limiting other greenhouse gases and air pollutants, especially methane, could have benefits both for health and the climate,” said Zhai.

For more information contact:

IPCC Press Office [email protected] , +41 22 730 8120

Katherine Leitzell [email protected]

Nada Caud (French) [email protected]

Notes for Editors

Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change

The Working Group I report addresses the most updated physical understanding of the climate system and climate change, bringing together the latest advances in climate science, and combining multiple lines of evidence from paleoclimate, observations, process understanding, global and regional climate simulations. It shows how and why climate has changed to date, and the improved understanding of human influence on a wider range of climate characteristics, including extreme events. There will be a greater focus on regional information that can be used for climate risk assessments.

The Summary for Policymakers of the Working Group I contribution to the Sixth Assessment Report (AR6) as well as additional materials and information are available at https://www.ipcc.ch/report/ar6/wg1/

Note : Originally scheduled for release in April 2021, the report was delayed for several months by the COVID-19 pandemic, as work in the scientific community including the IPCC shifted online. This is first time that the IPCC has conducted a virtual approval session for one of its reports.

AR6 Working Group I in numbers

234 authors from 66 countries

  • 31 – coordinating authors
  • 167 – lead authors
  • 36 – review editors
  • 517 – contributing authors

Over 14,000 cited references

A total of 78,007 expert and government review comments

(First Order Draft 23,462; Second Order Draft 51,387; Final Government Distribution: 3,158)

More information about the Sixth Assessment Report can be found here .

About the IPCC

The Intergovernmental Panel on Climate Change (IPCC) is the UN body for assessing the science related to climate change. It was established by the United Nations Environment Programme (UNEP) and the World Meteorological Organization (WMO) in 1988 to provide political leaders with periodic scientific assessments concerning climate change, its implications and risks, as well as to put forward adaptation and mitigation strategies. In the same year the UN General Assembly endorsed the action by the WMO and UNEP in jointly establishing the IPCC. It has 195 member states.

Thousands of people from all over the world contribute to the work of the IPCC. For the assessment reports, IPCC scientists volunteer their time to assess the thousands of scientific papers published each year to provide a comprehensive summary of what is known about the drivers of climate change, its impacts and future risks, and how adaptation and mitigation can reduce those risks.

The IPCC has three working groups: Working Group I , dealing with the physical science basis of climate change; Working Group II , dealing with impacts, adaptation and vulnerability; and Working Group III , dealing with the mitigation of climate change. It also has a Task Force on National Greenhouse Gas Inventories that develops methodologies for measuring emissions and removals. As part of the IPCC, a Task Group on Data Support for Climate Change Assessments (TG-Data) provides guidance to the Data Distribution Centre (DDC) on curation, traceability, stability, availability and transparency of data and scenarios related to the reports of the IPCC.

IPCC assessments provide governments, at all levels, with scientific information that they can use to develop climate policies. IPCC assessments are a key input into the international negotiations to tackle climate change. IPCC reports are drafted and reviewed in several stages, thus guaranteeing objectivity and transparency. An IPCC assessment report consists of the contributions of the three working groups and a Synthesis Report. The Synthesis Report integrates the findings of the three working group reports and of any special reports prepared in that assessment cycle.

About the Sixth Assessment Cycle

At its 41st Session in February 2015, the IPCC decided to produce a Sixth Assessment Report (AR6). At its 42nd Session in October 2015 it elected a new Bureau that would oversee the work on this report and the Special Reports to be produced in the assessment cycle.

Global Warming of 1.5°C , an IPCC special report on the impacts of global warming of 1.5 degrees Celsius above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty was launched in October 2018.

Climate Change and Land , an IPCC special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems was launched in August 2019, and the Special Report on the Ocean and Cryosphere in a Changing Climate was released in September 2019.

In May 2019 the IPCC released the 2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories , an update to the methodology used by governments to estimate their greenhouse gas emissions and removals.

The other two Working Group contributions to the AR6 will be finalized in 2022 and the AR6 Synthesis Report will be completed in the second half of 2022.

For more information go to www.ipcc.ch

The website includes outreach materials including videos about the IPCC and video recordings from outreach events conducted as webinars or live-streamed events.

Most videos published by the IPCC can be found on our YouTube and Vimeo channels.

