Encyclopedia Britannica

  • History & Society
  • Science & Tech
  • Biographies
  • Animals & Nature
  • Geography & Travel
  • Arts & Culture
  • Games & Quizzes
  • On This Day
  • One Good Fact
  • New Articles
  • Lifestyles & Social Issues
  • Philosophy & Religion
  • Politics, Law & Government
  • World History
  • Health & Medicine
  • Browse Biographies
  • Birds, Reptiles & Other Vertebrates
  • Bugs, Mollusks & Other Invertebrates
  • Environment
  • Fossils & Geologic Time
  • Entertainment & Pop Culture
  • Sports & Recreation
  • Visual Arts
  • Demystified
  • Image Galleries
  • Infographics
  • Top Questions
  • Britannica Kids
  • Saving Earth
  • Space Next 50
  • Student Center

experiments disproving spontaneous generation

  • When did science begin?
  • Where was science invented?

Blackboard inscribed with scientific formulas and calculations in physics and mathematics

scientific hypothesis

Our editors will review what you’ve submitted and determine whether to revise the article.

  • National Center for Biotechnology Information - PubMed Central - On the scope of scientific hypotheses
  • LiveScience - What is a scientific hypothesis?
  • The Royal Society - Open Science - On the scope of scientific hypotheses

experiments disproving spontaneous generation

scientific hypothesis , an idea that proposes a tentative explanation about a phenomenon or a narrow set of phenomena observed in the natural world. The two primary features of a scientific hypothesis are falsifiability and testability, which are reflected in an “If…then” statement summarizing the idea and in the ability to be supported or refuted through observation and experimentation. The notion of the scientific hypothesis as both falsifiable and testable was advanced in the mid-20th century by Austrian-born British philosopher Karl Popper .

The formulation and testing of a hypothesis is part of the scientific method , the approach scientists use when attempting to understand and test ideas about natural phenomena. The generation of a hypothesis frequently is described as a creative process and is based on existing scientific knowledge, intuition , or experience. Therefore, although scientific hypotheses commonly are described as educated guesses, they actually are more informed than a guess. In addition, scientists generally strive to develop simple hypotheses, since these are easier to test relative to hypotheses that involve many different variables and potential outcomes. Such complex hypotheses may be developed as scientific models ( see scientific modeling ).

Depending on the results of scientific evaluation, a hypothesis typically is either rejected as false or accepted as true. However, because a hypothesis inherently is falsifiable, even hypotheses supported by scientific evidence and accepted as true are susceptible to rejection later, when new evidence has become available. In some instances, rather than rejecting a hypothesis because it has been falsified by new evidence, scientists simply adapt the existing idea to accommodate the new information. In this sense a hypothesis is never incorrect but only incomplete.

The investigation of scientific hypotheses is an important component in the development of scientific theory . Hence, hypotheses differ fundamentally from theories; whereas the former is a specific tentative explanation and serves as the main tool by which scientists gather data, the latter is a broad general explanation that incorporates data from many different scientific investigations undertaken to explore hypotheses.

Countless hypotheses have been developed and tested throughout the history of science . Several examples include the idea that living organisms develop from nonliving matter, which formed the basis of spontaneous generation , a hypothesis that ultimately was disproved (first in 1668, with the experiments of Italian physician Francesco Redi , and later in 1859, with the experiments of French chemist and microbiologist Louis Pasteur ); the concept proposed in the late 19th century that microorganisms cause certain diseases (now known as germ theory ); and the notion that oceanic crust forms along submarine mountain zones and spreads laterally away from them ( seafloor spreading hypothesis ).

NASA Logo

The scientific method and climate change: How scientists know

what does a hypothesis help scientists understand the natural world

By Holly Shaftel, NASA's Jet Propulsion Laboratory

The scientific method is the gold standard for exploring our natural world. You might have learned about it in grade school, but here’s a quick reminder: It’s the process that scientists use to understand everything from animal behavior to the forces that shape our planet—including climate change.

“The way science works is that I go out and study something, and maybe I collect data or write equations, or I run a big computer program,” said Josh Willis, principal investigator of NASA’s Oceans Melting Greenland (OMG) mission and oceanographer at NASA’s Jet Propulsion Laboratory. “And I use it to learn something about how the world works.”

