Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, generate accurate citations for free.

  • Knowledge Base

Methodology

  • How to Write a Strong Hypothesis | Steps & Examples

How to Write a Strong Hypothesis | Steps & Examples

Published on May 6, 2022 by Shona McCombes . Revised on November 20, 2023.

A hypothesis is a statement that can be tested by scientific research. If you want to test a relationship between two or more variables, you need to write hypotheses before you start your experiment or data collection .

Example: Hypothesis

Daily apple consumption leads to fewer doctor’s visits.

Table of contents

What is a hypothesis, developing a hypothesis (with example), hypothesis examples, other interesting articles, frequently asked questions about writing hypotheses.

A hypothesis states your predictions about what your research will find. It is a tentative answer to your research question that has not yet been tested. For some research projects, you might have to write several hypotheses that address different aspects of your research question.

A hypothesis is not just a guess – it should be based on existing theories and knowledge. It also has to be testable, which means you can support or refute it through scientific research methods (such as experiments, observations and statistical analysis of data).

Variables in hypotheses

Hypotheses propose a relationship between two or more types of variables .

  • An independent variable is something the researcher changes or controls.
  • A dependent variable is something the researcher observes and measures.

If there are any control variables , extraneous variables , or confounding variables , be sure to jot those down as you go to minimize the chances that research bias  will affect your results.

In this example, the independent variable is exposure to the sun – the assumed cause . The dependent variable is the level of happiness – the assumed effect .

Prevent plagiarism. Run a free check.

Step 1. ask a question.

Writing a hypothesis begins with a research question that you want to answer. The question should be focused, specific, and researchable within the constraints of your project.

Step 2. Do some preliminary research

Your initial answer to the question should be based on what is already known about the topic. Look for theories and previous studies to help you form educated assumptions about what your research will find.

At this stage, you might construct a conceptual framework to ensure that you’re embarking on a relevant topic . This can also help you identify which variables you will study and what you think the relationships are between them. Sometimes, you’ll have to operationalize more complex constructs.

Step 3. Formulate your hypothesis

Now you should have some idea of what you expect to find. Write your initial answer to the question in a clear, concise sentence.

4. Refine your hypothesis

You need to make sure your hypothesis is specific and testable. There are various ways of phrasing a hypothesis, but all the terms you use should have clear definitions, and the hypothesis should contain:

  • The relevant variables
  • The specific group being studied
  • The predicted outcome of the experiment or analysis

5. Phrase your hypothesis in three ways

To identify the variables, you can write a simple prediction in  if…then form. The first part of the sentence states the independent variable and the second part states the dependent variable.

In academic research, hypotheses are more commonly phrased in terms of correlations or effects, where you directly state the predicted relationship between variables.

If you are comparing two groups, the hypothesis can state what difference you expect to find between them.

6. Write a null hypothesis

If your research involves statistical hypothesis testing , you will also have to write a null hypothesis . The null hypothesis is the default position that there is no association between the variables. The null hypothesis is written as H 0 , while the alternative hypothesis is H 1 or H a .

  • H 0 : The number of lectures attended by first-year students has no effect on their final exam scores.
  • H 1 : The number of lectures attended by first-year students has a positive effect on their final exam scores.
Research question Hypothesis Null hypothesis
What are the health benefits of eating an apple a day? Increasing apple consumption in over-60s will result in decreasing frequency of doctor’s visits. Increasing apple consumption in over-60s will have no effect on frequency of doctor’s visits.
Which airlines have the most delays? Low-cost airlines are more likely to have delays than premium airlines. Low-cost and premium airlines are equally likely to have delays.
Can flexible work arrangements improve job satisfaction? Employees who have flexible working hours will report greater job satisfaction than employees who work fixed hours. There is no relationship between working hour flexibility and job satisfaction.
How effective is high school sex education at reducing teen pregnancies? Teenagers who received sex education lessons throughout high school will have lower rates of unplanned pregnancy teenagers who did not receive any sex education. High school sex education has no effect on teen pregnancy rates.
What effect does daily use of social media have on the attention span of under-16s? There is a negative between time spent on social media and attention span in under-16s. There is no relationship between social media use and attention span in under-16s.

If you want to know more about the research process , methodology , research bias , or statistics , make sure to check out some of our other articles with explanations and examples.

