Free Essay and Paper Checker

Try our other writing services

Paraphrasing Tool

Correct your entire essay within 5 minutes

  • Proofread on 100+ language issues
  • Specialized in academic texts
  • Corrections directly in your essay

Correct your entire essay in 5 minutes

Why this is the best free essay checker.

Best Grammar Checker Test Result Graph

Tested most accurate

In the test for the best grammar checker , Scribbr found 19 out of 20 errors.

No Signup Needed

No signup needed

You don’t have to register or sign up. Insert your text and get started right away.

Unlimited words and characters

Long texts, short texts it doesn’t matter – there’s no character or word limit.

The Grammar Checker is Ad-Free

Don’t wait for ads or distractions. The essay checker is ad-free!

Punctuation checker

Nobody's perfect all the time—and now, you don’t have to be!

There are times when you just want to write without worrying about every grammar or spelling convention. The online proofreader immediately finds all of your errors. This allows you to concentrate on the bigger picture. You’ll be 100% confident that your writing won’t affect your grade.

grammar mistake

Correcting your grammar

The Scribbr essay checker fixes grammar mistakes like:

  • Sentence fragments & run-on sentences
  • Subject-verb agreement errors
  • Issues with parallelism

spelling mistake

Spelling & Typos

Basic spell-checks often miss academic terms in writing and mark them as errors. Scribbr has a large dictionary of recognized (academic) words, so you can feel confident every word is 100% correct.

Punctuation errors

The essay checker takes away all your punctuation worries. Avoid common mistakes with:

  • Dashes and hyphens
  • Apostrophes
  • Parentheses
  • Question marks
  • Colons and semicolons
  • Quotation marks

word use

Avoid word choice errors

Should you use   “affect” or “effect” ? Is it   “then” or “than” ? Did you mean   “there,” “their,” or “they’re” ?

Never worry about embarrassing word choice errors again. Our grammar checker will spot and correct any errors with   commonly confused words .

accept all

Improve your text with one click

The Scribbr Grammar Checker allows you to accept all suggestions in your document with a single click.

Give it a try!

ph essay scorer

Correct your entire document in 5 minutes

Would you like to upload your entire essay and check it for 100+ academic language issues? Then Scribbr’s AI-powered proofreading is perfect for you.

With the AI Proofreader, you can correct your text in no time:

  • Upload document
  • Wait briefly while all errors are corrected directly in your document
  • Correct errors with one click

Proofread my document

all english variants

A Grammar Checker for all English variants

There are important differences between the versions of English used in different parts of the world, including UK and US English . Our essay checker supports a variety of major English dialects:

  • Canadian English
  • Australian English

Why users love our Essay Checker

🌐 English US, UK, CA, & AU
🏆 Quality Outperforms competition
✍️ Improves Grammar, spelling, & punctuation
⭐️ Rating based on 13,500 reviews

Save time and upload your entire essay to fix it in minutes

Scribbr & academic integrity.

Scribbr is committed to protecting academic integrity. Our plagiarism checker , AI Detector , Citation Generator , proofreading services , paraphrasing tool , grammar checker , summarizer , and free Knowledge Base content are designed to help students produce quality academic papers.

We make every effort to prevent our software from being used for fraudulent or manipulative purposes.

Ask our team

Want to contact us directly? No problem.  We  are always here for you.

Support team - Nina

Frequently asked questions

Our Essay Checker can detect most grammar, spelling, and punctuation mistakes. That said, we can’t guarantee 100% accuracy. 

Absolutely! The Essay Checker is particularly useful for non-native English speakers, as it can detect mistakes that may have gone unnoticed.

The exact time depends on the length of your document, but, in most cases it doesn’t take more than a minute.

  • DOI: 10.24963/ijcai.2024/897
  • Corpus ID: 271501393

Automated Essay Scoring: Recent Successes and Future Directions

  • Shengjie Li , Vincent Ng
  • Published in Proceedings of the Thirty… 1 August 2024
  • Computer Science
  • Proceedings of the Thirty-ThirdInternational Joint Conference on Artificial Intelligence

Figures and Tables from this paper

figure 1

68 References

Pmaes: prompt-mapping contrastive learning for cross-prompt automated essay scoring.

  • Highly Influential

Prompting Large Language Models for Zero-shot Essay Scoring via Multi-trait Specialization

Can large language models automatically score proficiency of written essays, prompt- and trait relation-aware cross-prompt essay trait scoring, on the use of bert for automated essay scoring: joint learning of multi-scale essay representation, essay-br: a brazilian corpus of essays, automated cross-prompt scoring of essay traits, many hands make light work: using essay traits to automatically score essays, neural automated essay scoring incorporating handcrafted features, prompt agnostic essay scorer: a domain generalization approach to cross-prompt automated essay scoring, related papers.

Showing 1 through 3 of 0 Related Papers

EssayGrader Logo - Go to homepage

The world’s leading AI platform for teachers to grade essays

EssayGrader is an AI powered grading assistant that gives high quality, specific and accurate writing feedback for essays. On average it takes a teacher 10 minutes to grade a single essay, with EssayGrader that time is cut down to 30 seconds. That's a 95% reduction in the time it takes to grade an essay, with the same results.

How we've done

Happy users

Essays graded

EssayGrader analyzes essays with the power of AI. Our software is trained on massive amounts of diverse text data, including books, articles and websites. This gives us the ability to provide accurate and detailed writing feedback to students and save teachers loads of time. We are the perfect AI powered grading assistant.

EssayGrader analyzes essays for grammar, punctuation, spelling, coherence, clarity and writing style errors. We provide detailed reports of the errors found and suggestions on how to fix those errors. Our error reports help speed up grading times by quickly highlighting mistakes made in the essay.

Bulk uploading

Uploading a single essay at a time, then waiting for it to complete is a pain. Bulk uploading allows you to upload an entire class worth of essays at a single time. You can work on other important tasks, come back in a few minutes to see all the essays perfectly graded.

Custom rubrics

We don't assume how you want to grade your essays. Instead, we provide you with the ability to create the same rubrics you already use. Those rubrics are then used to grade essays with the same grading criteria you are already accustomed to.

Sometimes you don't want to read a 5000 word essay and you'd just like a quick summary. Or maybe you're a student that needs to provide a summary of your essay to your teacher. We can help with our summarizer feature. We can provide a concise summary including the most important information and unique phrases.

AI detector

Our AI detector feature allows teachers to identify if an essay was written by AI or if only parts of it were written by AI. AI is becoming very popular and teachers need to be able to detect if essays are being written by students or AI.

Create classes to neatly organize your students essays. This is an essential feature when you have multiple classes and need to be able to track down students essays quickly.

Our mission

At EssayGrader, our mission is crystal clear: we're transforming the grading experience for teachers and students alike. Picture a space where teachers can efficiently and accurately grade essays, lightening their workload, while empowering students to enhance their writing skills. Our software is a dynamic work in progress, a testament to our commitment to constant improvement. We're dedicated to refining and enhancing our platform continually. With each update, we strive to simplify the lives of both educators and learners, making the process of grading and writing essays smoother and more efficient.We recognize the immense challenges teachers face – the heavy burdens, the long hours, and the often underappreciated efforts. EssayGrader is our way of shouldering some of that load. We are here to support you, to make your tasks more manageable, and to give you the tools you need to excel in your teaching journey.

Join the newsletter

Subscribe to get our latest content by email.

ph essay scorer

Super  charge your college essay

ph essay scorer

Elevate Your Essay to Perfection

ph essay scorer

Admissions expertise

ph essay scorer

Impression analysis

ph essay scorer

Actionable insights

ph essay scorer

Instant feedback

Get started free.

ph essay scorer

Recent blog posts

Elevate Your College Essay:  A Definitive Guide to the College Essay Format

Frequently Asked Questions

Carlos Edriel Yulo wins historic gold for Philippines with floor exercise title

  • Medium Text

Artistic Gymnastics - Men's Floor Exercise Final

Sign up here.

Reporting by Chang-Ran Kim, Gabrielle Tétrault-Farber, Karen Braun and Rory Carroll, editing by Pritha Sarkar

Our Standards: The Thomson Reuters Trust Principles. , opens new tab

Surfing - Men's Gold Medal Match

Swimming-Marathon men and women hoping to go in Seine

Open-water swimmers are hoping to plunge into the river Seine for 10km marathon races at the Paris Olympics on Thursday and Friday but pollution readings will have the final say.

Equestrian - Jumping Individual Final

  • Grammar Checker
  • Paraphrasing Tool
  • Critique Report
  • Writing Reports
  • Learn Blog Grammar Guide Community Events FAQ
  • Grammar Guide

Essay checker: free online paper corrector

Your best chance for an A+ essay. Try our free essay checker below.

Start typing, paste, or use

Get more suggestions to enhance this text and all your future writing

Your suggestions will show once you've entered some text.

Great job! We didn't find any suggestions in your text.

Why should you use a free essay checker?

The simple answer? Good grammar is necessary, but it's not easy. You've already done countless hours of research to write the essay. You don't want to spend countless hours correcting it too.

You'll get a better grade

Good grammar, or its absence, can determine if you get a good grade or a failing one. Impress your lecturer not just with how grammatically sound your writing is but how clear it is and how it flows.

You'll save time

Essay writing can be a long and tedious process. ProWritingAid's essay checker saves you the hassle by acting as the first line of defense against pesky grammar issues.

You'll become a better writer

Essay writing is a particular skill and one that becomes better with practice. Every time you run your essay through ProWritingAid's essay corrector, you get to see what your common mistakes are and how to fix them.

Good Writing = Good Grades

It's already hard to know what to write in an essay. Don't let grammar mistakes hinder your writing and prevent you from getting a good grade. ProWritingAid's essay checker will help you write your best essay yet. Since the checker is powered by AI, using it means that grammar errors don't stand a chance. Give your professors something to look forward to reading with clear, concise, and professional writing.

Illustration of character grading a paper with A+

How does ProWritingAid's essay checker work?

Your goal in essay writing is to convey your message as best as possible. ProWritingAid's essay checker is the first step toward doing this.

Get rid of spelling errors

ProWritingAid's essay checker will show you what it thinks are spelling errors and present you with possible corrections. If a word is flagged and it's actually spelled correctly, you can always choose to ignore the suggestion.

Fix grammar errors

Professors aren't fans of poor grammar because it interrupts your message and makes your essay hard to understand. ProWritingAid will run a grammar check on your paper to ensure that your message is precise and is being communicated the way you intended.

Get rid of punctuation mistakes

A missing period or comma here and there may not seem that serious, but you'll lose marks for punctuation errors. Run ProWritingAid's essay checker to use the correct punctuation marks every time and elevate your writing.

Improve readability

Make sure that in the grand scheme, your language is not too complicated. The essay checker's built-in Readability report will show if your essay is easy or hard to read. It specifically zones in on paragraphs that might be difficult to read so you can review them.

What else can the essay checker do?

The editing tool analyzes your text and highlights a variety of key writing issues, such as overused words, incohesive sentence structures, punctuation issues, repeated phrases, and inconsistencies.

You don't need to drown your essay in words just to meet the word count. ProWritingAid's essay checker will help to make your words more effective. You'll get to construct your arguments and make sure that every word you use builds toward a meaningful conclusion.

Transition words help organize your ideas by showing the relationship between them. The essay checker has a built-in Transition report that highlights and shows the percentage of transitions used in your essay. Use the results to add transitions where necessary.

An engaging essay has sentences of varying lengths. Don't bore your professor with long, rambling sentences. The essay checker will show you where you need to break long sentences into shorter sentences or add more sentence length variation.

Generally, in scholarly writing, with its emphasis on precision and clarity, the active voice is preferred. However, the passive voice is acceptable in some instances. When you run your essay through ProWritingAid's essay checker, you get feedback on whether you're using the passive or active voice to convey your idea.

There are specific academic power verbs, like appraise , investigate , debunk , support , etc., that can add more impact to your argument by giving a more positive and confident tone. The essay checker will check your writing for power verbs and notify you if you have less than three throughout your essay.

It's easy to get attached to certain phrases and use them as crutches in your essays, but this gives the impression of boring and repetitive writing. The essay checker will highlight your repeats and suggest contextually relevant alternatives.

Gain access to in-house blog reports on citations, how to write a thesis statement, how to write a conclusion, and more. Venture into a world of resources specific to your academic needs.

What kinds of papers does ProWritingAid correct?

No matter what you're writing, ProWritingAid will adapt and show you where your edits are needed most.

  • Argumentative
  • Descriptive
  • Textual analysis
  • Lab reports
  • Case studies
  • Literature reviews
  • Presentations
  • Dissertations
  • Research papers

Professors and students love using ProWritingAid

If you're an English teacher, you need to take a look at this tool - it reinforces what you're teaching, highlights strengths and weaknesses, and makes it easier to personalize instruction.

prowritingaid customer

Jennifer Gonzales

Only reason I managed to get an A in all my freshman composition classes.

ProWritingAid customer

Chris Layton

Great tool for academic work. Easy to use, and the reports and summary evaluation of your documents in several categories is very useful. So much more than spelling and grammar!

prowritingaid customer

Debra Callender

Questions & Answers

1. how do i use the essay checker online tool.

You can either copy and paste your essay in the essay checker field or upload your essay from your computer. Your suggestions will show once you enter text. You'll see a number of possible grammar and spelling issues. Sign up for free to get unlimited suggestions to improve your writing style, grammar, and sentence structure. Avoid unintentional plagiarism with a premium account.

2. Does the essay checker work with British English and American English?

The essay checker works with both British English and American English. Just choose the one you would like to use and your corrections will reflect this.

3. Is using an essay checker cheating?

No. The essay checker won't ever write the essay for you. It will point out possible edits and advise you on changes you need to make. You have full autonomy and get to decide which changes to accept.

4. Will the essay checker autocorrect my work?

The essay writing power remains in your hands. You choose which suggestions you want to accept, and you can ignore those that you don't think apply.

5. Is there a student discount?

Students who have an eligible student email address can get 20% off ProWritingAid Premium. You can apply for a student discount through Student App Centre .