Using the scientific method, scientists have shown that humans are extremely likely the dominant cause of today’s climate change. The story goes back to the late 1800s, but in 1958, for example, Charles Keeling of the Mauna Loa Observatory in Waimea, Hawaii, started taking meticulous measurements of carbon dioxide (CO 2 ) in the atmosphere, showing the first significant evidence of rapidly rising CO 2 levels and producing the Keeling Curve climate scientists know today.

“The way science works is that I go out and study something, and maybe I collect data or write equations, or I run a big computer program, and I use it to learn something about how the world works.”- Josh Willis, NASA oceanographer and Oceans Melting Greenland principal investigator

Since then, thousands of peer-reviewed scientific papers have come to the same conclusion about climate change, telling us that human activities emit greenhouse gases into the atmosphere, raising Earth’s average temperature and bringing a range of consequences to our ecosystems.

“The weight of all of this information taken together points to the single consistent fact that humans and our activity are warming the planet,” Willis said.

The scientific method’s steps

The exact steps of the scientific method can vary by discipline, but since we have only one Earth (and no “test” Earth), climate scientists follow a few general guidelines to better understand carbon dioxide levels, sea level rise, global temperature and more.

scientific method

  • Form a hypothesis (a statement that an experiment can test)
  • Make observations (conduct experiments and gather data)
  • Analyze and interpret the data
  • Draw conclusions
  • Publish results that can be validated with further experiments (rinse and repeat)

As you can see, the scientific method is iterative (repetitive), meaning that climate scientists are constantly making new discoveries about the world based on the building blocks of scientific knowledge.

“The weight of all of this information taken together points to the single consistent fact that humans and our activity are warming the planet." - Josh Willis, NASA oceanographer and Oceans Melting Greenland principal investigator

The scientific method at work.

How does the scientific method work in the real world of climate science? Let’s take NASA’s Oceans Melting Greenland (OMG) campaign, a multi-year survey of Greenland’s ice melt that’s paving the way for improved sea level rise estimates, as an example.

  • Form a hypothesis OMG hypothesizes that the oceans are playing a major role in Greenland ice loss.
  • Make observations Over a five-year period, OMG will survey Greenland by air and ship to collect ocean temperature and salinity (saltiness) data and take ice thinning measurements to help climate scientists better understand how the ice and warming ocean interact with each other. OMG will also collect data on the sea floor’s shape and depth, which determines how much warm water can reach any given glacier.
  • Analyze and interpret data As the OMG crew and scientists collect data around 27,000 miles (over 43,000 kilometers) of Greenland coastline over that five-year period, each year scientists will analyze the data to see how much the oceans warmed or cooled and how the ice changed in response.
  • Draw conclusions In one OMG study , scientists discovered that many Greenland glaciers extend deeper (some around 1,000 feet, or about 300 meters) beneath the ocean’s surface than once thought, making them quite vulnerable to the warming ocean. They also discovered that Greenland’s west coast is generally more vulnerable than its east coast.
  • Publish results Scientists like Willis write up the results, send in the paper for peer review (a process in which other experts in the field anonymously critique the submission), and then those peers determine whether the information is correct and valuable enough to be published in an academic journal, such as Nature or Earth and Planetary Science Letters . Then it becomes another contribution to the well-substantiated body of climate change knowledge, which evolves and grows stronger as scientists gather and confirm more evidence. Other scientists can take that information further by conducting their own studies to better understand sea level rise.

All in all, the scientific method is “a way of going from observations to answers,” NASA terrestrial ecosystem scientist Erika Podest, based at JPL, said. It adds clarity to our way of thinking and shows that scientific knowledge is always evolving.

Related Terms

  • Climate Change
  • Climate Science
  • Earth Science

Explore More

Middle school students and camp counselors standing in front of a tree smiling.

NASA Summer Camp Inspires Future Climate Leaders

what does a hypothesis help scientists understand the natural world

NASA Mission Gets Its First Snapshot of Polar Heat Emissions

The PREFIRE mission will help develop a more detailed understanding of how much heat the Arctic and Antarctica radiate into space and how this influences global climate. NASA’s newest climate mission has started collecting data on the amount of heat in the form of far-infrared radiation that the Arctic and Antarctic environments emit to space. […]

what does a hypothesis help scientists understand the natural world

Proyecto de la NASA en Puerto Rico capacita a estudiantes en biología marina

Read this story in English here. Tainaliz Marie Rodríguez Lugo respiró hondo, se ajustó la máscara de buceo y se sumergió en el océano, metiendo primero sus pies cubiertos por aletas. Tres semanas antes, Rodríguez Lugo no sabía nadar. Pero ahora, esta estudiante universitaria recopilaba datos sobre la calidad del agua y los arrecifes de […]

Discover More Topics From NASA

Explore Earth Science

what does a hypothesis help scientists understand the natural world

Earth Science in Action

Earth Action

Earth Science Data

The sum of Earth's plants, on land and in the ocean, changes slightly from year to year as weather patterns shift.