  • Sampling methods
  • Simple random sampling
  • Stratified sampling
  • Cluster sampling
  • Likert scales
  • Reproducibility

 Statistics

  • Null hypothesis
  • Statistical power
  • Probability distribution
  • Effect size
  • Poisson distribution

Research bias

  • Optimism bias
  • Cognitive bias
  • Implicit bias
  • Hawthorne effect
  • Anchoring bias
  • Explicit bias

Here's why students love Scribbr's proofreading services

Discover proofreading & editing

A hypothesis is not just a guess — it should be based on existing theories and knowledge. It also has to be testable, which means you can support or refute it through scientific research methods (such as experiments, observations and statistical analysis of data).

Null and alternative hypotheses are used in statistical hypothesis testing . The null hypothesis of a test always predicts no effect or no relationship between variables, while the alternative hypothesis states your research prediction of an effect or relationship.

Hypothesis testing is a formal procedure for investigating our ideas about the world using statistics. It is used by scientists to test specific predictions, called hypotheses , by calculating how likely it is that a pattern or relationship between variables could have arisen by chance.

Cite this Scribbr article

If you want to cite this source, you can copy and paste the citation or click the “Cite this Scribbr article” button to automatically add the citation to our free Citation Generator.

McCombes, S. (2023, November 20). How to Write a Strong Hypothesis | Steps & Examples. Scribbr. Retrieved August 16, 2024, from https://www.scribbr.com/methodology/hypothesis/

Is this article helpful?

Shona McCombes

Shona McCombes

Other students also liked, construct validity | definition, types, & examples, what is a conceptual framework | tips & examples, operationalization | a guide with examples, pros & cons, "i thought ai proofreading was useless but..".

I've been using Scribbr for years now and I know it's a service that won't disappoint. It does a good job spotting mistakes”

Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, automatically generate references for free.

  • Knowledge Base
  • Methodology
  • How to Write a Strong Hypothesis | Guide & Examples

How to Write a Strong Hypothesis | Guide & Examples

Published on 6 May 2022 by Shona McCombes .

A hypothesis is a statement that can be tested by scientific research. If you want to test a relationship between two or more variables, you need to write hypotheses before you start your experiment or data collection.

Table of contents

What is a hypothesis, developing a hypothesis (with example), hypothesis examples, frequently asked questions about writing hypotheses.

A hypothesis states your predictions about what your research will find. It is a tentative answer to your research question that has not yet been tested. For some research projects, you might have to write several hypotheses that address different aspects of your research question.

A hypothesis is not just a guess – it should be based on existing theories and knowledge. It also has to be testable, which means you can support or refute it through scientific research methods (such as experiments, observations, and statistical analysis of data).

Variables in hypotheses

Hypotheses propose a relationship between two or more variables . An independent variable is something the researcher changes or controls. A dependent variable is something the researcher observes and measures.

In this example, the independent variable is exposure to the sun – the assumed cause . The dependent variable is the level of happiness – the assumed effect .

Prevent plagiarism, run a free check.

Step 1: ask a question.

Writing a hypothesis begins with a research question that you want to answer. The question should be focused, specific, and researchable within the constraints of your project.

Step 2: Do some preliminary research

Your initial answer to the question should be based on what is already known about the topic. Look for theories and previous studies to help you form educated assumptions about what your research will find.

At this stage, you might construct a conceptual framework to identify which variables you will study and what you think the relationships are between them. Sometimes, you’ll have to operationalise more complex constructs.

Step 3: Formulate your hypothesis

Now you should have some idea of what you expect to find. Write your initial answer to the question in a clear, concise sentence.

Step 4: Refine your hypothesis

You need to make sure your hypothesis is specific and testable. There are various ways of phrasing a hypothesis, but all the terms you use should have clear definitions, and the hypothesis should contain:

  • The relevant variables
  • The specific group being studied
  • The predicted outcome of the experiment or analysis

Step 5: Phrase your hypothesis in three ways

To identify the variables, you can write a simple prediction in if … then form. The first part of the sentence states the independent variable and the second part states the dependent variable.

In academic research, hypotheses are more commonly phrased in terms of correlations or effects, where you directly state the predicted relationship between variables.