6. Does ProWritingAid have a plagiarism checker?

Yes. ProWritingAid's plagiarism checker will check your work against over a billion webpages, published works, and academic papers, so you can be sure of its originality. Find out more about pricing for plagiarism checks here .

A good grade is closer than you think

Drop us a line or let's stay in touch via :

Subscribe to the PwC Newsletter

Join the community, add a new evaluation result row, automated essay scoring.

26 papers with code • 1 benchmarks • 1 datasets

Essay scoring: Automated Essay Scoring is the task of assigning a score to an essay, usually in the context of assessing the language ability of a language learner. The quality of an essay is affected by the following four primary dimensions: topic relevance, organization and coherence, word usage and sentence complexity, and grammar and mechanics.

Source: A Joint Model for Multimodal Document Quality Assessment

Benchmarks Add a Result

--> -->
Trend Dataset Best ModelPaper Code Compare
Tran-BERT-MS-ML-R

Most implemented papers

Automated essay scoring based on two-stage learning.

Current state-of-art feature-engineered and end-to-end Automated Essay Score (AES) methods are proven to be unable to detect adversarial samples, e. g. the essays composed of permuted sentences and the prompt-irrelevant essays.

A Neural Approach to Automated Essay Scoring

nusnlp/nea • EMNLP 2016

SkipFlow: Incorporating Neural Coherence Features for End-to-End Automatic Text Scoring

ph essay scorer

Our new method proposes a new \textsc{SkipFlow} mechanism that models relationships between snapshots of the hidden representations of a long short-term memory (LSTM) network as it reads.

Neural Automated Essay Scoring and Coherence Modeling for Adversarially Crafted Input

Youmna-H/Coherence_AES • NAACL 2018

We demonstrate that current state-of-the-art approaches to Automated Essay Scoring (AES) are not well-suited to capturing adversarially crafted input of grammatical but incoherent sequences of sentences.

Co-Attention Based Neural Network for Source-Dependent Essay Scoring

This paper presents an investigation of using a co-attention based neural network for source-dependent essay scoring.

Language models and Automated Essay Scoring

In this paper, we present a new comparative study on automatic essay scoring (AES).

Evaluation Toolkit For Robustness Testing Of Automatic Essay Scoring Systems

midas-research/calling-out-bluff • 14 Jul 2020

This number is increasing further due to COVID-19 and the associated automation of education and testing.

Prompt Agnostic Essay Scorer: A Domain Generalization Approach to Cross-prompt Automated Essay Scoring

Cross-prompt automated essay scoring (AES) requires the system to use non target-prompt essays to award scores to a target-prompt essay.

Many Hands Make Light Work: Using Essay Traits to Automatically Score Essays

To find out which traits work best for different types of essays, we conduct ablation tests for each of the essay traits.

EXPATS: A Toolkit for Explainable Automated Text Scoring

octanove/expats • 7 Apr 2021

Automated text scoring (ATS) tasks, such as automated essay scoring and readability assessment, are important educational applications of natural language processing.

United States vs Serbia live updates: Team USA begin Paris Olympics 2024 basketball campaign with impressive win

ph essay scorer

Olympic men's basketball result: U.S. beat Serbia 110-84

Team USA have beaten Serbia in their opening match of the 2024 Paris Olympics.

Kevin Durant had a game-high 23 points including 21 in the first half and LeBron James added 21 as the U.S. made the perfect start to their campaign to win a fifth-straight men’s basketball Olympic gold medal.

You can also follow The Athletic’s Olympics coverage here (click 'follow' in the top right hand corner). And for today’s news from around Paris, click here .

Highlight: Edwards puts Jović in a blender

Advertisement

Group C outlook

  • United States: 1-0 record, 2 points, +26 points difference
  • South Sudan: 1-0 record, 2 points, +11 points difference
  • Puerto Rico: 0-1 record, 1 point, -11 points difference
  • Serbia: 0-1 record, 1 point, -26 points difference

Remaining games

  • Puerto Rico vs Serbia at 5:15pm Paris time, 11:15am ET
  • United States vs South Sudan at 9pm Paris time, 3pm ET
  • Puerto Rico vs United States at 5:15pm Paris time, 11:15am ET
  • Serbia vs South Sudan at 9pm Paris time, 3pm ET

Team stats: U.S. shot the lights out

United States 110-84 Serbia

  • Field goals: 43/69 - 31/74
  • Field goal percentage: 62% - 42%
  • Three pointers: 18/32 - 9/37
  • Three point percentage: 56% - 24%
  • Free throws: 6/10 - 13/17
  • Rebounds: 41 - 32
  • Assists: 24 - 18
  • Steals: 9 - 12
  • Blocks: 4 - 0
  • Turnovers: 17 - 13
  • Bench points: 47 - 23

David Aldridge

Durant making case for best USA Basketball player of all time

Durant making case for best USA Basketball player of all time

Getty Images

I’ve long thought that Kevin Durant and Carmelo Anthony have the deepest and most meaningful USA Basketball resumes of all time. No, neither played on the Dream Team, which will always be the greatest U.S. basketball team of all time, and don’t bother trying to convince me otherwise. But they have both played for USAB for a long time, longer than anyone from that celebrated group. And they’ve both been outstanding for most of their stints. You can clap back that ’Melo was on that star-crossed 2004 Olympic team that lost to Argentina in the semifinals, and wound up winning the bronze medal. True. But then he helped lead Team USA to three straight golds in 2008, 2012 and 2016.

As the 2024 Summer Games kick off for the U.S. men’s team, though, Durant’s at the top of the heap.

KD hadn’t played a second in the warmups for this year’s Olympics, and he comes out of the wings to drop 23 in the opening-round game against Serbia. It only adds to his list of great moments for USAB over the last 14 years of World Cups and/or Olympics. I still believe his play in the 2010 World Cup in Istanbul, at 21 years old, when he averaged 22.8 per game for the U.S. team – including 28 in the gold medal-winning game over the host nation, Turkey, and was named tournament MVP – was the best individual performance in a world championship in U.S. history. But today’s effort, at age 35, is pretty damn special, too. He’s going for his fourth gold medal. He’s never said no when his country called. And he’s always played great.

John Hollinger

Serbia = Denver?

Serbia = Denver?

Fun stat (hat tip to Adam Mares for digging this up), and one that will be familiar to Nuggets fans: Serbia lost by 26 ... and was a -26 in the nine minutes Nikola Jokić didn't play.

Top performers

United States

  • Kevin Durant: 23 points on 8-for-9 shooting including 5-for-5 from three
  • LeBron James: 21 points, 9 assists, 8 rebounds
  • Nikola Jokić: 20 points, 8 assists and 5 rebounds, but shot 1-for-6 from three

U.S. beat Serbia 110-84

U.S. beat Serbia 110-84

Curry drains a three in the closing seconds to put an exclamation point on the U.S.'s win.

A fantastic start to the Americans' campaign to take gold in Paris, coasting to an easy win over the team ranked fourth in the world.

Important that Booker gets going

Important that Booker gets going

Just like that, Booker gets going with a couple of off-ball catch-and-shoot 3s.

That's the guy they need him to be in the medal rounds.

Booker contributing

Q4 1:54 United States 101-79 Serbia

Booker has six points, two assists and a steal over the past several minutes. He must've heard John Hollinger's criticism of him...

Every point matters at the Olympics

Q4 3:43 United States 93-79 Serbia

Serbia are hitting shots down the stretch here. It's likely too late to put a U.S. win in doubt, but every point matters as points difference is the first tiebreaker in determining which teams advance to the knockout stages.

Durant isn't going to catch Carmelo

Durant isn't going to catch Carmelo

Q4 5:38 United States 89-73 Serbia

Durant sits again. His second half has consisted of hitting two free throws and missing his first field goal of the game.

After scoring 21 points in the first half, he's not going to catch Carmelo's single-game U.S. record of 37. Still, an incredible performance by him today.

Jokić needs more support

Jokić needs more support

Q4 7:09 United States 86-68 Serbia

Jokić hits a bucket to slightly cut into the U.S. lead. He's got 18 points on 7-for-11 shooting today but hasn't gotten much scoring help from his teammates.

Sam Amick

U.S. feeling confident up big

U.S. feeling confident up big

You know how you know this game is over as we head into the fourth? In the span of 30 seconds, I just watched Kerr laugh it up with assistant coaches Ty Lue and Mark Few, Anthony Edwards do the James Harden stir-the-pot motion as he headed to the bench after his fancy bucket at the end of the third quarter, and then LeBron James, Joel Embiid and Tyrese Haliburton all re-enacting Edwards' clever spin move on the baseline as if they were all in beginner ballet class.

So yes, in other words, the tension that was there for this entire game has dissipated just a bit.

Best play of third quarter

Luke Brown

The stars are out in Lille

The stars are out in Lille

Spike Lee is in attendance at the Pierre Mauroy Stadium in Lille today. Here he is posting for a half-time snap with two-time NBA All-Star Luol Deng, who is the president of the South Sudan Basketball Federation. Let’s hope these two are still on good terms come Wednesday night.

U.S. lead Serbia 84-65 going into fourth quarter

The quarter finishes with Edwards putting his defender in a blender to score an easy bucket, prompting some dancing from Steph on the bench. The U.S lead is up to 19.

Adebayo got his first points of the game a minute ago, meaning all 10 U.S. players who have been on the floor have scored in this game.

Kerr backing Booker...

Kerr backing Booker...

One trend that continues to fascinate me: Devon Booker has played a team-high 21 minutes despite not really doing much of note this game, or in any of the prior exhibitions.

How much will Durant play down the stretch?

How much will Durant play down the stretch?

Durant sat for the first six-plus minutes of that third quarter, but he's back. But with Team USA extending its lead (currently 76-61), I could see Kerr trying to conserve him even more down the stretch considering how long it has been since he played in a real game (late April).

Durant back in

Q3 3:43 United States 73-60 Serbia

Durant finally checks back in. He needs 16 points to tie the U.S. record for points in a single game at the Olympics.

ORIGINAL RESEARCH article

Explainable automated essay scoring: deep learning really has pedagogical value.

\r\nVivekanandan Kumar

  • School of Computing and Information Systems, Faculty of Science and Technology, Athabasca University, Edmonton, AB, Canada

Automated essay scoring (AES) is a compelling topic in Learning Analytics for the primary reason that recent advances in AI find it as a good testbed to explore artificial supplementation of human creativity. However, a vast swath of research tackles AES only holistically; few have even developed AES models at the rubric level, the very first layer of explanation underlying the prediction of holistic scores. Consequently, the AES black box has remained impenetrable. Although several algorithms from Explainable Artificial Intelligence have recently been published, no research has yet investigated the role that these explanation models can play in: (a) discovering the decision-making process that drives AES, (b) fine-tuning predictive models to improve generalizability and interpretability, and (c) providing personalized, formative, and fine-grained feedback to students during the writing process. Building on previous studies where models were trained to predict both the holistic and rubric scores of essays, using the Automated Student Assessment Prize’s essay datasets, this study focuses on predicting the quality of the writing style of Grade-7 essays and exposes the decision processes that lead to these predictions. In doing so, it evaluates the impact of deep learning (multi-layer perceptron neural networks) on the performance of AES. It has been found that the effect of deep learning can be best viewed when assessing the trustworthiness of explanation models. As more hidden layers were added to the neural network, the descriptive accuracy increased by about 10%. This study shows that faster (up to three orders of magnitude) SHAP implementations are as accurate as the slower model-agnostic one. It leverages the state-of-the-art in natural language processing, applying feature selection on a pool of 1592 linguistic indices that measure aspects of text cohesion, lexical diversity, lexical sophistication, and syntactic sophistication and complexity. In addition to the list of most globally important features, this study reports (a) a list of features that are important for a specific essay (locally), (b) a range of values for each feature that contribute to higher or lower rubric scores, and (c) a model that allows to quantify the impact of the implementation of formative feedback.

Automated essay scoring (AES) is a compelling topic in Learning Analytics (LA) for the primary reason that recent advances in AI find it as a good testbed to explore artificial supplementation of human creativity. However, a vast swath of research tackles AES only holistically; only a few have even developed AES models at the rubric level, the very first layer of explanation underlying the prediction of holistic scores ( Kumar et al., 2017 ; Taghipour, 2017 ; Kumar and Boulanger, 2020 ). None has attempted to explain the whole decision process of AES, from holistic scores to rubric scores and from rubric scores to writing feature modeling. Although several algorithms from XAI (explainable artificial intelligence) ( Adadi and Berrada, 2018 ; Murdoch et al., 2019 ) have recently been published (e.g., LIME, SHAP) ( Ribeiro et al., 2016 ; Lundberg and Lee, 2017 ), no research has yet investigated the role that these explanation models (trained on top of predictive models) can play in: (a) discovering the decision-making process that drives AES, (b) fine-tuning predictive models to improve generalizability and interpretability, and (c) providing teachers and students with personalized, formative, and fine-grained feedback during the writing process.

One of the key anticipated benefits of AES is the elimination of human bias such as rater fatigue, rater’s expertise, severity/leniency, scale shrinkage, stereotyping, Halo effect, rater drift, perception difference, and inconsistency ( Taghipour, 2017 ). At its turn, AES may suffer from its own set of biases (e.g., imperfections in training data, spurious correlations, overrepresented minority groups), which has incited the research community to look for ways to make AES more transparent, accountable, fair, unbiased, and consequently trustworthy while remaining accurate. This required changing the perception that AES is merely a machine learning and feature engineering task ( Madnani et al., 2017 ; Madnani and Cahill, 2018 ). Hence, researchers have advocated that AES should be seen as a shared task requiring several methodological design decisions along the way such as curriculum alignment, construction of training corpora, reliable scoring process, and rater performance evaluation, where the goal is to build and deploy fair and unbiased scoring models to be used in large-scale assessments and classroom settings ( Rupp, 2018 ; West-Smith et al., 2018 ; Rupp et al., 2019 ). Unfortunately, although these measures are intended to design reliable and valid AES systems, they may still fail to build trust among users, keeping the AES black box impenetrable for teachers and students.