Facts About Earth

what does a hypothesis help scientists understand the natural world

  • Skip to Page Content
  • Skip to Navigation
  • Skip to Search
  • Skip to Footer
  • COVID-19 Health and Safety
  • Admissions and Ticketing
  • Temporary Hall Closures
  • Accessibility
  • Field Trips
  • Adult Group Visits
  • Guided Tours
  • Transportation
  • Davis Family Butterfly Vivarium
  • Invisible Worlds: Immersive Experience
  • The Secret World of Elephants
  • Turtle Odyssey
  • Worlds Beyond Earth: Space Show
  • Extinct and Endangered: Insects in Peril
  • Grounded by Our Roots
  • Ice Cold: An Exhibition of Hip-Hop Jewelry
  • Opulent Oceans
  • What's in a Name?
  • Children & Family Programs
  • Teen Programs
  • Higher Education
  • Adult Programs
  • Educator Programs
  • Evaluation, Research, & Policy
  • Master of Arts in Teaching
  • Online Courses for Educators
  • Urban Advantage
  • Climate Week NYC
  • Viruses, Vaccines, and COVID-19
  • The Science of COVID-19
  • OLogy: The Science Website for Kids
  • News & Blogs
  • Science Topics
  • Margaret Mead Festival
  • Origami at the Museum
  • Astrophysics
  • Earth and Planetary Sciences
  • Herpetology
  • Ichthyology
  • Ornithology
  • Richard Gilder Graduate School
  • Hayden Planetarium
  • Center for Biodiversity and Conservation
  • Institute for Comparative Genomics
  • Southwestern Research Station
  • Research Library
  • Darwin Manuscripts Project
  • Microscopy and Imaging Facility
  • Science Conservation
  • Computational Sciences
  • Staff Directory
  • Scientific Publications
  • Ways to Donate
  • Membership FAQ
  • Benefit Events
  • Corporate Support
  • Planned Giving
  • At the Museum
  • Biodiversity
  • Data Visualizations
  • Dinosaurs and Fossils
  • Earth and Climate
  • In the Field
  • Isaac Asimov Memorial Debate
  • Kid Science
  • Research and Collections
  • SciCafe / Lectures

The Scientific Process

1. define a question to investigate.

As scientists conduct their research, they make observations and collect data. The observations and data often lead them to ask why something is the way it is. Scientists pursue answers to these questions in order to continue with their research. Once scientists have a good question to investigate, they begin to think of ways to answer it.

2. Make Predictions

Based on their research and observations, scientists will often come up with a hypothesis. A hypothesis is a possible answer to a question. It is based on: their own observations, existing theories, and information they gather from other sources. Scientists use their hypothesis to make a prediction, a testable statement that describes what they think the outcome of an investigation will be.

3. Gather Data

Evidence is needed to test the prediction. There are several strategies for collecting evidence, or data. Scientists can gather their data by observing the natural world, performing an experiment in a laboratory, or by running a model. Scientists decide what strategy to use, often combining strategies. Then they plan a procedure and gather their data. They make sure the procedure can be repeated, so that other scientists can evaluate their findings.

4. Analyze the Data

Scientists organize their data in tables, graphs, or diagrams. If possible, they include relevant data from other sources. They look for patterns that show connections between important variables in the hypothesis they are testing.

5. Draw Conclusions

Based on whether or not their prediction came true, scientists can then decide whether the evidence clearly supports or does not support the hypothesis. If the results are not clear, they must rethink their procedure. If the results are clear, scientists write up their findings and results to share with others. The conclusions they draw usually lead to new questions to pursue.

  • Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar
  • Skip to footer

what does a hypothesis help scientists understand the natural world

Understanding Science

How science REALLY works...

  • Understanding Science 101
  • Misconceptions
  • Testing ideas with evidence from the natural world is at the core of science.
  • Scientific testing involves figuring out what we would  expect  to observe if an idea were correct and comparing that expectation to what we  actually  observe.
  • Scientific arguments are built from an idea and the evidence relevant to that idea.
  • Scientific arguments can be built in any order. Sometimes a scientific idea precedes any evidence relevant to it, and other times the evidence helps inspire the idea.