  • Skip to main content
  • Keyboard shortcuts for audio player

In the face of global warming, students are dreaming up a better climate future

Lee V. Gaines

Bloomington High School South science teacher Kirstin Milks leads a lesson on human-caused climate change and technologies that could help reduce greenhouse gas emissions.

Bloomington High School South science teacher Kirstin Milks leads a lesson on human-caused climate change and technologies that could help reduce greenhouse gas emissions. Chris Elberfeld/WFYI hide caption

High school freshman DeWayne Murphy has a big idea for a new green technology.

“There's going to be a tank and it should be like a big giant metal tank,” he explains to climate scientist Ben Kravitz on a school day in May. “You fill it up with water, and the tank is going to heat up.”

The water will turn to steam, which will power a car. But it has some potential drawbacks.

Startups want to cool Earth by reflecting sunlight. There are few rules and big risks

Startups want to cool Earth by reflecting sunlight. There are few rules and big risks

“It's not really designed to take any damage, like at all, so you have to be like really gentle with it,” Murphy says.

“What I really like about that is steam’s kind of an old tech,” Kravitz tells him. “Steam works. We know that. So, yeah, that's a really cool idea.”

This conversation is part of a larger lesson about developing technologies that reduce planet-heating pollution. The lesson was created by Kravitz, an assistant professor of earth and atmospheric sciences at Indiana University; his colleague Paul Goddard; and Kirstin Milks, DeWayne Murphy’s science teacher at Bloomington High School South in Bloomington, Ind.

With heat waves and extreme weather becoming more and more common, Milks wants to empower her students with information and the creative freedom to dream up big ideas for a better climate future.

“The fact is that climate change is the story of these young people's lives,” Milks says. “Our students need to know not just the stuff about it that is challenging and difficult, the stuff we hear about in the news, but also they need to see how change can happen. They need to feel like they understand and can actually make a difference in our shared future.”

Milks teaches her students the basic facts about human-caused climate change: that burning fossil fuels — like coal, oil and gas — is the biggest single driver of increased carbon dioxide in the atmosphere. Carbon dioxide heats the planet, which has led to more frequent droughts, hurricanes, floods and intense heat waves.

This oil company invests in pulling CO2 out of the sky — so it can keep selling crude

This oil company invests in pulling CO2 out of the sky — so it can keep selling crude

Kravitz says, “The only permanent solution to stopping that is reducing our greenhouse gas emissions.”

Scientists already know some technologies that could help. Solar and wind energy combined with big batteries are helping the world transition away from oil, coal and gas.

But Kravitz says the world isn’t moving fast enough. So he and other scientists are studying strategies to temporarily alter the Earth’s climate to reduce the effects of climate change. It’s known as climate engineering, or geoengineering .

Climate engineering covers a range of strategies, including reflecting sunlight back into space and removing carbon dioxide from the atmosphere . But these strategies can also pose significant risks — like disruptions to rain patterns and impacts on global crops. Meanwhile, there’s still little regulation over how these technologies might get used.

“The people who are going to be voting on whether to [pursue climate engineering], or even leading the charge, are sitting in high school classrooms right now,” Kravitz says. “So if they don’t know what this topic is, that’s a real problem. So that’s why we developed the lesson.”

Milks says she isn’t trying to persuade students to embrace climate engineering — rather, she wants to give them the knowledge they need to make informed decisions about it, if and when the time comes.

Students think up wild ideas, like covering the desert in glitter

Creativity is at the core of this lesson, Milks explains. After students learn the basics of climate engineering, they’re asked to “come up with interesting wild ideas” to slow global warming.

High school freshman DeWayne Murphy consults with Milks, his science teacher, on a classroom experiment.

High school freshman DeWayne Murphy consults with Milks, his science teacher, on a classroom experiment. Chris Elberfeld/WFYI hide caption

At first, no idea is too out there, says Goddard, an assistant research scientist at Indiana University who helped develop the lesson.

'It could just sweep us away': This school is on the front lines of climate change

'It could just sweep us away': This school is on the front lines of climate change

“As we progress along throughout the lessons, then we add more details, more constraints to their designs,” Goddard says.