It has been previously recognized that divergence of opinion among human and machine graders has been only investigated superficially ( Reinertsen, 2018 ). So far, researchers investigated the characteristics of essays through qualitative analyses which ended up rejected by AES systems (requiring a human to score them) ( Reinertsen, 2018 ). Others strived to justify predicted scores by identifying essay segments that actually caused the predicted scores. In spite of the fact that these justifications hinted at and quantified the importance of these spatial cues, they did not provide any feedback as to how to improve those suboptimal essay segments ( Mizumoto et al., 2019 ).

Related to this study and the work of Kumar and Boulanger (2020) is Revision Assistant, a commercial AES system developed by Turnitin ( Woods et al., 2017 ; West-Smith et al., 2018 ), which in addition to predicting essays’ holistic scores provides formative, rubric-specific, and sentence-level feedback over multiple drafts of a student’s essay. The implementation of Revision Assistant moved away from the traditional approach to AES, which consists in using a limited set of features engineered by human experts representing only high-level characteristics of essays. Like this study, it rather opted for including a large number of low-level writing features, demonstrating that expert-designed features are not required to produce interpretable predictions. Revision Assistant’s performance was reported on two essay datasets, one of which was the Automated Student Assessment Prize (ASAP) 1 dataset. However, performance on the ASAP dataset was reported in terms of quadratic weighted kappa and this for holistic scores only. Models predicting rubric scores were trained only with the other dataset which was hosted on and collected through Revision Assistant itself.

In contrast to feature-based approaches like the one adopted by Revision Assistant, other AES systems are implemented using deep neural networks where features are learned during model training. For example, Taghipour (2017) in his doctoral dissertation leverages a recurrent neural network to improve accuracy in predicting holistic scores, implement rubric scoring (i.e., organization and argument strength), and distinguish between human-written and computer-generated essays. Interestingly, Taghipour compared the performance of his AES system against other AES systems using the ASAP corpora, but he did not use the ASAP corpora when it came to train rubric scoring models although ASAP provides two corpora provisioning rubric scores (#7 and #8). Finally, research was also undertaken to assess the generalizability of rubric-based models by performing experiments across various datasets. It was found that the predictive power of such rubric-based models was related to how much the underlying feature set covered a rubric’s criteria ( Rahimi et al., 2017 ).

Despite their numbers, rubrics (e.g., organization, prompt adherence, argument strength, essay length, conventions, word choices, readability, coherence, sentence fluency, style, audience, ideas) are usually investigated in isolation and not as a whole, with the exception of Revision Assistant which provides feedback at the same time on the following five rubrics: claim, development, audience, cohesion, and conventions. The literature reveals that rubric-specific automated feedback includes numerical rubric scores as well as recommendations on how to improve essay quality and correct errors ( Taghipour, 2017 ). Again, except for Revision Assistant which undertook a holistic approach to AES including holistic and rubric scoring and provision of rubric-specific feedback at the sentence level, AES has generally not been investigated as a whole or as an end-to-end product. Hence, the AES used in this study and developed by Kumar and Boulanger (2020) is unique in that it uses both deep learning (multi-layer perceptron neural network) and a huge pool of linguistic indices (1592), predicts both holistic and rubric scores, explaining holistic scores in terms of rubric scores, and reports which linguistic indices are the most important by rubric. This study, however, goes one step further and showcases how to explain the decision process behind the prediction of a rubric score for a specific essay, one of the main AES limitations identified in the literature ( Taghipour, 2017 ) that this research intends to address, at least partially.

Besides providing explanations of predictions both globally and individually, this study not only goes one step further toward the automated provision of formative feedback but also does so in alignment with the explanation model and the predictive model, allowing to better map feedback to the actual characteristics of an essay. Woods et al. (2017) succeeded in associating sentence-level expert-derived feedback with strong/weak sentences having the greatest influence on a rubric score based on the rubric, essay score, and the sentence characteristics. While Revision Assistant’s feature space consists of counts and binary occurrence indicators of word unigrams, bigrams and trigrams, character four-grams, and part-of-speech bigrams and trigrams, they are mainly textual and locational indices; by nature they are not descriptive or self-explanative. This research fills this gap by proposing feedback based on a set of linguistic indices that can encompass several sentences at a time. However, the proposed approach omits locational hints, leaving the merging of the two approaches as the next step to be addressed by the research community.

Although this paper proposes to extend the automated provision of formative feedback through an interpretable machine learning method, it rather focuses on the feasibility of automating it in the context of AES instead of evaluating the pedagogical quality (such as the informational and communicational value of feedback messages) or impact on students’ writing performance, a topic that will be kept for an upcoming study. Having an AES system that is capable of delivering real-time formative feedback sets the stage to investigate (1) when feedback is effective, (2) the types of feedback that are effective, and (3) whether there exist different kinds of behaviors in terms of seeking and using feedback ( Goldin et al., 2017 ). Finally, this paper omits describing the mapping between the AES model’s linguistic indices and a pedagogical language that is easily understandable by students and teachers, which is beyond its scope.

Methodology

This study showcases the application of the PDR framework ( Murdoch et al., 2019 ), which provides three pillars to describe interpretations in the context of the data science life cycle: P redictive accuracy, D escriptive accuracy, and R elevancy to human audience(s). It is important to note that in a broader sense both terms “explainable artificial intelligence” and “interpretable machine learning” can be used interchangeably with the following meaning ( Murdoch et al., 2019 ): “the use of machine-learning models for the extraction of relevant knowledge about domain relationships contained in data.” Here “predictive accuracy” refers to the measurement of a model’s ability to fit data; “descriptive accuracy” is the degree at which the relationships learned by a machine learning model can be objectively captured; and “relevant knowledge” implies that a particular audience gets insights into a chosen domain problem that guide its communication, actions, and discovery ( Murdoch et al., 2019 ).

In the context of this article, formative feedback that assesses students’ writing skills and prescribes remedial writing strategies is the relevant knowledge sought for, whose effectiveness on students’ writing performance will be validated in an upcoming study. However, the current study puts forward the tools and evaluates the feasibility to offer this real-time formative feedback. It also measures the predictive and descriptive accuracies of AES and explanation models, two key components to generate trustworthy interpretations ( Murdoch et al., 2019 ). Naturally, the provision of formative feedback is dependent on the speed of training and evaluating new explanation models every time a new essay is ingested by the AES system. That is why this paper investigates the potential of various SHAP implementations for speed optimization without compromising the predictive and descriptive accuracies. This article will show how the insights generated by the explanation model can serve to debug the predictive model and contribute to enhance the feature selection and/or engineering process ( Murdoch et al., 2019 ), laying the foundation for the provision of actionable and impactful pieces of knowledge to educational audiences, whose relevancy will be judged by the human stakeholders and estimated by the magnitude of resulting changes.

Figure 1 overviews all the elements and steps encompassed by the AES system in this study. The following subsections will address each facet of the overall methodology, from hyperparameter optimization to relevancy to both students and teachers.

www.frontiersin.org

Figure 1. A flow chart exhibiting the sequence of activities to develop an end-to-end AES system and how the various elements work together to produce relevant knowledge to the intended stakeholders.

Automated Essay Scoring System, Dataset, and Feature Selection

As previously mentioned, this paper reuses the AES system developed by Kumar and Boulanger (2020) . The AES models were trained using the ASAP’s seventh essay corpus. These narrative essays were written by Grade-7 students in the setting of state-wide assessments in the United States and had an average length of 171 words. Students were asked to write a story about patience. Kumar and Boulanger’s work consisted in training a predictive model for each of the four rubrics according to which essays were graded: ideas, organization, style, and conventions. Each essay was scored by two human raters on a 0−3 scale (integer scale). Rubric scores were resolved by adding the rubric scores assigned by the two human raters, producing a resolved rubric score between 0 and 6. This paper is a continuation of Boulanger and Kumar (2018 , 2019 , 2020) and Kumar and Boulanger (2020) where the objective is to open the AES black box to explain the holistic and rubric scores that it predicts. Essentially, the holistic score ( Boulanger and Kumar, 2018 , 2019 ) is determined and justified through its four rubrics. Rubric scores, in turn, are investigated to highlight the writing features that play an important role within each rubric ( Kumar and Boulanger, 2020 ). Finally, beyond global feature importance, it is not only indispensable to identify which writing indices are important for a particular essay (local), but also to discover how they contribute to increase or decrease the predicted rubric score, and which feature values are more/less desirable ( Boulanger and Kumar, 2020 ). This paper is a continuation of these previous works by adding the following link to the AES chain: holistic score, rubric scores, feature importance, explanations, and formative feedback. The objective is to highlight the means for transparent and trustable AES while empowering learning analytics practitioners with the tools to debug these models and equip educational stakeholders with an AI companion that will semi-autonomously generate formative feedback to teachers and students. Specifically, this paper analyzes the AES reasoning underlying its assessment of the “style” rubric, which looks for command of language, including effective and compelling word choice and varied sentence structure, that clearly supports the writer’s purpose and audience.

This research’s approach to AES leverages a feature-based multi-layer perceptron (MLP) deep neural network to predict rubric scores. The AES system is fed by 1592 linguistic indices quantitatively measured by the Suite of Automatic Linguistic Analysis Tools 2 (SALAT), which assess aspects of grammar and mechanics, sentiment analysis and cognition, text cohesion, lexical diversity, lexical sophistication, and syntactic sophistication and complexity ( Kumar and Boulanger, 2020 ). The purpose of using such a huge pool of low-level writing features is to let deep learning extract the most important ones; the literature supports this practice since there is evidence that features automatically selected are not less interpretable than those engineered ( Woods et al., 2017 ). However, to facilitate this process, this study opted for a semi-automatic strategy that consisted of both filter and embedded methods. Firstly, the original ASAP’s seventh essay dataset consists of a training set of 1567 essays and a validation and testing sets of 894 essays combined. While the texts of all 2461 essays are still available to the public, only the labels (the rubric scores of two human raters) of the training set have been shared with the public. Yet, this paper reused the unlabeled 894 essays of the validation and testing sets for feature selection, a process that must be carefully carried out by avoiding being informed by essays that will train the predictive model. Secondly, feature data were normalized, and features with variances lower than 0.01 were pruned. Thirdly, the last feature of any pair of features having an absolute Pearson correlation coefficient greater than 0.7 was also pruned (the one that comes last in terms of the column ordering in the datasets). After the application of these filter methods, the number of features was reduced from 1592 to 282. Finally, the Lasso and Ridge regression regularization methods (whose combination is also called ElasticNet) were applied during the training of the rubric scoring models. Lasso is responsible for pruning further features, while Ridge regression is entrusted with eliminating multicollinearity among features.

Hyperparameter Optimization and Training

To ensure a fair evaluation of the potential of deep learning, it is of utmost importance to minimally describe this study’s exploration of the hyperparameter space, a step that is often found to be missing when reporting the outcomes of AES models’ performance ( Kumar and Boulanger, 2020 ). First, a study should list the hyperparameters it is going to investigate by testing for various values of each hyperparameter. For example, Table 1 lists all hyperparameters explored in this study. Note that L 1 and L 2 are two regularization hyperparameters contributing to feature selection. Second, each study should also report the range of values of each hyperparameter. Finally, the strategy to explore the selected hyperparameter subspace should be clearly defined. For instance, given the availability of high-performance computing resources and the time/cost of training AES models, one might favor performing a grid (a systematic testing of all combinations of hyperparameters and hyperparameter values within a subspace) or a random search (randomly selecting a hyperparameter value from a range of values per hyperparameter) or both by first applying random search to identify a good starting candidate and then grid search to test all possible combinations in the vicinity of the starting candidate’s subspace. Of particular interest to this study is the neural network itself, that is, how many hidden layers should a neural network have and how many neurons should compose each hidden layer and the neural network as a whole. These two variables are directly related to the size of the neural network, with the number of hidden layers being a defining trait of deep learning. A vast swath of literature is silent about the application of interpretable machine learning in AES and even more about measuring its descriptive accuracy, the two components of trustworthiness. Hence, this study pioneers the comprehensive assessment of deep learning impact on AES’s predictive and descriptive accuracies.

www.frontiersin.org

Table 1. Hyperparameter subspace investigated in this article along with best hyperparameter values per neural network architecture.

Consequently, the 1567 labeled essays were divided into a training set (80%) and a testing set (20%). No validation set was put aside; 5-fold cross-validation was rather used for hyperparameter optimization. Table 1 delineates the hyperparameter subspace from which 800 different combinations of hyperparameter values were randomly selected out of a subspace of 86,248,800 possible combinations. Since this research proposes to investigate the potential of deep learning to predict rubric scores, several architectures consisting of 2 to 6 hidden layers and ranging from 9,156 to 119,312 parameters were tested. Table 1 shows the best hyperparameter values per depth of neural networks.

Again, the essays of the testing set were never used during the training and cross-validation processes. In order to retrieve the best predictive models during training, every time the validation loss reached a record low, the model was overwritten. Training stopped when no new record low was reached during 100 epochs. Moreover, to avoid reporting the performance of overfit models, each model was trained five times using the same set of best hyperparameter values. Finally, for each resulting predictive model, a corresponding ensemble model (bagging) was also obtained out of the five models trained during cross-validation.

Predictive Models and Predictive Accuracy

Table 2 delineates the performance of predictive models trained previously by Kumar and Boulanger (2020) on the four scoring rubrics. The first row lists the agreement levels between the resolved and predicted rubric scores measured by the quadratic weighted kappa. The second row is the percentage of accurate predictions; the third row reports the percentages of predictions that are either accurate or off by 1; and the fourth row reports the percentages of predictions that are either accurate or at most off by 2. Prediction of holistic scores is done merely by adding up all rubric scores. Since the scale of rubric scores is 0−6 for every rubric, then the scale of holistic scores is 0−24.

www.frontiersin.org

Table 2. Rubric scoring models’ performance on testing set.