Misconception:  Science proves ideas.

Misconception:  Science can only disprove ideas.

Correction:  Science neither proves nor disproves. It accepts or rejects ideas based on supporting and refuting evidence, but may revise those conclusions if warranted by new evidence or perspectives.  Read more about it.

The core of science: Relating evidence and ideas

In this case, the term  argument  refers not to a disagreement between two people, but to an evidence-based line of reasoning — so scientific arguments are more like the closing argument in a court case (a logical description of what we think and why we think it) than they are like the fights you may have had with siblings. Scientific arguments involve three components: the idea (a  hypothesis  or theory), the  expectations  generated by that idea (frequently called predictions), and the actual observations relevant to those expectations (the evidence). These components are always related in the same logical way:

  • What would we expect to see if this idea were true (i.e., what is our expected observation)?
  • What do we actually observe?
  • Do our expectations match our observations?

PREDICTIONS OR EXPECTATIONS?

When scientists describe their arguments, they frequently talk about their expectations in terms of what a hypothesis or theory predicts: “If it were the case that smoking causes lung cancer, then we’d  predict  that countries with higher rates of smoking would have higher rates of lung cancer.” At first, it might seem confusing to talk about a prediction that doesn’t deal with the future, but that refers to something going on right now or that may have already happened. In fact, this is just another way of discussing the expectations that the hypothesis or theory generates. So when a scientist talks about the  predicted  rates of lung cancer, he or she really means something like “the rates that we’d expect to see if our hypothesis were correct.”

If the idea generates expectations that hold true (are actually observed), then the idea is more likely to be accurate. If the idea generates expectations that don’t hold true (are not observed), then we are less likely to  accept  the idea. For example, consider the idea that cells are the building blocks of life. If that idea were true, we’d expect to see cells in all kinds of living tissues observed under a microscope — that’s our expected observation. In fact, we do observe this (our actual observation), so evidence supports the idea that living things are built from cells.

Though the structure of this argument is consistent (hypothesis, then expectation, then actual observation), its pieces may be assembled in different orders. For example, the first observations of cells were made in the 1600s, but cell theory was not postulated until 200 years later — so in this case, the evidence actually helped inspire the idea. Whether the idea comes first or the evidence comes first, the logic relating them remains the same.

Here, we’ll explore scientific arguments and how to build them. You can investigate:

Putting the pieces together: The hard work of building arguments

  • Predicting the past
  • Arguments with legs to stand on

Or just click the  Next  button to dive right in!

  • Take a sidetrip
  • Teaching resources

Scientific arguments rely on testable ideas. To learn what makes an idea testable, review our  Science Checklist .

  • Forming hypotheses — scientific explanations — can be difficult for students. It is often easier for students to generate an expectation (what they think will happen or what they expect to observe) based on prior experience than to formulate a potential explanation for that phenomena. You can help students go beyond expectations to generate real, explanatory hypotheses by providing sentence stems for them to fill in: “I expect to observe A because B.” Once students have filled in this sentence you can explain that B is a hypothesis and A is the expectation generated by that hypothesis.
  • You can help students learn to distinguish between hypotheses and the expectations generated by them by regularly asking students to analyze lecture material, text, or video. Students should try to figure out which aspects of the content were hypotheses and which were expectations.

Summing up the process

Subscribe to our newsletter

  • The science flowchart
  • Science stories
  • Grade-level teaching guides
  • Teaching resource database
  • Journaling tool

what does a hypothesis help scientists understand the natural world

Biomedical Beat Blog – National Institute of General Medical Sciences

Follow the process of discovery

Search this blog

How research works: understanding the process of science.

Have you ever wondered how research works? How scientists make discoveries about our health and the world around us? Whether they’re studying plants, animals, humans, or something else in our world, they follow the scientific method. But this method isn’t always—or even usually—a straight line, and often the answers are unexpected and lead to more questions. Let’s dive in to see how it all works.

Infographic explaining how research works and understanding the process of science.

The Question Scientists start with a question about something they observe in the world. They develop a hypothesis, which is a testable prediction of what the answer to their question will be. Often their predictions turn out to be correct, but sometimes searching for the answer leads to unexpected outcomes.

The Techniques To test their hypotheses, scientists conduct experiments. They use many different tools and techniques, and sometimes they need to invent a new tool to fully answer their question. They may also work with one or more scientists with different areas of expertise to approach the question from other angles and get a more complete answer to their question.