In the first round of brainstorming, students imagined a solar-powered helicopter; artificial trees that store rainwater to help fight wildfires; and lots of ways to reflect light back into the atmosphere, like covering the desert in shiny glitter.

Next, students are asked to consider the potential limitations and risks to their ideas. Take glitter in the desert, for example:

“How are we going to make sure that the glitter doesn't get eaten by the rock pocket mouse … or like snakes and stuff?” Milks asks.

The student suggests making the glitter large and smooth enough so it won’t be eaten by animals or otherwise harm them.

For their final assignment, students present their concepts — including their anticipated benefits and risks — to Kravitz, Goddard and other scientists.

Montana youth climate ruling could set precedent for future climate litigation

Montana youth climate ruling could set precedent for future climate litigation

High school junior Campbell Brown has an idea for a flying air filter that sucks carbon dioxide out of the atmosphere and turns it into a harmless byproduct.

“It'll decrease the amount of greenhouse gases that are in the air,” she explains during her presentation. “The risks could be that it just doesn't work the way I want it to.”

Kravitz is impressed.

“So you want to know something? It does work,” he tells Brown. “The waste product that you get out of it is baking soda, essentially. So yeah, it works, it just can't be widely deployed right now because it's too expensive.”

Fostering climate optimism

Brown is thrilled that her idea is something scientists are currently studying, especially because she didn’t know much about climate change before this lesson.

Ben Kravitz, an assistant professor of Earth and atmospheric sciences at Indiana University, chats with high school students DeWayne Murphy and Emerald Yee during a class at Bloomington High School South.

Ben Kravitz, an assistant professor of earth and atmospheric sciences at Indiana University, chats with high school students DeWayne Murphy and Emerald Yee during a class at Bloomington High School South. Chris Elberfeld/WFYI hide caption

She was saddened to learn how humans have contributed to climate change and its effects on the planet, but she says she’s leaving this lesson with a newfound sense of hope.

“Because rather than the old generation leaving something broken for us to fix, we're also getting help from that generation. And so that way, we're all helping each other out and fixing what we have caused,” she says.

New Jersey requires climate change education. A year in, here's how it's going

New Jersey requires climate change education. A year in, here's how it's going

Emerald Yee, a senior in Milks’ class, has been concerned about climate change for a while. She has a family member with a chronic health condition that’s exacerbated by heat.

“So for me, I’m mainly just worried about [their] safety when it comes to climate change and global warming,” Yee says. She says this lesson gave her the tools to “really think about climate change and how we can change it and make it better for not just our generation, but the younger generations, our younger siblings, or even our kids and grandkids.”

For Kravitz, fostering climate optimism is a big part of this lesson. And he says hearing students’ ideas for solutions always makes him feel better.

“The neat thing about seeing all of these ideas come out of the classroom is it's not I can't do it . It's we can do it . Humans, when they get together, can do amazing things. And that's what gives me hope.”

  • climate change and kids
  • Share full article

David Keith sitting on a folding chair with his hands clasped.

buying time

This Scientist Has a Risky Plan to Cool Earth. There’s Growing Interest.

David Keith wants to spray a pollutant into the sky to block some sunlight. He says the benefits would outweigh the danger.

David Keith leads the Climate Systems Engineering Initiative at the University of Chicago. Credit... Mustafa Hussain for The New York Times

Supported by

David Gelles

By David Gelles

Gelles reported this article from Chicago and Cambridge, Mass.

  • Published Aug. 1, 2024 Updated Aug. 2, 2024

David Keith was a graduate student in 1991 when a volcano erupted in the Philippines, sending a cloud of ash toward the edge of space.

Listen to this article with reporter commentary

Seventeen million tons of sulfur dioxide released from Mount Pinatubo spread across the stratosphere, reflecting some of the sun’s energy away from Earth. The result was a drop in average temperatures in the Northern Hemisphere by roughly one degree Fahrenheit in the year that followed.

Today, Dr. Keith cites that event as validation of an idea that has become his life’s work: He believes that by intentionally releasing sulfur dioxide into the stratosphere, it would be possible to lower temperatures worldwide, blunting global warming.

Such radical interventions are increasingly being taken seriously as the effects of climate change grow more intense. Global temperatures have hit record highs for 13 months in a row, unleashing violent weather, deadly heat waves and raising sea levels. Scientists expect the heat to keep climbing for decades. The main driver of the warming, the burning of fossil fuels, continues more or less unabated.