While each of these rubric scoring models might suffer from its own systemic bias and hence cancel off each other’s bias by adding up the rubric scores to derive the holistic score, this study (unlike related works) intends to highlight these biases by exposing the decision making process underlying the prediction of rubric scores. Although this paper exclusively focuses on the Style rubric, the methodology put forward to analyze the local and global importance of writing indices and their context-specific contributions to predicted rubric scores is applicable to every rubric and allows to control for these biases one rubric at a time. Comparing and contrasting the role that a specific writing index plays within each rubric context deserves its own investigation, which has been partly addressed in the study led by Kumar and Boulanger (2020) . Moreover, this paper underscores the necessity to measure the predictive accuracy of rubric-based holistic scoring using additional metrics to account for these rubric-specific biases. For example, there exist several combinations of rubric scores to obtain a holistic score of 16 (e.g., 4-4-4-4 vs. 4-3-4-5 vs. 3-5-2-6). Even though the predicted holistic score might be accurate, the rubric scores could all be inaccurate. Similarity or distance metrics (e.g., Manhattan and Euclidean) should then be used to describe the authenticity of the composition of these holistic scores.

According to what Kumar and Boulanger (2020) report on the performance of several state-of-the-art AES systems trained on ASAP’s seventh essay dataset, the AES system they developed and which will be reused in this paper proved competitive while being fully and deeply interpretable, which no other AES system does. They also supply further information about the study setting, essay datasets, rubrics, features, natural language processing (NLP) tools, model training, and evaluation against human performance. Again, this paper showcases the application of explainable artificial intelligence in automated essay scoring by focusing on the decision process of the Rubric #3 (Style) scoring model. Remember that the same methodology is applicable to each rubric.

Explanation Model: SHAP

SH apley A dditive ex P lanations (SHAP) is a theoretically justified XAI framework that can provide simultaneously both local and global explanations ( Molnar, 2020 ); that is, SHAP is able to explain individual predictions taking into account the uniqueness of each prediction, while highlighting the global factors influencing the overall performance of a predictive model. SHAP is of keen interest because it unifies all algorithms of the class of additive feature attribution methods, adhering to a set of three properties that are desirable in interpretable machine learning: local accuracy, missingness, and consistency ( Lundberg and Lee, 2017 ). A key advantage of SHAP is that feature contributions are all expressed in terms of the outcome variable (e.g., rubric scores), providing a same scale to compare the importance of each feature against each other. Local accuracy refers to the fact that no matter the explanation model, the sum of all feature contributions is always equal to the prediction explained by these features. The missingness property implies that the prediction is never explained by unmeasured factors, which are always assigned a contribution of zero. However, the converse is not true; a contribution of zero does not imply an unobserved factor, it can also denote a feature irrelevant to explain the prediction. The consistency property guarantees that a more important feature will always have a greater magnitude than a less important one, no matter how many other features are included in the explanation model. SHAP proves superior to other additive attribution methods such as LIME (Local Interpretable Model-Agnostic Explanations), Shapley values, and DeepLIFT in that they never comply with all three properties, while SHAP does ( Lundberg and Lee, 2017 ). Moreover, the way SHAP assesses the importance of a feature differs from permutation importance methods (e.g., ELI5), measured as the decrease in model performance (accuracy) as a feature is perturbated, in that it is based on how much a feature contributes to every prediction.

Essentially, a SHAP explanation model (linear regression) is trained on top of a predictive model, which in this case is a complex ensemble deep learning model. Table 3 demonstrates a scale explanation model showing how SHAP values (feature contributions) work. In this example, there are five instances and five features describing each instance (in the context of this paper, an instance is an essay). Predictions are listed in the second to last column, and the base value is the mean of all predictions. The base value constitutes the reference point according to which predictions are explained; in other words, reasons are given to justify the discrepancy between the individual prediction and the mean prediction (the base value). Notice that the table does not contain the actual feature values; these are SHAP values that quantify the contribution of each feature to the predicted score. For example, the prediction of Instance 1 is 2.46, while the base value is 3.76. Adding up the feature contributions of Instance 1 to the base value produces the predicted score:

www.frontiersin.org

Table 3. Array of SHAP values: local and global importance of features and feature coverage per instance.

Hence, the generic equation of the explanation model ( Lundberg and Lee, 2017 ) is:

where g(x) is the prediction of an individual instance x, σ 0 is the base value, σ i is the feature contribution of feature x i , x i ∈ {0,1} denotes whether feature x i is part of the individual explanation, and j is the total number of features. Furthermore, the global importance of a feature is calculated by adding up the absolute values of its corresponding SHAP values over all instances, where n is the total number of instances and σ i ( j ) is the feature contribution for instance i ( Lundberg et al., 2018 ):

Therefore, it can be seen that Feature 3 is the most globally important feature, while Feature 2 is the least important one. Similarly, Feature 5 is Instance 3’s most important feature at the local level, while Feature 2 is the least locally important. The reader should also note that a feature shall not necessarily be assigned any contribution; some of them are just not part of the explanation such as Feature 2 and Feature 3 in Instance 2. These concepts lay the foundation for the explainable AES system presented in this paper. Just imagine that each instance (essay) will be rather summarized by 282 features and that the explanations of all the testing set’s 314 essays will be provided.

Several implementations of SHAP exist: KernelSHAP, DeepSHAP, GradientSHAP, and TreeSHAP, among others. KernelSHAP is model-agnostic and works for any type of predictive models; however, KernelSHAP is very computing-intensive which makes it undesirable for practical purposes. DeepSHAP and GradientSHAP are two implementations intended for deep learning which takes advantage of the known properties of neural networks (i.e., MLP-NN, CNN, or RNN) to accelerate up to three orders of magnitude the processing time to explain predictions ( Chen et al., 2019 ). Finally, TreeSHAP is the most powerful implementation intended for tree-based models. TreeSHAP is not only fast; it is also accurate. While the three former implementations estimate SHAP values, TreeSHAP computes them exactly. Moreover, TreeSHAP not only measures the contribution of individual features, but it also considers interactions between pairs of features and assigns them SHAP values. Since one of the goals of this paper is to assess the potential of deep learning on the performance of both predictive and explanation models, this research tested the former three implementations. TreeSHAP is recommended for future work since the interaction among features is critical information to consider. Moreover, KernelSHAP, DeepSHAP, and GradientSHAP all require access to the whole original dataset to derive the explanation of a new instance, another constraint TreeSHAP is not subject to.

Descriptive Accuracy: Trustworthiness of Explanation Models

This paper reuses and adapts the methodology introduced by Ribeiro et al. (2016) . Several explanation models will be trained, using different SHAP implementations and configurations, per deep learning predictive model (for each number of hidden layers). The rationale consists in randomly selecting and ignoring 25% of the 282 features feeding the predictive model (e.g., turning them to zero). If it causes the prediction to change beyond a specific threshold (in this study 0.10 and 0.25 were tested), then the explanation model should also reflect the magnitude of this change while ignoring the contributions of these same features. For example, the original predicted rubric score of an essay might be 5; however, when ignoring the information brought in by a subset of 70 randomly selected features (25% of 282), the prediction may turn to 4. On the other side, if the explanation model also predicts a 4 while ignoring the contributions of the same subset of features, then the explanation is considered as trustworthy. This allows to compute the precision, recall, and F1-score of each explanation model (number of true and false positives and true and false negatives). The process is repeated 500 times for every essay to determine the average precision and recall of every explanation model.

Judging Relevancy

So far, the consistency of explanations with predictions has been considered. However, consistent explanations do not imply relevant or meaningful explanations. Put another way, explanations only reflect what predictive models have learned during training. How can the black box of these explanations be opened? Looking directly at the numerical SHAP values of each explanation might seem a daunting task, but there exist tools, mainly visualizations (decision plot, summary plot, and dependence plot), that allow to make sense out of these explanations. However, before visualizing these explanations, another question needs to be addressed: which explanations or essays should be picked for further scrutiny of the AES system? Given the huge number of essays to examine and the tedious task to understand the underpinnings of a single explanation, a small subset of essays should be carefully picked that should represent concisely the state of correctness of the underlying predictive model. Again, this study applies and adapts the methodology in Ribeiro et al. (2016) . A greedy algorithm selects essays whose predictions are explained by as many features of global importance as possible to optimize feature coverage. Ribeiro et al. demonstrated in unrelated studies (i.e., sentiment analysis) that the correctness of a predictive model can be assessed with as few as four or five well-picked explanations.

For example, Table 3 reveals the global importance of five features. The square root of each feature’s global importance is also computed and considered instead to limit the influence of a small group of very influential features. The feature coverage of Instance 1 is 100% because all features are engaged in the explanation of the prediction. On the other hand, Instance 2 has a feature coverage of 61.5% because only Features 1, 4, and 5 are part of the prediction’s explanation. The feature coverage is calculated by summing the square root of each explanation’s feature’s global importance together and dividing by the sum of the square roots of all features’ global importance:

Additionally, it can be seen that Instance 4 does not have any zero-feature value although its feature coverage is only 84.6%. The algorithm was constrained to discard from the explanation any feature whose contribution (local importance) was too close to zero. In the case of Table 3 ’s example, any feature whose absolute SHAP value is less than 0.10 is ignored, hence leading to a feature coverage of:

In this paper’s study, the real threshold was 0.01. This constraint was actually a requirement for the DeepSHAP and GradientSHAP implementations because they only output non-zero SHAP values contrary to KernelSHAP which generates explanations with a fixed number of features: a non-zero SHAP value indicates that the feature is part of the explanation, while a zero value excludes the feature from the explanation. Without this parameter, all 282 features would be part of the explanation although a huge number only has a trivial (very close to zero) SHAP value. Now, a much smaller but variable subset of features makes up each explanation. This is one way in which Ribeiro et al.’s SP-LIME algorithm (SP stands for Submodular Pick) has been adapted to this study’s needs. In conclusion, notice how Instance 4 would be selected in preference to Instance 5 to explain Table 3 ’s underlying predictive model. Even though both instances have four features explaining their prediction, Instance 4’s features are more globally important than Instance 5’s features, and therefore Instance 4 has greater feature coverage than Instance 5.

Whereas Table 3 ’s example exhibits the feature coverage of one instance at a time, this study computes it for a subset of instances, where the absolute SHAP values are aggregated (summed) per candidate subset. When the sum of absolute SHAP values per feature exceeds the set threshold, the feature is then considered as covered by the selected set of instances. The objective in this study was to optimize the feature coverage while minimizing the number of essays to validate the AES model.

Research Questions

One of this article’s objectives is to assess the potential of deep learning in automated essay scoring. The literature has often claimed ( Hussein et al., 2019 ) that there are two approaches to AES, feature-based and deep learning, as though these two approaches were mutually exclusive. Yet, the literature also puts forward that feature-based AES models may be more interpretable than deep learning ones ( Amorim et al., 2018 ). This paper embraces the viewpoint that these two approaches can also be complementary by leveraging the state-of-the-art in NLP and automatic linguistic analysis and harnessing one of the richest pools of linguistic indices put forward in the research community ( Crossley et al., 2016 , 2017 , 2019 ; Kyle, 2016 ; Kyle et al., 2018 ) and applying a thorough feature selection process powered by deep learning. Moreover, the ability of deep learning of modeling complex non-linear relationships makes it particularly well-suited for AES given that the importance of a writing feature is highly dependent on its context, that is, its interactions with other writing features. Besides, this study leverages the SHAP interpretation method that is well-suited to interpret very complex models. Hence, this study elected to work with deep learning models and ensembles to test SHAP’s ability to explain these complex models. Previously, the literature has revealed the difficulty to have at the same time both accurate and interpretable models ( Ribeiro et al., 2016 ; Murdoch et al., 2019 ), where favoring one comes at the expense of the other. However, this research shows how XAI makes it now possible to produce both accurate and interpretable models in the area of AES. Since ensembles have been repeatedly shown to boost the accuracy of predictive models, they were included as part of the tested deep learning architectures to maximize generalizability and accuracy, while making these predictive models interpretable and exploring whether deep learning can even enhance their descriptive accuracy further.

This study investigates the trustworthiness of explanation models, and more specifically, those explaining deep learning predictive models. For instance, does the depth, defined as the number of hidden layers, of an MLP neural network increases the trustworthiness of its SHAP explanation model? The answer to this question will help determine whether it is possible to have very accurate AES models while having competitively interpretable/explainable models, the corner stone for the generation of formative feedback. Remember that formative feedback is defined as “any kind of information provided to students about their actual state of learning or performance in order to modify the learner’s thinking or behavior in the direction of the learning standards” and that formative feedback “conveys where the student is, what are the goals to reach, and how to reach the goals” ( Goldin et al., 2017 ). This notion contrasts with summative feedback which basically is “a justification of the assessment results” ( Hao and Tsikerdekis, 2019 ).

As pointed out in the previous section, multiple SHAP implementations are evaluated in this study. Hence, this paper showcases whether the faster DeepSHAP and GradientSHAP implementations are as reliable as the slower KernelSHAP implementation . The answer to this research question will shed light on the feasibility of providing immediate formative feedback and this multiple times throughout students’ writing processes.

This study also looks at whether a summary of the data produces as trustworthy explanations as those from the original data . This question will be of interest to AES researchers and practitioners because it could allow to significantly decrease the processing time of the computing-intensive and model-agnostic KernelSHAP implementation and test further the potential of customizable explanations.

KernelSHAP allows to specify the total number of features that will shape the explanation of a prediction; for instance, this study experiments with explanations of 16 and 32 features and observes whether there exists a statistically significant difference in the reliability of these explanation models . Knowing this will hint at whether simpler or more complex explanations are more desirable when it comes to optimize their trustworthiness. If there is no statistically significant difference, then AES practitioners are given further flexibility in the selection of SHAP implementations to find the sweet spot between complexity of explanations and speed of processing. For instance, the KernelSHAP implementation allows to customize the number of factors making up an explanation, while the faster DeepSHAP and GradientSHAP do not.

Finally, this paper highlights the means to debug and compare the performance of predictive models through their explanations. Once a model is debugged, the process can be reused to fine-tune feature selection and/or feature engineering to improve predictive models and for the generation of formative feedback to both students and teachers.