The Evidence Throughout their experiments, scientists collect and analyze their data. They reach conclusions based on those analyses and determine whether their results match the predictions from their hypothesis. Often these conclusions trigger new questions and new hypotheses to test.

Researchers share their findings with one another by publishing papers in scientific journals and giving presentations at meetings. Data sharing is very important for the scientific field, and although some results may seem insignificant, each finding is often a small piece of a larger puzzle. That small piece may spark a new question and ultimately lead to new findings.

Sometimes research results seem to contradict each other, but this doesn’t necessarily mean that the results are wrong. Instead, it often means that the researchers used different tools, methods, or timeframes to obtain their results. The results of a single study are usually unable to fully explain the complex systems in the world around us. We must consider how results from many research studies fit together. This perspective gives us a more complete picture of what’s really happening.

Even if the scientific process doesn’t answer the original question, the knowledge gained may help provide other answers that lead to new hypotheses and discoveries.

Learn more about the importance of communicating how this process works in the NIH News in Health article, “ Explaining How Research Works .”

what does a hypothesis help scientists understand the natural world

This post is a great supplement to Pathways: The Basic Science Careers Issue.

Pathways introduces the important role that scientists play in understanding the world around us, and all scientists use the scientific method as they make discoveries—which is explained in this post.

Learn more in our Educator’s Corner .

2 Replies to “How Research Works: Understanding the Process of Science”

Nice basic explanation. I believe informing the lay public on how science works, how parts of the body interact, etc. is a worthwhile endeavor. You all Rock! Now, we need to spread the word ‼️❗️‼️ Maybe eith a unique app. And one day, with VR and incentives to read & answer a couple questions.

As you know, the importance of an informed population is what will keep democracy alive. Plus it will improve peoples overall wellness & life outcomes.

Thanks for this clear explanation for the person who does not know science. Without getting too technical or advanced, it might be helpful to follow your explanation of replication with a reference to meta-analysis. You might say something as simple as, “Meta-analysis is a method for doing research on all the best research; meta-analytic research confirms the overall trend in results, even when the best studies show different results.”

Comments are closed.

Subscribe to Biomedical Beat

Get our latest blog posts delivered straight to your inbox! Sign Up Here

Science and the scientific method: Definitions and examples

Here's a look at the foundation of doing science — the scientific method.

Kids follow the scientific method to carry out an experiment.

The scientific method

Hypothesis, theory and law, a brief history of science, additional resources, bibliography.

Science is a systematic and logical approach to discovering how things in the universe work. It is also the body of knowledge accumulated through the discoveries about all the things in the universe. 

The word "science" is derived from the Latin word "scientia," which means knowledge based on demonstrable and reproducible data, according to the Merriam-Webster dictionary . True to this definition, science aims for measurable results through testing and analysis, a process known as the scientific method. Science is based on fact, not opinion or preferences. The process of science is designed to challenge ideas through research. One important aspect of the scientific process is that it focuses only on the natural world, according to the University of California, Berkeley . Anything that is considered supernatural, or beyond physical reality, does not fit into the definition of science.

When conducting research, scientists use the scientific method to collect measurable, empirical evidence in an experiment related to a hypothesis (often in the form of an if/then statement) that is designed to support or contradict a scientific theory .

"As a field biologist, my favorite part of the scientific method is being in the field collecting the data," Jaime Tanner, a professor of biology at Marlboro College, told Live Science. "But what really makes that fun is knowing that you are trying to answer an interesting question. So the first step in identifying questions and generating possible answers (hypotheses) is also very important and is a creative process. Then once you collect the data you analyze it to see if your hypothesis is supported or not."

Here's an illustration showing the steps in the scientific method.

The steps of the scientific method go something like this, according to Highline College :

  • Make an observation or observations.
  • Form a hypothesis — a tentative description of what's been observed, and make predictions based on that hypothesis.
  • Test the hypothesis and predictions in an experiment that can be reproduced.
  • Analyze the data and draw conclusions; accept or reject the hypothesis or modify the hypothesis if necessary.
  • Reproduce the experiment until there are no discrepancies between observations and theory. "Replication of methods and results is my favorite step in the scientific method," Moshe Pritsker, a former post-doctoral researcher at Harvard Medical School and CEO of JoVE, told Live Science. "The reproducibility of published experiments is the foundation of science. No reproducibility — no science."