Against this backdrop, there is growing interest in efforts to intentionally alter the Earth’s climate, a field known as geoengineering.

We are having trouble retrieving the article content.

Please enable JavaScript in your browser settings.

Thank you for your patience while we verify access. If you are in Reader mode please exit and  log into  your Times account, or  subscribe  for all of The Times.

Thank you for your patience while we verify access.

Already a subscriber?  Log in .

Want all of The Times?  Subscribe .

Advertisement

National Academies Press: OpenBook

Climate Change: Evidence and Causes: Update 2020 (2020)

Chapter: conclusion, c onclusion.

This document explains that there are well-understood physical mechanisms by which changes in the amounts of greenhouse gases cause climate changes. It discusses the evidence that the concentrations of these gases in the atmosphere have increased and are still increasing rapidly, that climate change is occurring, and that most of the recent change is almost certainly due to emissions of greenhouse gases caused by human activities. Further climate change is inevitable; if emissions of greenhouse gases continue unabated, future changes will substantially exceed those that have occurred so far. There remains a range of estimates of the magnitude and regional expression of future change, but increases in the extremes of climate that can adversely affect natural ecosystems and human activities and infrastructure are expected.

Citizens and governments can choose among several options (or a mixture of those options) in response to this information: they can change their pattern of energy production and usage in order to limit emissions of greenhouse gases and hence the magnitude of climate changes; they can wait for changes to occur and accept the losses, damage, and suffering that arise; they can adapt to actual and expected changes as much as possible; or they can seek as yet unproven “geoengineering” solutions to counteract some of the climate changes that would otherwise occur. Each of these options has risks, attractions and costs, and what is actually done may be a mixture of these different options. Different nations and communities will vary in their vulnerability and their capacity to adapt. There is an important debate to be had about choices among these options, to decide what is best for each group or nation, and most importantly for the global population as a whole. The options have to be discussed at a global scale because in many cases those communities that are most vulnerable control few of the emissions, either past or future. Our description of the science of climate change, with both its facts and its uncertainties, is offered as a basis to inform that policy debate.

A CKNOWLEDGEMENTS

The following individuals served as the primary writing team for the 2014 and 2020 editions of this document:

  • Eric Wolff FRS, (UK lead), University of Cambridge
  • Inez Fung (NAS, US lead), University of California, Berkeley
  • Brian Hoskins FRS, Grantham Institute for Climate Change
  • John F.B. Mitchell FRS, UK Met Office
  • Tim Palmer FRS, University of Oxford
  • Benjamin Santer (NAS), Lawrence Livermore National Laboratory
  • John Shepherd FRS, University of Southampton
  • Keith Shine FRS, University of Reading.
  • Susan Solomon (NAS), Massachusetts Institute of Technology
  • Kevin Trenberth, National Center for Atmospheric Research
  • John Walsh, University of Alaska, Fairbanks
  • Don Wuebbles, University of Illinois

Staff support for the 2020 revision was provided by Richard Walker, Amanda Purcell, Nancy Huddleston, and Michael Hudson. We offer special thanks to Rebecca Lindsey and NOAA Climate.gov for providing data and figure updates.

The following individuals served as reviewers of the 2014 document in accordance with procedures approved by the Royal Society and the National Academy of Sciences:

  • Richard Alley (NAS), Department of Geosciences, Pennsylvania State University
  • Alec Broers FRS, Former President of the Royal Academy of Engineering
  • Harry Elderfield FRS, Department of Earth Sciences, University of Cambridge
  • Joanna Haigh FRS, Professor of Atmospheric Physics, Imperial College London
  • Isaac Held (NAS), NOAA Geophysical Fluid Dynamics Laboratory
  • John Kutzbach (NAS), Center for Climatic Research, University of Wisconsin
  • Jerry Meehl, Senior Scientist, National Center for Atmospheric Research
  • John Pendry FRS, Imperial College London
  • John Pyle FRS, Department of Chemistry, University of Cambridge
  • Gavin Schmidt, NASA Goddard Space Flight Center
  • Emily Shuckburgh, British Antarctic Survey
  • Gabrielle Walker, Journalist
  • Andrew Watson FRS, University of East Anglia

The Support for the 2014 Edition was provided by NAS Endowment Funds. We offer sincere thanks to the Ralph J. and Carol M. Cicerone Endowment for NAS Missions for supporting the production of this 2020 Edition.