The training, validation, and testing sets consist of 1567 essays, each of which has been scored by two human raters, who assigned a score between 0 and 3 per rubric (ideas, organization, style, and conventions). In particular, this article looks at predictive and descriptive accuracy of AES models on the third rubric, style. Note that although each essay has been scored by two human raters, the literature ( Shermis, 2014 ) is not explicit about whether only two or more human raters participated in the scoring of all 1567 essays; given the huge number of essays, it is likely that more than two human raters were involved in the scoring of these essays so that the amount of noise introduced by the various raters’ biases is unknown while probably being at some degree balanced among the two groups of raters. Figure 2 shows the confusion matrices of human raters on Style Rubric. The diagonal elements (dark gray) correspond to exact matches, whereas the light gray squares indicate adjacent matches. Figure 2A delineates the number of essays per pair of ratings, and Figure 2B shows the percentages per pair of ratings. The agreement level between each pair of human raters, measured by the quadratic weighted kappa, is 0.54; the percentage of exact matches is 65.3%; the percentage of adjacent matches is 34.4%; and 0.3% of essays are neither exact nor adjacent matches. Figures 2A,B specify the distributions of 0−3 ratings per group of human raters. Figure 2C exhibits the distribution of resolved scores (a resolved score is the sum of the two human ratings). The mean is 3.99 (with a standard deviation of 1.10), and the median and mode are 4. It is important to note that the levels of predictive accuracy reported in this article are measured on the scale of resolved scores (0−6) and that larger scales tend to slightly inflate quadratic weighted kappa values, which must be taken into account when comparing against the level of agreement between human raters. Comparison of percentages of exact and adjacent matches must also be made with this scoring scale discrepancy in mind.

www.frontiersin.org

Figure 2. Summary of the essay dataset (1567 Grade-7 narrative essays) investigated in this study. (A) Number of essays per pair of human ratings; the diagonal (dark gray squares) lists the numbers of exact matches while the light-gray squares list the numbers of adjacent matches; and the bottom row and the rightmost column highlight the distributions of ratings for both groups of human raters. (B) Percentages of essays per pair of human ratings; the diagonal (dark gray squares) lists the percentages of exact matches while the light-gray squares list the percentages of adjacent matches; and the bottom row and the rightmost column highlight the distributions (frequencies) of ratings for both groups of human raters. (C) The distribution of resolved rubric scores; a resolved score is the addition of its two constituent human ratings.

Predictive Accuracy and Descriptive Accuracy

Table 4 compiles the performance outcomes of the 10 predictive models evaluated in this study. The reader should remember that the performance of each model was averaged over five iterations and that two models were trained per number of hidden layers, one non-ensemble and one ensemble. Except for the 6-layer models, there is no clear winner among other models. Even for the 6-layer models, they are superior in terms of exact matches, the primary goal for a reliable AES system, but not according to adjacent matches. Nevertheless, on average ensemble models slightly outperform non-ensemble models. Hence, these ensemble models will be retained for the next analysis step. Moreover, given that five ensemble models were trained per neural network depth, the most accurate model among the five is selected and displayed in Table 4 .

www.frontiersin.org

Table 4. Performance of majority classifier and average/maximal performance of trained predictive models.

Next, for each selected ensemble predictive model, several explanation models are trained per predictive model. Every predictive model is explained by the “Deep,” “Grad,” and “Random” explainers, except for the 6-layer model where it was not possible to train a “Deep” explainer apparently due to a bug in the original SHAP code caused by either a unique condition in this study’s data or neural network architecture. However, this was beyond the scope of this study to fix and investigate this issue. As it will be demonstrated, no statistically significant difference exists between the accuracy of these explainers.

The “Random” explainer serves as a baseline model for comparison purpose. Remember that to evaluate the reliability of explanation models, the concurrent impact of randomly selecting and ignoring a subset of features on the prediction and explanation of rubric scores is analyzed. If the prediction changes significantly and its corresponding explanation changes (beyond a set threshold) accordingly (a true positive) or if the prediction remains within the threshold as does the explanation (a true negative), then the explanation is deemed as trustworthy. Hence, in the case of the Random explainer, it simulates random explanations by randomly selecting 32 non-zero features from the original set of 282 features. These random explanations consist only of non-zero features because, according to SHAP’s missingness property, a feature with a zero or a missing value never gets assigned any contribution to the prediction. If at least one of these 32 features is also an element of the subset of the ignored features, then the explanation is considered as untrustworthy, no matter the size of a feature’s contribution.

As for the layer-2 model, six different explanation models are evaluated. Recall that layer-2 models generated the least mean squared error (MSE) during hyperparameter optimization (see Table 1 ). Hence, this specific type of architecture was selected to test the reliability of these various explainers. The “Kernel” explainer is the most computing-intensive and took approximately 8 h of processing. It was trained using the full distributions of feature values in the training set and shaped explanations in terms of 32 features; the “Kernel-16” and “Kernel-32” models were trained on a summary (50 k -means centroids) of the training set to accelerate the processing by about one order of magnitude (less than 1 h). Besides, the “Kernel-16” explainer derived explanations in terms of 16 features, while the “Kernel-32” explainer explained predictions through 32 features. Table 5 exhibits the descriptive accuracy of these various explanation models according to a 0.10 and 0.25 threshold; in other words, by ignoring a subset of randomly picked features, it assesses whether or not the prediction and explanation change simultaneously. Note also how each explanation model, no matter the underlying predictive model, outperforms the “Random” model.

www.frontiersin.org

Table 5. Precision, recall, and F1 scores of the various explainers tested per type of predictive model.

The first research question addressed in this subsection asks whether there exists a statistically significant difference between the “Kernel” explainer, which generates 32-feature explanations and is trained on the whole training set, and the “Kernel-32” explainer which also generates 32-feature explanations and is trained on a summary of the training set. To determine this, an independent t-test was conducted using the precision, recall, and F1-score distributions (500 iterations) of both explainers. Table 6 reports the p -values of all the tests and for the 0.10 and 0.25 thresholds. It reveals that there is no statistically significant difference between the two explainers.

www.frontiersin.org

Table 6. p -values of independent t -tests comparing whether there exist statistically significant differences between the mean precisions, recalls, and F1-scores of 2-layer explainers and between those of the 2-layer’s, 4-layer’s, and 6-layer’s Gradient explainers.

The next research question tests whether there exists a difference in the trustworthiness of explainers shaping 16 or 32-feature explanations. Again t-tests were conducted to verify this. Table 6 lists the resulting p -values. Again, there is no statistically significant difference in the average precisions, recalls, and F1-scores of both explainers.

This leads to investigating whether the “Kernel,” “Deep,” and “Grad” explainers are equivalent. Table 6 exhibits the results of the t-tests conducted to verify this and reveals that none of the explainers produce a statistically significantly better performance than the other.

Armed with this evidence, it is now possible to verify whether deeper MLP neural networks produce more trustworthy explanation models. For this purpose, the performance of the “Grad” explainer for each type of predictive model will be compared against each other. The same methodology as previously applied is employed here. Table 6 , again, confirms that the explanation model of the 2-layer predictive model is statistically significantly less trustworthy than the 4-layer’s explanation model; the same can be said of the 4-layer and 6-layer models. The only exception is the difference in average precision between 2-layer and 4-layer models and between 4-layer and 6-layer models; however, there clearly exists a statistically significant difference in terms of precision (and also recall and F1-score) between 2-layer and 6-layer models.

The Best Subset of Essays to Judge AES Relevancy

Table 7 lists the four best essays optimizing feature coverage (93.9%) along with their resolved and predicted scores. Notice how two of the four essays were picked by the adapted SP-LIME algorithm with some strong disagreement between the human and the machine graders, two were picked with short and trivial text, and two were picked exhibiting perfect agreement between the human and machine graders. Interestingly, each pair of longer and shorter essays exposes both strong agreement and strong disagreement between the human and AI agents, offering an opportunity to debug the model and evaluate its ability to detect the presence or absence of more basic (e.g., very small number of words, occurrences of sentence fragments) and more advanced aspects (e.g., cohesion between adjacent sentences, variety of sentence structures) of narrative essay writing and to appropriately reward or penalize them.

www.frontiersin.org

Table 7. Set of best essays to evaluate the correctness of the 6-layer ensemble AES model.

Local Explanation: The Decision Plot

The decision plot lists writing features by order of importance from top to bottom. The line segments display the contribution (SHAP value) of each feature to the predicted rubric score. Note that an actual decision plot consists of all 282 features and that only the top portion of it (20 most important features) can be displayed (see Figure 3 ). A decision plot is read from bottom to top. The line starts at the base value and ends at the predicted rubric score. Given that the “Grad” explainer is the only explainer common to all predictive models, it has been selected to derive all explanations. The decision plots in Figure 3 show the explanations of the four essays in Table 7 ; the dashed line in these plots represents the explanation of the most accurate predictive model, that is the ensemble model with 6 hidden layers which also produced the most trustworthy explanation model. The predicted rubric score of each explanation model is listed in the bottom-right legend. Explanation of the writing features follow in a next subsection.

www.frontiersin.org

Figure 3. Comparisons of all models’ explanations of the most representative set of four essays: (A) Essay 228, (B) Essay 68, (C) Essay 219, and (D) Essay 124.

Global Explanation: The Summary Plot

It is advantageous to use SHAP to build explanation models because it provides a single framework to discover the writing features that are important to an individual essay (local) or a set of essays (global). While the decision plots list features of local importance, Figure 4 ’s summary plot ranks writing features by order of global importance (from top to bottom). All testing set’s 314 essays are represented as dots in the scatterplot of each writing feature. The position of a dot on the horizontal axis corresponds to the importance (SHAP value) of the writing feature for a specific essay and its color indicates the magnitude of the feature value in relation to the range of all 314 feature values. For example, large or small numbers of words within an essay generally contribute to increase or decrease rubric scores by up to 1.5 and 1.0, respectively. Decision plots can also be used to find the most important features for a small subset of essays; Figure 5 demonstrates the new ordering of writing indices when aggregating the feature contributions (summing the absolute values of SHAP values) of the four essays in Table 7 . Moreover, Figure 5 allows to compare the contributions of a feature to various essays. Note how the orderings in Figures 3 −5 can differ from each other, sharing many features of global importance as well as having their own unique features of local importance.

www.frontiersin.org

Figure 4. Summary plot listing the 32 most important features globally.

www.frontiersin.org

Figure 5. Decision plot delineating the best model’s explanations of Essays 228, 68, 219, and 124 (6-layer ensemble).

Definition of Important Writing Indices

The reader shall understand that it is beyond the scope of this paper to make a thorough description of all writing features. Nevertheless, the summary and decision plots in Figures 4 , 5 allow to identify a subset of features that should be examined in order to validate this study’s predictive model. Supplementary Table 1 combines and describes the 38 features in Figures 4 , 5 .

Dependence Plots

Although the summary plot in Figure 4 is insightful to determine whether small or large feature values are desirable, the dependence plots in Figure 6 prove essential to recommend whether a student should aim at increasing or decreasing the value of a specific writing feature. The dependence plots also reveal whether the student should directly act upon the targeted writing feature or indirectly on other features. The horizontal axis in each of the dependence plots in Figure 6 is the scale of the writing feature and the vertical axis is the scale of the writing feature’s contributions to the predicted rubric scores. Each dot in a dependence plot represents one of the testing set’s 314 essays, that is, the feature value and SHAP value belonging to the essay. The vertical dispersion of the dots on small intervals of the horizontal axis is indicative of interaction with other features ( Molnar, 2020 ). If the vertical dispersion is widespread (e.g., the [50, 100] horizontal-axis interval in the “word_count” dependence plot), then the contribution of the writing feature is most likely at some degree dependent on other writing feature(s).

www.frontiersin.org

Figure 6. Dependence plots: the horizontal axes represent feature values while vertical axes represent feature contributions (SHAP values). Each dot represents one of the 314 essays of the testing set and is colored according to the value of the feature with which it interacts most strongly. (A) word_count. (B) hdd42_aw. (C) ncomp_stdev. (D) dobj_per_cl. (E) grammar. (F) SENTENCE_FRAGMENT. (G) Sv_GI. (H) adjacent_overlap_verb_sent.

The contributions of this paper can be summarized as follows: (1) it proposes a means (SHAP) to explain individual predictions of AES systems and provides flexible guidelines to build powerful predictive models using more complex algorithms such as ensembles and deep learning neural networks; (2) it applies a methodology to quantitatively assess the trustworthiness of explanation models; (3) it tests whether faster SHAP implementations impact the descriptive accuracy of explanation models, giving insight on the applicability of SHAP in real pedagogical contexts such as AES; (4) it offers a toolkit to debug AES models, highlights linguistic intricacies, and underscores the means to offer formative feedback to novice writers; and more importantly, (5) it empowers learning analytics practitioners to make AI pedagogical agents accountable to the human educator, the ultimate problem holder responsible for the decisions and actions of AI ( Abbass, 2019 ). Basically, learning analytics (which encompasses tools such as AES) is characterized as an ethics-bound, semi-autonomous, and trust-enabled human-AI fusion that recurrently measures and proactively advances knowledge boundaries in human learning.

To exemplify this, imagine an AES system that supports instructors in the detection of plagiarism, gaming behaviors, and the marking of writing activities. As previously mentioned, essays are marked according to a grid of scoring rubrics: ideas, organization, style, and conventions. While an abundance of data (e.g., the 1592 writing metrics) can be collected by the AES tool, these data might still be insufficient to automate the scoring process of certain rubrics (e.g., ideas). Nevertheless, some scoring subtasks such as assessing a student’s vocabulary, sentence fluency, and conventions might still be assigned to AI since the data types available through existing automatic linguistic analysis tools prove sufficient to reliably alleviate the human marker’s workload. Interestingly, learning analytics is key for the accountability of AI agents to the human problem holder. As the volume of writing data (through a large student population, high-frequency capture of learning episodes, and variety of big learning data) accumulate in the system, new AI agents (predictive models) may apply for the job of “automarker.” These AI agents can be quite transparent through XAI ( Arrieta et al., 2020 ) explanation models, and a human instructor may assess the suitability of an agent for the job and hire the candidate agent that comes closest to human performance. Explanations derived from these models could serve as formative feedback to the students.