Some key underpinnings to the scientific method:

  • The hypothesis must be testable and falsifiable, according to North Carolina State University . Falsifiable means that there must be a possible negative answer to the hypothesis.
  • Research must involve deductive reasoning and inductive reasoning . Deductive reasoning is the process of using true premises to reach a logical true conclusion while inductive reasoning uses observations to infer an explanation for those observations.
  • An experiment should include a dependent variable (which does not change) and an independent variable (which does change), according to the University of California, Santa Barbara .
  • An experiment should include an experimental group and a control group. The control group is what the experimental group is compared against, according to Britannica .

The process of generating and testing a hypothesis forms the backbone of the scientific method. When an idea has been confirmed over many experiments, it can be called a scientific theory. While a theory provides an explanation for a phenomenon, a scientific law provides a description of a phenomenon, according to The University of Waikato . One example would be the law of conservation of energy, which is the first law of thermodynamics that says that energy can neither be created nor destroyed. 

A law describes an observed phenomenon, but it doesn't explain why the phenomenon exists or what causes it. "In science, laws are a starting place," said Peter Coppinger, an associate professor of biology and biomedical engineering at the Rose-Hulman Institute of Technology. "From there, scientists can then ask the questions, 'Why and how?'"

Laws are generally considered to be without exception, though some laws have been modified over time after further testing found discrepancies. For instance, Newton's laws of motion describe everything we've observed in the macroscopic world, but they break down at the subatomic level.

This does not mean theories are not meaningful. For a hypothesis to become a theory, scientists must conduct rigorous testing, typically across multiple disciplines by separate groups of scientists. Saying something is "just a theory" confuses the scientific definition of "theory" with the layperson's definition. To most people a theory is a hunch. In science, a theory is the framework for observations and facts, Tanner told Live Science.

This Copernican heliocentric solar system, from 1708, shows the orbit of the moon around the Earth, and the orbits of the Earth and planets round the sun, including Jupiter and its moons, all surrounded by the 12 signs of the zodiac.

The earliest evidence of science can be found as far back as records exist. Early tablets contain numerals and information about the solar system , which were derived by using careful observation, prediction and testing of those predictions. Science became decidedly more "scientific" over time, however.

1200s: Robert Grosseteste developed the framework for the proper methods of modern scientific experimentation, according to the Stanford Encyclopedia of Philosophy. His works included the principle that an inquiry must be based on measurable evidence that is confirmed through testing.

1400s: Leonardo da Vinci began his notebooks in pursuit of evidence that the human body is microcosmic. The artist, scientist and mathematician also gathered information about optics and hydrodynamics.

1500s: Nicolaus Copernicus advanced the understanding of the solar system with his discovery of heliocentrism. This is a model in which Earth and the other planets revolve around the sun, which is the center of the solar system.

1600s: Johannes Kepler built upon those observations with his laws of planetary motion. Galileo Galilei improved on a new invention, the telescope, and used it to study the sun and planets. The 1600s also saw advancements in the study of physics as Isaac Newton developed his laws of motion.

1700s: Benjamin Franklin discovered that lightning is electrical. He also contributed to the study of oceanography and meteorology. The understanding of chemistry also evolved during this century as Antoine Lavoisier, dubbed the father of modern chemistry , developed the law of conservation of mass.

1800s: Milestones included Alessandro Volta's discoveries regarding electrochemical series, which led to the invention of the battery. John Dalton also introduced atomic theory, which stated that all matter is composed of atoms that combine to form molecules. The basis of modern study of genetics advanced as Gregor Mendel unveiled his laws of inheritance. Later in the century, Wilhelm Conrad Röntgen discovered X-rays , while George Ohm's law provided the basis for understanding how to harness electrical charges.

1900s: The discoveries of Albert Einstein , who is best known for his theory of relativity, dominated the beginning of the 20th century. Einstein's theory of relativity is actually two separate theories. His special theory of relativity, which he outlined in a 1905 paper, " The Electrodynamics of Moving Bodies ," concluded that time must change according to the speed of a moving object relative to the frame of reference of an observer. His second theory of general relativity, which he published as " The Foundation of the General Theory of Relativity ," advanced the idea that matter causes space to curve.

In 1952, Jonas Salk developed the polio vaccine , which reduced the incidence of polio in the United States by nearly 90%, according to Britannica . The following year, James D. Watson and Francis Crick discovered the structure of DNA , which is a double helix formed by base pairs attached to a sugar-phosphate backbone, according to the National Human Genome Research Institute .