F OR FURTHER READING

For more detailed discussion of the topics addressed in this document (including references to the underlying original research), see:

  • Intergovernmental Panel on Climate Change (IPCC), 2019: Special Report on the Ocean and Cryosphere in a Changing Climate [ https://www.ipcc.ch/srocc ]
  • National Academies of Sciences, Engineering, and Medicine (NASEM), 2019: Negative Emissions Technologies and Reliable Sequestration: A Research Agenda [ https://www.nap.edu/catalog/25259 ]
  • Royal Society, 2018: Greenhouse gas removal [ https://raeng.org.uk/greenhousegasremoval ]
  • U.S. Global Change Research Program (USGCRP), 2018: Fourth National Climate Assessment Volume II: Impacts, Risks, and Adaptation in the United States [ https://nca2018.globalchange.gov ]
  • IPCC, 2018: Global Warming of 1.5°C [ https://www.ipcc.ch/sr15 ]
  • USGCRP, 2017: Fourth National Climate Assessment Volume I: Climate Science Special Reports [ https://science2017.globalchange.gov ]
  • NASEM, 2016: Attribution of Extreme Weather Events in the Context of Climate Change [ https://www.nap.edu/catalog/21852 ]
  • IPCC, 2013: Fifth Assessment Report (AR5) Working Group 1. Climate Change 2013: The Physical Science Basis [ https://www.ipcc.ch/report/ar5/wg1 ]
  • NRC, 2013: Abrupt Impacts of Climate Change: Anticipating Surprises [ https://www.nap.edu/catalog/18373 ]
  • NRC, 2011: Climate Stabilization Targets: Emissions, Concentrations, and Impacts Over Decades to Millennia [ https://www.nap.edu/catalog/12877 ]
  • Royal Society 2010: Climate Change: A Summary of the Science [ https://royalsociety.org/topics-policy/publications/2010/climate-change-summary-science ]
  • NRC, 2010: America’s Climate Choices: Advancing the Science of Climate Change [ https://www.nap.edu/catalog/12782 ]

Much of the original data underlying the scientific findings discussed here are available at:

  • https://data.ucar.edu/
  • https://climatedataguide.ucar.edu
  • https://iridl.ldeo.columbia.edu
  • https://ess-dive.lbl.gov/
  • https://www.ncdc.noaa.gov/
  • https://www.esrl.noaa.gov/gmd/ccgg/trends/
  • http://scrippsco2.ucsd.edu
  • http://hahana.soest.hawaii.edu/hot/
was established to advise the United States on scientific and technical issues when President Lincoln signed a Congressional charter in 1863. The National Research Council, the operating arm of the National Academy of Sciences and the National Academy of Engineering, has issued numerous reports on the causes of and potential responses to climate change. Climate change resources from the National Research Council are available at .
is a self-governing Fellowship of many of the world’s most distinguished scientists. Its members are drawn from all areas of science, engineering, and medicine. It is the national academy of science in the UK. The Society’s fundamental purpose, reflected in its founding Charters of the 1660s, is to recognise, promote, and support excellence in science, and to encourage the development and use of science for the benefit of humanity. More information on the Society’s climate change work is available at

Image

Climate change is one of the defining issues of our time. It is now more certain than ever, based on many lines of evidence, that humans are changing Earth's climate. The Royal Society and the US National Academy of Sciences, with their similar missions to promote the use of science to benefit society and to inform critical policy debates, produced the original Climate Change: Evidence and Causes in 2014. It was written and reviewed by a UK-US team of leading climate scientists. This new edition, prepared by the same author team, has been updated with the most recent climate data and scientific analyses, all of which reinforce our understanding of human-caused climate change.

Scientific information is a vital component for society to make informed decisions about how to reduce the magnitude of climate change and how to adapt to its impacts. This booklet serves as a key reference document for decision makers, policy makers, educators, and others seeking authoritative answers about the current state of climate-change science.

READ FREE ONLINE

Welcome to OpenBook!