The AI marker can be assigned to assess the writing activities that are similar to those previously scored by the human marker(s) from whom it learns. Dissimilar and unseen essays can be automatically assigned to the human marker for reliable scoring, and the AI agent can learn from this manual scoring. To ensure accountability, students should be allowed to appeal the AI agent’s marking to the human marker. In addition, the human marker should be empowered to monitor and validate the scoring of select writing rubrics scored by the AI marker. If the human marker does not agree with the machine scores, the writing assignments may be flagged as incorrectly scored and re-assigned to a human marker. These flagged assignments may serve to update predictive models. Moreover, among the essays that are assigned to the machine marker, a small subset can be simultaneously assigned to the human marker for continuous quality control; that is, to continue comparing whether the agreement level between human and machine markers remains within an acceptable threshold. The human marker should be at any time able to “fire” an AI marker or “hire” an AI marker from a pool of potential machine markers.

This notion of a human-AI fusion has been observed in previous AES systems where the human marker’s workload has been found to be significantly alleviated, passing from scoring several hundreds of essays to just a few dozen ( Dronen et al., 2015 ; Hellman et al., 2019 ). As the AES technology matures and as the learning analytics tools continue to penetrate the education market, this alliance of semi-autonomous human and AI agents will lead to better evidence-based/informed pedagogy ( Nelson and Campbell, 2017 ). Such a human-AI alliance can also be guided to autonomously self-regulate its own hypothesis-authoring and data-acquisition processes for purposes of measuring and advancing knowledge boundaries in human learning.

Real-Time Formative Pedagogical Feedback

This paper provides the evidence that deep learning and SHAP can be used not only to score essays automatically but also to offer explanations in real-time. More specifically, the processing time to derive the 314 explanations of the testing set’s essays has been benchmarked for several types of explainers. It was found that the faster DeepSHAP and GradientSHAP implementations, which took only a few seconds of processing, did not produce less accurate explanations than the much slower KernelSHAP. KernelSHAP took approximately 8 h of processing to derive the explanation model of a 2-layer MLP neural network predictive model and 16 h for the 6-layer predictive model.

This finding also holds for various configurations of KernelSHAP, where the number of features (16 vs. 32) shaping the explanation (where all other features are assigned zero contributions) did not produce a statistically significant difference in the reliability of the explanation models. On average, the models had a precision between 63.9 and 64.1% and a recall between 41.0 and 42.9%. This means that after perturbation of the predictive and explanation models, on average 64% of the predictions the explanation model identified as changing were accurate. On the other side, only about 42% of all predictions that changed were detected by the various 2-layer explainers. An explanation was considered as untrustworthy if the sum of its feature contributions, when added to the average prediction (base value), was not within 0.1 from the perturbated prediction. Similarly, the average precision and recall of 2-layer explainers for the 0.25-threshold were about 69% and 62%, respectively.

Impact of Deep Learning on Descriptive Accuracy of Explanations

By analyzing the performance of the various predictive models in Table 4 , no clear conclusion can be reached as to which model should be deemed as the most desirable. Despite the fact that the 6-layer models slightly outperform the other models in terms of accuracy (percentage of exact matches between the resolved [human] and predicted [machine] scores), they are not the best when it comes to the percentages of adjacent (within 1 and 2) matches. Nevertheless, if the selection of the “best” model is based on the quadratic weighted kappas, the decision remains a nebulous one to make. Moreover, ensuring that machine learning actually learned something meaningful remains paramount, especially in contexts where the performance of a majority classifier is close to the human and machine performance. For example, a majority classifier model would get 46.3% of predictions accurate ( Table 4 ), while trained predictive models at best produce accurate predictions between 51.9 and 55.1%.

Since the interpretability of a machine learning model should be prioritized over accuracy ( Ribeiro et al., 2016 ; Murdoch et al., 2019 ) for questions of transparency and trust, this paper investigated whether the impact of the depth of a MLP neural network might be more visible when assessing its interpretability, that is, the trustworthiness of its corresponding SHAP explanation model. The data in Tables 1 , 5 , 6 effectively support the hypothesis that as the depth of the neural network increases, the precision and recall of the corresponding explanation model improve. Besides, this observation is particularly interesting because the 4-layer (Grad) explainer, which has hardly more parameters than the 2-layer model, is also more accurate than the 2-layer model, suggesting that the 6-layer explainer is most likely superior to other explainers not only because of its greater number of parameters, but also because of its number of hidden layers. By increasing the number of hidden layers, it can be seen that the precision and recall of an explanation model can pass on average from approximately 64 to 73% and from 42 to 52%, respectively, for the 0.10-threshold; and for the 0.25-threshold, from 69 to 79% and from 62 to 75%, respectively.

These results imply that the descriptive accuracy of an explanation model is an evidence of effective machine learning, which may exceed the level of agreement between the human and machine graders. Moreover, given that the superiority of a trained predictive model over a majority classifier is not always obvious, the consistency of its associated explanation model demonstrates this better. Note that theoretically the SHAP explanation model of the majority classifier should assign a zero contribution to each writing feature since the average prediction of such a model is actually the most frequent rubric score given by the human raters; hence, the base value is the explanation.

An interesting fact emerges from Figure 3 , that is, all explainers (2-layer to 6-layer) are more or less similar. It appears that they do not contradict each other. More specifically, they all agree on the direction of the contributions of the most important features. In other words, they unanimously determine that a feature should increase or decrease the predicted score. However, they differ from each other on the magnitude of the feature contributions.

To conclude, this study highlights the need to train predictive models that consider the descriptive accuracy of explanations. The idea is that explanation models consider predictions to derive explanations; explanations should be considered when training predictive models. This would not only help train interpretable models the very first time but also potentially break the status quo that may exist among similar explainers to possibly produce more powerful models. In addition, this research calls for a mechanism (e.g., causal diagrams) to allow teachers to guide the training process of predictive models. Put another way, as LA practitioners debug predictive models, their insights should be encoded in a language that will be understood by the machine and that will guide the training process to avoid learning the same errors and to accelerate the training time.

Accountable AES

Now that the superiority of the 6-layer predictive and explanation models has been demonstrated, some aspects of the relevancy of explanations should be examined more deeply, knowing that having an explanation model consistent with its underlying predictive model does not guarantee relevant explanations. Table 7 discloses the set of four essays that optimize the coverage of most globally important features to evaluate the correctness of the best AES model. It is quite intriguing to note that two of the four essays are among the 16 essays that have a major disagreement (off by 2) between the resolved and predicted rubric scores (1 vs. 3 and 4 vs. 2). The AES tool clearly overrated Essay 228, while it underrated Essay 219. Naturally, these two essays offer an opportunity to understand what is wrong with the model and ultimately debug the model to improve its accuracy and interpretability.

In particular, Essay 228 raises suspicion on the positive contributions of features such as “Ortho_N,” “lemma_mattr,” “all_logical,” “det_pobj_deps_struct,” and “dobj_per_cl.” Moreover, notice how the remaining 262 less important features (not visible in the decision plot in Figure 5 ) have already inflated the rubric score beyond the base value, more than any other essay. Given the very short length and very low quality of the essay, whose meaning is seriously undermined by spelling and grammatical errors, it is of utmost importance to verify how some of these features are computed. For example, is the average number of orthographic neighbors (Ortho_N) per token computed for unmeaningful tokens such as “R” and “whe”? Similarly, are these tokens considered as types in the type-token ratio over lemmas (lemma_mattr)? Given the absence of a meaningful grammatical structure conveying a complete idea through well-articulated words, it becomes obvious that the quality of NLP (natural language processing) parsing may become a source of (measurement) bias impacting both the way some writing features are computed and the predicted rubric score. To remedy this, two solutions are proposed: (1) enhancing the dataset with the part-of-speech sequence or the structure of dependency relationships along with associated confidence levels, or (2) augmenting the essay dataset with essays enclosing various types of non-sensical content to improve the learning of these feature contributions.

Note that all four essays have a text length smaller than the average: 171 words. Notice also how the “hdd42_aw” and “hdd42_fw” play a significant role to decrease the predicted score of Essays 228 and 68. The reader should note that these metrics require a minimum of 42 tokens in order to compute a non-zero D index, a measure of lexical diversity as explained in Supplementary Table 1 . Figure 6B also shows how zero “hdd42_aw” values are heavily penalized. This is extra evidence that supports the strong role that the number of words plays in determining these rubric scores, especially for very short essays where it is one of the few observations that can be reliably recorded.

Two other issues with the best trained AES model were identified. First, in the eyes of the model, the lowest the average number of direct objects per clause (dobj_per_cl), as seen in Figure 6D , the best it is. This appears to contradict one of the requirements of the “Style” rubric, which looks for a variety of sentence structures. Remember that direct objects imply the presence of transitive verbs (action verbs) and that the balanced usage of linking verbs and action verbs as well as of transitive and intransitive verbs is key to meet the requirement of variety of sentence structures. Moreover, note that the writing feature is about counting the number of direct objects per clause, not by sentence. Only one direct object is therefore possible per clause. On the other side, a sentence may contain several clauses, which determines if the sentence is a simple, compound, or a complex sentence. This also means that a sentence may have multiple direct objects and that a high ratio of direct objects per clause is indicative of sentence complexity. Too much complexity is also undesirable. Hence, it is fair to conclude that the higher range of feature values has reasonable feature contributions (SHAP values), while the lower range does not capture well the requirements of the rubric. The dependence plot should rather display a positive peak somewhere in the middle. Notice how the poor quality of Essay 228’s single sentence prevented the proper detection of the single direct object, “broke my finger,” and the so-called absence of direct objects was one of the reasons to wrongfully improve the predicted rubric score.

The model’s second issue discussed here is the presence of sentence fragments, a type of grammatical errors. Essentially, a sentence fragment is a clause that misses one of three critical components: a subject, a verb, or a complete idea. Figure 6E shows the contribution model of grammatical errors, all types combined, while Figure 6F shows specifically the contribution model of sentence fragments. It is interesting to see how SHAP further penalizes larger numbers of grammatical errors and that it takes into account the length of the essay (red dots represent essays with larger numbers of words; blue dots represent essays with smaller numbers of words). For example, except for essays with no identified grammatical errors, longer essays are less penalized than shorter ones. This is particularly obvious when there are 2−4 grammatical errors. The model increases the predicted rubric score only when there is no grammatical error. Moreover, the model tolerates longer essays with only one grammatical error, which sounds quite reasonable. On the other side, the model finds desirable high numbers of sentence fragments, a non-trivial type of grammatical errors. Even worse, the model decreases the rubric score of essays having no sentence fragment. Although grammatical issues are beyond the scope of the “Style” rubric, the model has probably included these features because of their impact on the quality of assessment of vocabulary usage and sentence fluency. The reader should observe how the very poor quality of an essay can even prevent the detection of such fundamental grammatical errors such as in the case of Essay 228, where the AES tool did not find any grammatical error or sentence fragment. Therefore, there should be a way for AES systems to detect a minimum level of text quality before attempting to score an essay. Note that the objective of this section was not to undertake thorough debugging of the model, but rather to underscore the effectiveness of SHAP in doing so.

Formative Feedback

Once an AES model is considered reasonably valid, SHAP can be a suitable formalism to empower the machine to provide formative feedback. For instance, the explanation of Essay 124, which has been assigned a rubric score of 3 by both human and machine markers, indicates that the top two factors contributing to decreasing the predicted rubric score are: (1) the essay length being smaller than average, and (2) the average number of verb lemma types occurring at least once in the next sentence (adjacent_overlap_verb_sent). Figures 6A,H give the overall picture in which the realism of the contributions of these two features can be analyzed. More specifically, Essay 124 is one of very few essays ( Figure 6H ) that makes redundant usage of the same verbs across adjacent sentences. Moreover, the essay displays poor sentence fluency where everything is only expressed in two sentences. To understand more accurately the impact of “adjacent_overlap_verb_sent” on the prediction, a few spelling errors have been corrected and the text has been divided in four sentences instead of two. Revision 1 in Table 8 exhibits the corrections made to the original essay. The decision plot’s dashed line in Figure 3D represents the original explanation of Essay 124, while Figure 7A demonstrates the new explanation of the revised essay. It can be seen that the “adjacent_overlap_verb_sent” feature is still the second most important feature in the new explanation of Essay 124, with a feature value of 0.429, still considered as very poor according to the dependence plot in Figure 6H .

www.frontiersin.org

Table 8. Revisions of Essay 124: improvement of sentence splitting, correction of some spelling errors, and elimination of redundant usage of same verbs (bold for emphasis in Essay 124’s original version; corrections in bold for Revisions 1 and 2).

www.frontiersin.org

Figure 7. Explanations of the various versions of Essay 124 and evaluation of feature effect for a range of feature values. (A) Explanation of Essay 124’s first revision. (B) Forecasting the effect of changing the ‘adjacent_overlap_verb_sent’ feature on the rubric score. (C) Explanation of Essay 124’s second revision. (D) Comparison of the explanations of all Essay 124’s versions.

To show how SHAP could be leveraged to offer remedial formative feedback, the revised version of Essay 124 will be explained again for eight different values of “adjacent_overlap_verb_sent” (0, 0.143, 0.286, 0.429, 0.571, 0.714, 0.857, 1.0), while keeping the values of all other features constant. The set of these eight essays are explained by a newly trained SHAP explainer (Gradient), producing new SHAP values for each feature and each “revised” essay. Notice how the new model, called the feedback model, allows to foresee by how much a novice writer can hope to improve his/her score according to the “Style” rubric. If the student employs different verbs at every sentence, the feedback model estimates that the rubric score could be improved from 3.47 up to 3.65 ( Figure 7B ). Notice that the dashed line represents Revision 1, while other lines simulate one of the seven other altered essays. Moreover, it is important to note how changing the value of a single feature may influence the contributions that other features may have on the predicted score. Again, all explanations look similar in terms of direction, but certain features differ in terms of the magnitude of their contributions. However, the reader should observe how the targeted feature varies not only in terms of magnitude, but also of direction, allowing the student to ponder the relevancy of executing the recommended writing strategy.