2000s: The 21st century saw the first draft of the human genome completed, leading to a greater understanding of DNA. This advanced the study of genetics, its role in human biology and its use as a predictor of diseases and other disorders, according to the National Human Genome Research Institute .

  • This video from City University of New York delves into the basics of what defines science.
  • Learn about what makes science science in this book excerpt from Washington State University .
  • This resource from the University of Michigan — Flint explains how to design your own scientific study.

Merriam-Webster Dictionary, Scientia. 2022. https://www.merriam-webster.com/dictionary/scientia

University of California, Berkeley, "Understanding Science: An Overview." 2022. ​​ https://undsci.berkeley.edu/article/0_0_0/intro_01  

Highline College, "Scientific method." July 12, 2015. https://people.highline.edu/iglozman/classes/astronotes/scimeth.htm  

North Carolina State University, "Science Scripts." https://projects.ncsu.edu/project/bio183de/Black/science/science_scripts.html  

University of California, Santa Barbara. "What is an Independent variable?" October 31,2017. http://scienceline.ucsb.edu/getkey.php?key=6045  

Encyclopedia Britannica, "Control group." May 14, 2020. https://www.britannica.com/science/control-group  

The University of Waikato, "Scientific Hypothesis, Theories and Laws." https://sci.waikato.ac.nz/evolution/Theories.shtml  

Stanford Encyclopedia of Philosophy, Robert Grosseteste. May 3, 2019. https://plato.stanford.edu/entries/grosseteste/  

Encyclopedia Britannica, "Jonas Salk." October 21, 2021. https://www.britannica.com/ biography /Jonas-Salk

National Human Genome Research Institute, "​Phosphate Backbone." https://www.genome.gov/genetics-glossary/Phosphate-Backbone  

National Human Genome Research Institute, "What is the Human Genome Project?" https://www.genome.gov/human-genome-project/What  

‌ Live Science contributor Ashley Hamer updated this article on Jan. 16, 2022.

Sign up for the Live Science daily newsletter now

Get the world’s most fascinating discoveries delivered straight to your inbox.

Tonga eruption that poured 150 metric tons of water vapor into the stratosphere affected the atmosphere for years

When was the last time Antarctica was ice-free?

The James Webb telescope found hundreds of 'little red dots' in the ancient universe. We still don't know what they are.

Most Popular

  • 2 'Absolutely outstanding' 12-century picture stone unearthed in Germany likely depicts bishop who brought Christianity to region
  • 3 Tonga eruption that poured 150 metric tons of water vapor into the stratosphere affected the atmosphere for years
  • 4 Space photo of the week: The 1st image of an alien planet
  • 5 When was the last time Antarctica was ice-free?

what does a hypothesis help scientists understand the natural world

How does a hypothesis help scientist understand the natural world?

User Avatar

A hypothesis helps scientists to answer questions they have in this world which technically helps them to understand the natural world we live in.

Lewis Streich ∙

A hypothesis provides a testable explanation for a phenomenon or observation, guiding scientists in designing experiments to explore and verify their predictions. By formulating hypotheses, scientists can systematically investigate and understand the underlying principles and mechanisms governing natural phenomena. Ultimately, hypotheses enable scientists to refine their understanding of the natural world through empirical evidence and critical thinking.

because it gives them a conclusion to thier findings

It helps you understand the world because it gives you an idea of what the world is.

It can be the answer to a scientific question or a possible explanation for a set of observations.

Add your answer:

imp

Is it true that biologists discover problems by observing the world around them?

Yes, biologists often discover problems by observing the natural world. By closely observing the behaviors and characteristics of organisms in their natural habitats, biologists can identify issues such as declining populations, environmental changes, or new diseases. These observations guide their research and help in understanding and addressing various biological issues.

A very tentative explanation of observations of some regularity of nature is an?

hypothesis. A hypothesis is a proposed explanation for a phenomenon observed in the natural world, based on available evidence and reasoning. It serves as a starting point for scientific investigation and is subject to testing and evaluation.

Are scientist who study the interactions of organism and their environment?

Ecologists are scientists who study the interactions of organisms with their environment. They examine how living organisms interact with each other and with their physical surroundings to better understand ecosystems and the natural world. By studying these relationships, ecologists can help inform conservation efforts and environmental management.

What is the difference between biologist and scientist?

A biologist is a scientist who specifically studies living organisms and their interactions with each other and their environment. A scientist is a broader term that encompasses a wide range of disciplines that involve systematic study of the natural world, including biology, chemistry, physics, and more.

Why is Charles Darwin so important?