You're looking at OpenBook, NAP.edu's online reading room since 1999. Based on feedback from you, our users, we've made some improvements that make it easier than ever to read thousands of publications on our website.

Do you want to take a quick tour of the OpenBook's features?

Show this book's table of contents , where you can jump to any chapter by name.

...or use these buttons to go back to the previous chapter or skip to the next one.

Jump up to the previous page or down to the next one. Also, you can type in a page number and press Enter to go directly to that page in the book.

Switch between the Original Pages , where you can read the report as it appeared in print, and Text Pages for the web version, where you can highlight and search the text.

To search the entire text of this book, type in your search term here and press Enter .

Share a link to this book page on your preferred social network or via email.

View our suggested citation for this chapter.

Ready to take your reading offline? Click here to buy this book in print or download it as a free PDF, if available.

Get Email Updates

Do you enjoy reading reports from the Academies online for free ? Sign up for email notifications and we'll let you know about new publications in your areas of interest when they're released.

IMAGES

  1. ≫ Effects and Causes of Global Warming and Climate Change Free Essay

    how can we reduce the effects of global warming essay

  2. Persuasive Essay Sample: Global Warming

    how can we reduce the effects of global warming essay

  3. ≫ Global Climate Change Free Essay Sample on Samploon.com

    how can we reduce the effects of global warming essay

  4. 138 Global Warming Essay Topics & Ideas

    how can we reduce the effects of global warming essay

  5. Issue of Global Warming Argumentative Essay on Samploon.com

    how can we reduce the effects of global warming essay

  6. Write A Short Essay On Global Warming

    how can we reduce the effects of global warming essay

COMMENTS

  1. Essay on Prevention of Global Warming for Students and Children

    Global warming is a term you must have heard by now as it is very prevalent in today's world. Read essay on prevention of global warming.

  2. What can we do to slow or stop global warming?

    Generally speaking, here are some examples of mitigation strategies we can use to slow or stop the human-caused global warming ( learn more ): Where possible, we can switch to renewable sources of energy (such as solar and wind energy) to power our homes and buildings, thus emitting far less heat-trapping gases into the atmosphere.

  3. How You Can Stop Global Warming

    Learn about the causes and effects of global warming and what you can do to help fight climate change with NRDC's practical tips and actions.

  4. 10 ways you can help fight the climate crisis

    Here are 10 ways you can be part of the climate solution: 1. Spread the word. Encourage your friends, family and co-workers to reduce their carbon pollution. Join a global movement like Count Us In, which aims to inspire 1 billion people to take practical steps and challenge their leaders to act more boldly on climate.

  5. Global warming

    Modern global warming is the result of an increase in magnitude of the so-called greenhouse effect, a warming of Earth's surface and lower atmosphere caused by the presence of water vapour, carbon dioxide, methane, nitrous oxides, and other greenhouse gases. In 2014 the IPCC first reported that concentrations of carbon dioxide, methane, and ...

  6. There's a deeper problem hiding beneath global warming

    Deep warming is a problem hiding beneath global warming, but one that will become prominent if and when we manage to solve the more pressing issue of greenhouse gases. It remains just out of sight, which might explain why scientists only became concerned about the 'waste heat' problem around 15 years ago.

  7. 10 Solutions for Climate Change

    The enormity of global warming can be daunting and dispiriting. What can one person, or even one nation, do on their own to slow and reverse climate change?

  8. Here are the most effective things you can do to fight climate change

    Our research shows the best changes individuals can make to cut carbon emissions and reduce the effects of climate change.

  9. Are there real ways to fight climate change? Yes.

    Yes. Humans have the solutions to fight a global environmental crisis. Do we have the will? The evidence that humans are causing climate change, with drastic consequences for life on the planet ...

  10. What Can Be Done About Climate Change

    The Science Given what we know about the threats that climate change poses to humans, we must take swift action. As a global community, we need to soon level off—and then decrease—the amount of carbon dioxide (CO 2) and other greenhouse gases in the atmosphere. The faster we do this, the less damage we will cause to our world and our way of life.

  11. 10 Ways to Stop Global Warming

    Want to help stop global warming? Here are 10 simple things you can do and how much carbon dioxide you'll save doing them. Change a light Replacing one regular light bulb with a compact fluorescent light bulb will save 150 pounds of carbon dioxide a year. Drive less Walk, bike, carpool or take mass transit more often.