Thus, upon receiving this feedback, assume that a student sets the goal to improve the effectiveness of his/her verb choice by eliminating any redundant verb, producing Revision 2 in Table 8 . The student submits his essay again to the AES system, which finally gives a new rubric score of 3.98, a significant improvement from the previous 3.47, allowing the student to get a 4 instead of a 3. Figure 7C exhibits the decision plot of Revision 2. To better observe how the various revisions of the student’s essay changed over time, their respective explanations have been plotted in the same decision plot ( Figure 7D ). Notice this time that the ordering of the features has changed to list the features of common importance to all of the essay’s versions. The feature ordering in Figures 7A−C complies with the same ordering as in Figure 3D , the decision plot of the original essay. These figures underscore the importance of tracking the interaction between the various features so that the model understands well the impact that changing one feature has on the others. TreeSHAP, an implementation for tree-based models, offers this capability and its potential on improving the quality of feedback provided to novice writers will be tested in a future version of this AES system.

This paper serves as a proof of concept of the applicability of XAI techniques in automated essay scoring, providing learning analytics practitioners and educators with a methodology on how to “hire” AI markers and make them accountable to their human counterparts. In addition to debug predictive models, SHAP explanation models can serve as some formalism of a broader learning analytics platform, where aspects of prescriptive analytics (provision of remedial formative feedback) can be added on top of the more pervasive predictive analytics.

However, the main weakness of the approach put forward in this paper consists in omitting many types of spatio-temporal data. In other words, it ignores precious information inherent to the writing process, which may prove essential to guess the intent of the student, especially in contexts of poor sentence structures and high grammatical inaccuracy. Hence, this paper calls for adapting current NLP technologies to educational purposes, where the quality of writing may be suboptimal, which is contrary to many utopian scenarios where NLP is used for content analysis, opinion mining, topic modeling, or fact extraction trained on corpora of high-quality texts. By capturing the writing process preceding a submission of an essay to an AES tool, other kinds of explanation models can also be trained to offer feedback not only from a linguistic perspective but also from a behavioral one (e.g., composing vs. revising); that is, the AES system could inform novice writers about suboptimal and optimal writing strategies (e.g., planning a revision phase after bursts of writing).

In addition, associating sections of text with suboptimal writing features, those whose contributions lower the predicted score, would be much more informative. This spatial information would not only allow to point out what is wrong and but also where it is wrong, answering more efficiently the question why an essay is wrong. This problem could be simply approached through a multiple-inputs and mixed-data feature-based (MLP) neural network architecture fed by both linguistic indices and textual data ( n -grams), where the SHAP explanation model would assign feature contributions to both types of features and any potential interaction between them. A more complex approach could address the problem through special types of recurrent neural networks such as Ordered-Neurons LSTMs (long short-term memory), which are well adapted to the parsing of natural language, and where the natural sequence of text is not only captured but also its hierarchy of constituents ( Shen et al., 2018 ). After all, this paper highlights the fact that the potential of deep learning can reach beyond the training of powerful predictive models and be better visible in the higher trustworthiness of explanation models. This paper also calls for optimizing the training of predictive models by considering the descriptive accuracy of explanations and the human expert’s qualitative knowledge (e.g., indicating the direction of feature contributions) during the training process.

Data Availability Statement

The datasets and code of this study can be found in these Open Science Framework’s online repositories: https://osf.io/fxvru/ .

Author Contributions

VK architected the concept of an ethics-bound, semi-autonomous, and trust-enabled human-AI fusion that measures and advances knowledge boundaries in human learning, which essentially defines the key traits of learning analytics. DB was responsible for its implementation in the area of explainable automated essay scoring and for the training and validation of the predictive and explanation models. Together they offer an XAI-based proof of concept of a prescriptive model that can offer real-time formative remedial feedback to novice writers. Both authors contributed to the article and approved its publication.

Research reported in this article was supported by the Academic Research Fund (ARF) publication grant of Athabasca University under award number (24087).

Conflict of Interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Supplementary Material

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/feduc.2020.572367/full#supplementary-material

  • ^ https://www.kaggle.com/c/asap-aes
  • ^ https://www.linguisticanalysistools.org/

Abbass, H. A. (2019). Social integration of artificial intelligence: functions, automation allocation logic and human-autonomy trust. Cogn. Comput. 11, 159–171. doi: 10.1007/s12559-018-9619-0

CrossRef Full Text | Google Scholar

Adadi, A., and Berrada, M. (2018). Peeking inside the black-box: a survey on explainable artificial intelligence (XAI). IEEE Access 6, 52138–52160. doi: 10.1109/ACCESS.2018.2870052

Amorim, E., Cançado, M., and Veloso, A. (2018). “Automated essay scoring in the presence of biased ratings,” in Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies , New Orleans, LA, 229–237.

Google Scholar

Arrieta, A. B., Díaz-Rodríguez, N., Ser, J., Del Bennetot, A., Tabik, S., Barbado, A., et al. (2020). Explainable Artificial Intelligence (XAI): concepts, taxonomies, opportunities and challenges toward responsible AI. Inform. Fusion 58, 82–115. doi: 10.1016/j.inffus.2019.12.012

Balota, D. A., Yap, M. J., Hutchison, K. A., Cortese, M. J., Kessler, B., Loftis, B., et al. (2007). The English lexicon project. Behav. Res. Methods 39, 445–459. doi: 10.3758/BF03193014

PubMed Abstract | CrossRef Full Text | Google Scholar

Boulanger, D., and Kumar, V. (2018). “Deep learning in automated essay scoring,” in Proceedings of the International Conference of Intelligent Tutoring Systems , eds R. Nkambou, R. Azevedo, and J. Vassileva (Cham: Springer International Publishing), 294–299. doi: 10.1007/978-3-319-91464-0_30

Boulanger, D., and Kumar, V. (2019). “Shedding light on the automated essay scoring process,” in Proceedings of the International Conference on Educational Data Mining , 512–515.

Boulanger, D., and Kumar, V. (2020). “SHAPed automated essay scoring: explaining writing features’ contributions to English writing organization,” in Intelligent Tutoring Systems , eds V. Kumar and C. Troussas (Cham: Springer International Publishing), 68–78. doi: 10.1007/978-3-030-49663-0_10

Chen, H., Lundberg, S., and Lee, S.-I. (2019). Explaining models by propagating Shapley values of local components. arXiv [Preprint]. Available online at: https://arxiv.org/abs/1911.11888 (accessed September 22, 2020).

Crossley, S. A., Bradfield, F., and Bustamante, A. (2019). Using human judgments to examine the validity of automated grammar, syntax, and mechanical errors in writing. J. Writ. Res. 11, 251–270. doi: 10.17239/jowr-2019.11.02.01

Crossley, S. A., Kyle, K., and McNamara, D. S. (2016). The tool for the automatic analysis of text cohesion (TAACO): automatic assessment of local, global, and text cohesion. Behav. Res. Methods 48, 1227–1237. doi: 10.3758/s13428-015-0651-7

Crossley, S. A., Kyle, K., and McNamara, D. S. (2017). Sentiment analysis and social cognition engine (SEANCE): an automatic tool for sentiment, social cognition, and social-order analysis. Behav. Res. Methods 49, 803–821. doi: 10.3758/s13428-016-0743-z

Dronen, N., Foltz, P. W., and Habermehl, K. (2015). “Effective sampling for large-scale automated writing evaluation systems,” in Proceedings of the Second (2015) ACM Conference on Learning @ Scale , 3–10.

Goldin, I., Narciss, S., Foltz, P., and Bauer, M. (2017). New directions in formative feedback in interactive learning environments. Int. J. Artif. Intellig. Educ. 27, 385–392. doi: 10.1007/s40593-016-0135-7

Hao, Q., and Tsikerdekis, M. (2019). “How automated feedback is delivered matters: formative feedback and knowledge transfer,” in Proceedings of the 2019 IEEE Frontiers in Education Conference (FIE) , Covington, KY, 1–6.

Hellman, S., Rosenstein, M., Gorman, A., Murray, W., Becker, L., Baikadi, A., et al. (2019). “Scaling up writing in the curriculum: batch mode active learning for automated essay scoring,” in Proceedings of the Sixth (2019) ACM Conference on Learning @ Scale , (New York, NY: Association for Computing Machinery).

Hussein, M. A., Hassan, H., and Nassef, M. (2019). Automated language essay scoring systems: a literature review. PeerJ Comput. Sci. 5:e208. doi: 10.7717/peerj-cs.208

Kumar, V., and Boulanger, D. (2020). Automated essay scoring and the deep learning black box: how are rubric scores determined? Int. J. Artif. Intellig. Educ. doi: 10.1007/s40593-020-00211-5

Kumar, V., Fraser, S. N., and Boulanger, D. (2017). Discovering the predictive power of five baseline writing competences. J. Writ. Anal. 1, 176–226.

Kyle, K. (2016). Measuring Syntactic Development In L2 Writing: Fine Grained Indices Of Syntactic Complexity And Usage-Based Indices Of Syntactic Sophistication. Dissertation, Georgia State University, Atlanta, GA.

Kyle, K., Crossley, S., and Berger, C. (2018). The tool for the automatic analysis of lexical sophistication (TAALES): version 2.0. Behav. Res. Methods 50, 1030–1046. doi: 10.3758/s13428-017-0924-4

Lundberg, S. M., Erion, G. G., and Lee, S.-I. (2018). Consistent individualized feature attribution for tree ensembles. arXiv [Preprint]. Available online at: https://arxiv.org/abs/1802.03888 (accessed September 22, 2020).

Lundberg, S. M., and Lee, S.-I. (2017). “A unified approach to interpreting model predictions,” in Advances in Neural Information Processing Systems , eds I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, et al. (Red Hook, NY: Curran Associates, Inc), 4765–4774.

Madnani, N., and Cahill, A. (2018). “Automated scoring: beyond natural language processing,” in Proceedings of the 27th International Conference on Computational Linguistics , (Santa Fe: Association for Computational Linguistics), 1099–1109.

Madnani, N., Loukina, A., von Davier, A., Burstein, J., and Cahill, A. (2017). “Building better open-source tools to support fairness in automated scoring,” in Proceedings of the First (ACL) Workshop on Ethics in Natural Language Processing , (Valencia: Association for Computational Linguistics), 41–52.

McCarthy, P. M., and Jarvis, S. (2010). MTLD, vocd-D, and HD-D: a validation study of sophisticated approaches to lexical diversity assessment. Behav. Res. Methods 42, 381–392. doi: 10.3758/brm.42.2.381

Mizumoto, T., Ouchi, H., Isobe, Y., Reisert, P., Nagata, R., Sekine, S., et al. (2019). “Analytic score prediction and justification identification in automated short answer scoring,” in Proceedings of the Fourteenth Workshop on Innovative Use of NLP for Building Educational Applications , Florence, 316–325.

Molnar, C. (2020). Interpretable Machine Learning . Abu Dhabi: Lulu

Murdoch, W. J., Singh, C., Kumbier, K., Abbasi-Asl, R., and Yu, B. (2019). Definitions, methods, and applications in interpretable machine learning. Proc. Natl. Acad. Sci. U.S.A. 116, 22071–22080. doi: 10.1073/pnas.1900654116

Nelson, J., and Campbell, C. (2017). Evidence-informed practice in education: meanings and applications. Educ. Res. 59, 127–135. doi: 10.1080/00131881.2017.1314115

Rahimi, Z., Litman, D., Correnti, R., Wang, E., and Matsumura, L. C. (2017). Assessing students’ use of evidence and organization in response-to-text writing: using natural language processing for rubric-based automated scoring. Int. J. Artif. Intellig. Educ. 27, 694–728. doi: 10.1007/s40593-017-0143-2

Reinertsen, N. (2018). Why can’t it mark this one? A qualitative analysis of student writing rejected by an automated essay scoring system. English Austral. 53:52.

Ribeiro, M. T., Singh, S., and Guestrin, C. (2016). “Why should i trust you?”: explaining the predictions of any classifier. CoRR, abs/1602.0. arXiv [Preprint]. Available online at: http://arxiv.org/abs/1602.04938 (accessed September 22, 2020).

Rupp, A. A. (2018). Designing, evaluating, and deploying automated scoring systems with validity in mind: methodological design decisions. Appl. Meas. Educ. 31, 191–214. doi: 10.1080/08957347.2018.1464448

Rupp, A. A., Casabianca, J. M., Krüger, M., Keller, S., and Köller, O. (2019). Automated essay scoring at scale: a case study in Switzerland and Germany. ETS Res. Rep. Ser. 2019, 1–23. doi: 10.1002/ets2.12249

Shen, Y., Tan, S., Sordoni, A., and Courville, A. C. (2018). Ordered Neurons: Integrating Tree Structures into Recurrent Neural Networks. CoRR, abs/1810.0. arXiv [Preprint]. Available online at: http://arxiv.org/abs/1810.09536 (accessed September 22, 2020).

Shermis, M. D. (2014). State-of-the-art automated essay scoring: competition, results, and future directions from a United States demonstration. Assess. Writ. 20, 53–76. doi: 10.1016/j.asw.2013.04.001

Taghipour, K. (2017). Robust Trait-Specific Essay Scoring using Neural Networks and Density Estimators. Dissertation, National University of Singapore, Singapore.

West-Smith, P., Butler, S., and Mayfield, E. (2018). “Trustworthy automated essay scoring without explicit construct validity,” in Proceedings of the 2018 AAAI Spring Symposium Series , (New York, NY: ACM).

Woods, B., Adamson, D., Miel, S., and Mayfield, E. (2017). “Formative essay feedback using predictive scoring models,” in Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining , (New York, NY: ACM), 2071–2080.

Keywords : explainable artificial intelligence, SHAP, automated essay scoring, deep learning, trust, learning analytics, feedback, rubric

Citation: Kumar V and Boulanger D (2020) Explainable Automated Essay Scoring: Deep Learning Really Has Pedagogical Value. Front. Educ. 5:572367. doi: 10.3389/feduc.2020.572367

Received: 14 June 2020; Accepted: 09 September 2020; Published: 06 October 2020.