Charles Darwin is important because he developed the theory of evolution by natural selection, which revolutionized the way we understand the diversity of life on Earth. His work provided a scientific explanation for how species change over time and adapt to their environments. Darwin's ideas continue to influence biology, ecology, and our understanding of the natural world.

imp

Top Categories

Answers Logo

COMMENTS

  1. 1.2: Science as a Way of Understanding the Natural World

    1.2: Science as a Way of Understanding the Natural World

  2. Scientific hypothesis

    Scientific hypothesis | Definition, Formulation, & Example

  3. 2: Science as a Way of Understanding the Natural World

    Science is a relatively recent way of learning about natural phenomena, having largely replaced the influences of less objective methods and world views. The major alternatives to science are belief systems that are influential in all cultures, including those based on religion, morality, and aesthetics.

  4. Science aims to explain and understand

    Science aims to explain and understand

  5. The scientific method and climate change: How scientists know

    The scientific method and climate change: How scientists ...

  6. The Scientific Method: 5 Steps for Investigating Our World

    The Scientific Method: 5 Steps for Investigating Our World

  7. The core of science: Relating evidence and ideas

    The core of science: Relating evidence and ideas

  8. How Research Works: Understanding the Process of Science

    Scientists start with a question about something they observe in the world. They develop a hypothesis, which is a testable prediction of what the answer to their question will be. Often their predictions turn out to be correct, but sometimes searching for the answer leads to unexpected outcomes. The Techniques

  9. Science and the scientific method: Definitions and examples

    Science and the scientific method: Definitions and examples

  10. Chapter 1 Sections 1.1, 1.2, and 1.3 Flashcards

    How does a hypothesis help scientists understand the natural world? It can be the answer to a scientific question or a possible explanation for a set of observations Describe 3 possible ways in which a hypothesis may arise.

  11. biology chapter 1 test review Flashcards

    How does a hypothesis help scientists understand the natural world? It can be the answer to a scientific question or a possible explanation for a set of observations Why does it make sense for scientists to test just one variable at a time in an experiment?

  12. Biology- Chapter 1 Flashcards

    How does a hypothesis help scientists understand the natural world? A hypothesis helps scientists understand the natural world by suggesting a testable explanation for a set of observations Describe three possible ways in which a hypothesis may arise.

  13. How Science Makes Sense of the Natural & Designed World

    The scientific method is the process scientists use to understand the natural world and how it works. In a nutshell, the goal is to find a way to get around the fact that our brains are terrible ...

  14. How does a hypothesis help scientist understand the natural world?

    A hypothesis is a possible explanation for an observable occurrence that is formed from limited knowledge. It can serve as a starting point for an investigation, or it may develop during an investigation. Hypotheses are works in progress and can change as new evidence and information are collected.

  15. How does a hypothesis help scientists understand the natural world

    VTDK248. A hypothesis provides a focused and verifiable explanation for a particular phenomenon, helping scientists in their quest to understand the natural world. It guides research activities and enables scientists to plan tests and gather data to assess the accuracy of hypotheses. Scientists advance our understanding of a subject by learning ...

  16. How does a hypothesis help scientist understand the natural world

    A hypothesis helps scientists to answer questions they have in this world which technically helps them to understand the natural world we live in.

  17. Test Review Flashcards

    The goals of science are to investigate and understand the natural world, to ecplain events in the natural world, and to use those explanations to make useful predictions. ... How does a hypothesis help scientists understand the natural world? A hypothesis helps scientists understand the natural world by suggesting a testable explanation for a ...

  18. How does a hypothesis help scientists understand the natural world

    A hypothesis aids scientists in understanding the natural world by offering a testable prediction about a given observation. This prediction, often formulated as an if-then statement, bridges the gap between abstract ideas and observable phenomena in the real world. Once a hypothesis is proposed, scientists carry out experiments to test its ...

  19. how does a hypothesis help scientist understand the natural world

    A hypothesis helps scientists understand the natural world by providing a framework for designing experiments, making observations, and analyzing data. It guides the scientific inquiry process and allows scientists to test their ideas and theories. By testing hypotheses, scientists can gather evidence to support or refute their proposed ...

  20. How does a hypothesis help scientists understand the natural world?

    A hypothesis is based on observations that a scientist has made. The main way a hypothesis can help is by letting scientists reach a logical conclusion and explanation using a methodical approach. Whether a hypothesis is proved correct or incorrect, it is still new knowledge that has been gained.