  12. Global Warming Essay: Causes, Effects, and Prevention

    This example global warming essay discusses the causes of this environmental change along with the effects of the warming of our planet and how to prevent it in the future.

  13. Can we slow or even reverse global warming?

    While we cannot stop global warming overnight, or even over the next several decades, we can slow the rate and limit the amount of global warming by reducing human emissions of heat-trapping gases and soot.

  14. 6 ways ordinary people can prevent climate change, according to

    Worried about the environment? Scientists, researchers and advocates share the top changes we can make to be part of the climate change solution.

  15. Causes and Effects of Climate Change

    As greenhouse gas emissions blanket the Earth, they trap the sun's heat. This leads to global warming and climate change. The world is now warming faster than at any point in recorded history.

  16. You Asked: How Can Students Make a Difference on Climate Change?

    Students can take action by educating their non-environmentally informed friends about the perils of climate change, and the basic habits they can change in their daily lives (such as eating less meat) to help make an impact. While it is difficult to write policy, or change the minds of adults in power, informing the current and next generation ...

  17. Causes, Effects and Solutions to Global Warming

    This essay explores the causes, effects of global warming and takes a look at potential solutions to the current environmental issues leading to global warming on an unprecedented scale.

  18. Climate change and ecosystems: threats, opportunities and solutions

    In our introduction we outline the themes, introduce the papers in the thematic issue, and conclude with a synthesis of the main findings of the Forum. In doing so, we emphasize the research needed to better understand threats, opportunities and solutions regarding climate change and ecosystems.

  19. Essay on Global Warming

    This blog contains important points to keep in mind while writing an essay on global warming, the causes of global warming and more!

  20. What evidence exists that Earth is warming and that humans are the main

    We know this warming is largely caused by human activities because the key role that carbon dioxide plays in maintaining Earth's natural greenhouse effect has been understood since the mid-1800s. Unless it is offset by some equally large cooling influence, more atmospheric carbon dioxide will lead to warmer surface temperatures.

  21. The Science of Climate Change Explained: Facts, Evidence and Proof

    How do we know global warming is not because of the sun or volcanoes? The sun is the ultimate source of energy in Earth's climate system, so it's a natural candidate for causing climate change.

  22. Climate change widespread, rapid, and intensifying

    The report projects that in the coming decades climate changes will increase in all regions. For 1.5°C of global warming, there will be increasing heat waves, longer warm seasons and shorter cold seasons. At 2°C of global warming, heat extremes would more often reach critical tolerance thresholds for agriculture and health, the report shows.

  23. What Can We Do to Lessen the Effect of Global Warming?

    Global Warming is characteri­zed by the increase of the earth's temperatur­e due to the entrapment on the surface causing another environmen­tal phenomenon, the so-called greenhouse effect. There is one evident effect triggered by global warming and it is called climate change.

  24. In the face of global warming, students are dreaming up a better ...

    In the face of global warming, students are dreaming up a better climate future ... to temporarily alter the Earth's climate to reduce the effects of climate change. ... really think about ...

  25. Why local action is key to addressing global climate change

    Climate change is a global issue: its effects are not limited by borders. Yet, the physical effects of climate change vary dramatically between and even within a country - not to mention the differing capacities to handle climate change effects at local, national and regional levels.

  26. David Keith Has an Idea to Slow Global Warming: Geoengineering

    It was a visual reminder that global warming is upending the natural world, and it confirmed his central, controversial belief: Humans have already altered the planet, heating the climate with ...

  27. Climate Change: Evidence and Causes: Update 2020

    C ONCLUSION. This document explains that there are well-understood physical mechanisms by which changes in the amounts of greenhouse gases cause climate changes. It discusses the evidence that the concentrations of these gases in the atmosphere have increased and are still increasing rapidly, that climate change is occurring, and that most of ...

  28. Multi-decadal warming alters predator's effect on prey community

    Predator responses to warming can occur via phenotypic plasticity, evolutionary adaptation or a combination of both, changing their top-down effects on prey communities. However, we lack evidence of how warming-induced evolutionary changes in predators ...