Reviewed by:

Copyright © 2020 Kumar and Boulanger. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY) . The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

*Correspondence: David Boulanger, [email protected]

Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.

Academia.edu no longer supports Internet Explorer.

To browse Academia.edu and the wider internet faster and more securely, please take a few seconds to  upgrade your browser .

Enter the email address you signed up with and we'll email you a reset link.

  • We're Hiring!
  • Help Center

paper cover thumbnail

Formative feedback via an automated essay scorer: Its impact on learners

Profile image of Sara Dexter

Related Papers

Journal of Technology, …

Eric Riedel , Sara Dexter

ph essay scorer

fifteenth international conference of the Society for …

Sara Dexter

Journal of Educational …

Sara Dexter , Eric Riedel

British Journal of Educational Technology

Judith Madden

Denise Whitelock

Yin Ling Cheung

International Conference on Advanced Learning Technologies

Eva Heinrich

Journal of Writing Research

Charles MacArthur

International Journal of English Studies

International Journal of English Studies (IJES)

While research in second language writing suggests that instructor feedback can have a positive influence on students’ written work, the provision of such feedback on a regular basis can be problematic, especially with larger student numbers. A number of computer programs that claim to provide both automatic computer-based holistic scores and computer-based feedback (CBF) on written work are available and therefore have the potential to deal with this issue. Criterion is one such tool that claims to be able to provide automated feedback at word, sentence, paragraph and text level, but there is still a need for more research into the practical value of providing feedback on L2 writing. Quantitative and qualitative data about feedback practice was collected from 31 instructors and 549 Egyptian trainee EFL teachers using pre-treatment questionnaires, interviews and focus groups. 24 of the trainees then received computer-based feedback using Criterion on two drafts of essays submitted on each of 4 topics. Data recorded by the software suggested a positive effect on the quality of students’ second drafts and subsequent submissions, and post-treatment questionnaires, interviews and focus groups showed a positive effect on the students’ attitudes towards feedback.

Proceedings of the 11th Workshop on Natural Language Processing for Computer-Assisted Language Learning (NLP4CALL 2022)

Lucas Liebenow

While many methods for automatically scoring student writings have been proposed, few studies have inquired whether such scores constitute effective feedback improving learners’ writing quality. In this paper, we use an EFL email dataset annotated according to five analytic assessment criteria to train a classifier for each criterion, reaching human-machine agreement values (kappa) between .35 and .87. We then perform an intervention study with 112 lower secondary students in which participants in the feedback condition received stepwise automatic feedback for each criterion while students in the control group received only a description of the respective scoring criterion. We manually and automatically score the resulting revisions to measure the effect of automated feedback and find that students in the feedback condition improved more than in the control group for 2 out of 5 criteria. Our results are encouraging as they show that even imperfect automated feedback can be successfu...

Loading Preview

Sorry, preview is currently unavailable. You can download the paper by clicking the button above.

RELATED PAPERS

ICALLE Working Papers in Applied Linguistics and Language Education

michael snowden

CERN European Organization for Nuclear Research - Zenodo

Monica Ward

Journal of Information System and Technology Management

Tasaratha Rajan Anamalai

Australasian Journal of Educational Technology

Meredith Lawley

The Teaching Professor

Vittoria S Rubino, Ph.D.

Knowledge Management International Conference (KMICe) 2021 Proceedings

Norkhairi Ahmad , Zulkarnin Zakaria

Universal Access in Human–Computer Interaction. Human and Technological Environments

Sergio Antônio Andrade Freitas

… Hobart, Tas. Retrieved …

Judith Kearney

International Journal of Teacher Education and Professional Development

Akrum Helfaya

Frontiers in Medicine

Lynn Monrouxe

Assessment & Evaluation …

Susanmarie Harrington

Douglas Grimes

Mariana Lilley

Paul Blayney

2011 14th International Conference on Interactive Collaborative Learning

Karen Ellery

International Journal for the Scholarship of Teaching and Learning

Megan Osterbur

cis.strath.ac.uk

Widad Rakhyoot , George R S Weir

Advances in Physiology Education

Nicholas Freestone

RELATED TOPICS

  •   We're Hiring!
  •   Help Center
  • Find new research papers in:
  • Health Sciences
  • Earth Sciences
  • Cognitive Science
  • Mathematics
  • Computer Science
  • Academia ©2024
  • Anthem School
  • Arrowhead Elementary
  • Aspire Deer Valley's Online Academy
  • Barry Goldwater High
  • Boulder Creek High
  • Canyon Springs STEM Academy
  • Constitution Elementary
  • Copper Creek Elementary
  • Deer Valley High
  • Deer Valley Middle School
  • Desert Mountain School
  • Desert Sage Elementary
  • Desert Sky Middle School
  • Diamond Canyon School
  • Esperanza Elementary
  • Gavilan Peak School
  • Greenbrier Elementary
  • Highland Lakes School
  • Hillcrest Middle School
  • Inspiration Mountain School
  • Las Brisas Elementary
  • Legend Springs Elementary
  • Mirage Elementary
  • Mountain Ridge High
  • Mountain Shadows Elementary
  • New River Elementary
  • Norterra Canyon School
  • Park Meadows Elementary
  • Paseo Hills School
  • Sandra Day O'Connor High
  • Sierra Verde STEAM Academy
  • Sonoran Foothills School
  • Stetson Hills School
  • Sunrise Elementary
  • Sunset Ridge School
  • Terramar Academy of the Arts
  • The Traditional Academy at Bellair
  • Union Park School
  • Village Meadows Elementary
  • Vista Peak School
  • West Wing School

Search

IMAGES

  1. How to Assign Pearson Essay Scorer Prompts

    ph essay scorer

  2. Stupendous Pearson Essay Scorer ~ Thatsnotus

    ph essay scorer

  3. Table 1 from An Overview of Automated Scoring of Essays.

    ph essay scorer

  4. To find the pH of the samples by using pH paper/universal indicator

    ph essay scorer

  5. Ph Scale Chart Print PDF Download Chemistry for Classroom

    ph essay scorer

  6. How to Load Students into Essay Scorer

    ph essay scorer

VIDEO

  1. Miami vs. Clemson Condensed Game

  2. Reading My CommonApp Essay || University of Rochester

  3. Forest Conservation Essay Writing in English with Introduction and Conclusion 300 Words Speech

  4. اسلامیات کے یہ سوال لازمی یاد کر لیں بار بار آ رہے ہیںIslamiyat 4th-8th important repeated NTS Etea

  5. South Carolina Wins S.E.C. 2024 Tournament Coach Dawn Staley Speaks on Scuffle

  6. GS Geography Trend Analysis in 10 minutes By Laxmikant Jaybhaye

COMMENTS

  1. Free Essay and Paper Checker

    Scribbr is committed to protecting academic integrity. Our plagiarism checker, AI Detector, Citation Generator, proofreading services, paraphrasing tool, grammar checker, summarizer, and free Knowledge Base content are designed to help students produce quality academic papers. We make every effort to prevent our software from being used for ...

  2. Automated Essay Scoring: Recent Successes and Future Directions

    The milestones in AES research are discussed, the task of automatically assigning a score to an essay that summarizes its quality is discussed and future directions are reflected on. Automated essay scoring (AES), the task of automatically assigning a score to an essay that summarizes its quality, is a challenging task that remains largely unsolved despite more than 50 years of research.

  3. PaperRater: Free Online Proofreader with Grammar Check, Plagiarism

    PaperRater proofreads and rates your essays & papers. It picks out grammar & spelling errors, detects plagiarism and grades your writing. It includes resources on grammar, writing, spelling & more. ... You won't find another tool offering plagiarism checking, automated proofreading, grammar check, and automated scoring that can analyze your ...

  4. PDF Prentice Hall Literature : Prentice Hall Online EssayScorer

    Prentice Hall Online EssayScorer is an online instructional writing tool that helps students learn the writing process and practice writing various types of essays. Teachers assign each class writing activities, which vary by essay type, grade level, and subject area. Students receive instant feedback and suggestions for revision.

  5. Online Essays: Et booth ph essay scorer students privacy guaranteed!

    A rainy days essay writer with et booth ph essay scorer. Some e-book scorer booth et ph essay facilities, such as thanks, take a complement. Is this comprehensive and convincing depending on the metaphor of dialogue together according to different people to care at the hunt the sacred construction of a half- white, half-native american girl from south-central los angeles divorced the same meaning.

  6. Free Online Paper and Essay Checker

    PaperRater's online essay checker is built for easy access and straightforward use. Get quick results and reports to turn in assignments and essays on time. 2. Advanced Checks. Experience in-depth analysis and detect even the most subtle errors with PaperRater's comprehensive essay checker and grader. 3.

  7. Essay Grader AI

    The world's leading AI platform for teachers to grade essays. EssayGrader is an AI powered grading assistant that gives high quality, specific and accurate writing feedback for essays. On average it takes a teacher 10 minutes to grade a single essay, with EssayGrader that time is cut down to 30 seconds. That's a 95% reduction in the time it ...

  8. Paris Olympics: Who Leads the Medal Count?

    Which country is doing best at the Paris Olympics? It depends on who's counting medals — and how. As of Tuesday at 6:39 a.m. Eastern time, the United States stood atop the official Olympic ...

  9. AI College Essay Checker & Editor

    It navigates through different essay types, their objectives, and examples of potential prompts to help streamline your college application process. Dr Ivy uses AI technology and college admissions-focused rubrics to evaluate your essay. It assesses structure, coherence, and sentiment, then provides targeted improvement suggestions, enabling ...

  10. Essay Scoring Jobs, Employment in Remote

    9 Essay Scoring jobs available in Remote on Indeed.com. Apply to Tutor, Manager in Training, Test Scorer and more!

  11. essay scorer jobs in Kinneytown, CT

    essay scorer jobs in Kinneytown, CT. Sort by: relevance - date. 17 jobs. Director of Standardized Test Prep - ACT and SAT. Freudigman & Billings, LLC 4.3. Westport, CT 06880. $125,000 - $160,000 a year. Full-time. 40 hours per week. Monday to Friday +3. Easily apply.

  12. EssayGrader

    EssayGrader is a tool powered by AI that provides accurate and helpful feedback based on the same rubrics used by the grading teacher. Its features include speedy grading, comprehensive feedback, estimated grades, focused feedback, organized essays, show, don't tell, and personalized approach. The tool offers an easy-to-use guide for better ...

  13. Carlos Edriel Yulo wins historic gold for Philippines with floor

    Paris 2024 Olympics - Artistic Gymnastics - Men's Floor Exercise Final - Bercy Arena, Paris, France - August 03, 2024. Carlos Edriel Yulo of Philippines in action.

  14. Essay Checker: Free Online Paper Corrector

    The editing tool analyzes your text and highlights a variety of key writing issues, such as overused words, incohesive sentence structures, punctuation issues, repeated phrases, and inconsistencies. Eliminate unnecessary words. Improve transitions. Improve your sentence structure. Passive voice checker. Add power verbs.

  15. Free Paper Grader

    Most high school or college-level essays, research papers, term papers, and similar documents are eligible for Kibin's free grading service. Your paper should: have between 225 and 3000 words. include a single essay/piece of writing. have a single author (you!)

  16. essay scorer jobs in Montgomery County, OH

    15 Essay Scorer jobs available in Montgomery County, OH on Indeed.com. Apply to Academic Coach, Intervention Specialist, Substitute Teacher and more!

  17. Automated Essay Scoring

    Automated Essay Scoring based on Two-Stage Learning. ustcljw/fupugec-score • • 23 Jan 2019 Current state-of-art feature-engineered and end-to-end Automated Essay Score (AES) methods are proven to be unable to detect adversarial samples, e. g. the essays composed of permuted sentences and the prompt-irrelevant essays.

  18. United States vs Serbia live updates: Team USA begin Paris Olympics

    Team USA have beaten Serbia in their opening match of the 2024 Paris Olympics. Kevin Durant had a game-high 23 points including 21 in the first half and LeBron James added 21 as the U.S. made the ...

  19. Employing Beautiful Sentence Evaluation to Automatic Chinese Essay Scoring

    4 Model. The process of our work is shown in Fig. 1, which consists of three parts: (1) the beautiful sentence evaluation (2) the Automatic Essay Scoring (AES) with beautiful sentence evaluation, and (3) the beautiful sentence generator. For essay scoring, we use the pre-trained models XLNet and BiLSTM to train a beautiful sentence evaluation ...

  20. Explainable Automated Essay Scoring: Deep Learning Really Has

    Automated essay scoring (AES) is a compelling topic in Learning Analytics for the primary reason that recent advances in AI find it as a good testbed to explore artificial supplementation of human creativity. However, a vast swath of research tackles AES only holistically; few have even developed AES models at the rubric level, the very first ...

  21. (PDF) Formative feedback via an automated essay scorer: Its impact on

    In general, students used the essay scorer more with the first than second case - submitting an average of 3.61 drafts to the scorer on the first case and an average of 1.89 drafts on the second. Nearly all students used the essay scorer at least once before submitting their final answers.

  22. An automated essay scoring systems: a systematic literature review

    Automated essay scoring (AES) is a computer-based assessment system that automatically scores or grades the student responses by considering appropriate features. The AES research started in 1966 with the Project Essay Grader (PEG) by Ajay et al. . PEG evaluates the writing characteristics such as grammar, diction, construction, etc., to grade ...

  23. Pearson Jobs

    Pearson is an Equal Opportunity and Affirmative Action Employer and a member of E-Verify. All qualified applicants, including minorities, women, protected veterans, and individuals with disabilities are encouraged to apply. All qualified applicants will receive consideration for employment without regard to race, color, religion, sex, sexual ...

  24. Essay Scorer

    About Us; Meet Principal Gill; General Information; Meet Assistant Principal Race; All Things E.Q. Social-Emotional Program; Gecko Gazette Newsletters; Childcare Services