If you are comparing two groups, the hypothesis can state what difference you expect to find between them.

Step 6. Write a null hypothesis

If your research involves statistical hypothesis testing , you will also have to write a null hypothesis. The null hypothesis is the default position that there is no association between the variables. The null hypothesis is written as H 0 , while the alternative hypothesis is H 1 or H a .

Research question Hypothesis Null hypothesis
What are the health benefits of eating an apple a day? Increasing apple consumption in over-60s will result in decreasing frequency of doctor’s visits. Increasing apple consumption in over-60s will have no effect on frequency of doctor’s visits.
Which airlines have the most delays? Low-cost airlines are more likely to have delays than premium airlines. Low-cost and premium airlines are equally likely to have delays.
Can flexible work arrangements improve job satisfaction? Employees who have flexible working hours will report greater job satisfaction than employees who work fixed hours. There is no relationship between working hour flexibility and job satisfaction.
How effective is secondary school sex education at reducing teen pregnancies? Teenagers who received sex education lessons throughout secondary school will have lower rates of unplanned pregnancy than teenagers who did not receive any sex education. Secondary school sex education has no effect on teen pregnancy rates.
What effect does daily use of social media have on the attention span of under-16s? There is a negative correlation between time spent on social media and attention span in under-16s. There is no relationship between social media use and attention span in under-16s.

Hypothesis testing is a formal procedure for investigating our ideas about the world using statistics. It is used by scientists to test specific predictions, called hypotheses , by calculating how likely it is that a pattern or relationship between variables could have arisen by chance.

A hypothesis is not just a guess. It should be based on existing theories and knowledge. It also has to be testable, which means you can support or refute it through scientific research methods (such as experiments, observations, and statistical analysis of data).

A research hypothesis is your proposed answer to your research question. The research hypothesis usually includes an explanation (‘ x affects y because …’).

A statistical hypothesis, on the other hand, is a mathematical statement about a population parameter. Statistical hypotheses always come in pairs: the null and alternative hypotheses. In a well-designed study , the statistical hypotheses correspond logically to the research hypothesis.

Cite this Scribbr article

If you want to cite this source, you can copy and paste the citation or click the ‘Cite this Scribbr article’ button to automatically add the citation to our free Reference Generator.

McCombes, S. (2022, May 06). How to Write a Strong Hypothesis | Guide & Examples. Scribbr. Retrieved 12 August 2024, from https://www.scribbr.co.uk/research-methods/hypothesis-writing/

Is this article helpful?

Shona McCombes

Shona McCombes

Other students also liked, operationalisation | a guide with examples, pros & cons, what is a conceptual framework | tips & examples, a quick guide to experimental design | 5 steps & examples.

  • Thesis Action Plan New
  • Academic Project Planner

Literature Navigator

Thesis dialogue blueprint, writing wizard's template, research proposal compass.

  • Why students love us
  • Rebels Blog
  • Why we are different
  • All Products
  • Coming Soon

What is the Correct Way to Write a Hypothesis? Expert Tips and Examples

Crafting a solid hypothesis is a crucial step in the scientific research process. A well-formulated hypothesis not only guides your research but also provides a clear focus for your study. This article delves into expert tips and examples to help you write a strong hypothesis, ensuring your research is grounded in a solid theoretical framework.

Key Takeaways

  • A hypothesis should be clear and precise, providing a specific prediction that can be tested.
  • Preliminary research is essential to formulate a well-informed hypothesis based on existing literature and data.
  • A strong hypothesis must be testable and falsifiable, meaning it can be proven or disproven through experimentation or observation.
  • It is important to differentiate between null and alternative hypotheses, as both play crucial roles in scientific research.
  • Avoid common pitfalls such as overly broad statements and ambiguous language to ensure your hypothesis is effective and meaningful.

Understanding the Fundamentals of a Hypothesis

A hypothesis is a foundational element in scientific research, serving as a preliminary answer to a research question. Understanding its fundamentals is crucial for any researcher. A well-crafted hypothesis not only guides the direction of your study but also provides a basis for statistical storytelling: understanding and applying key stats in experimental research .

Steps to Formulating a Strong Hypothesis

Identifying the research question.

The first step in formulating a strong hypothesis is to identify the main research question . This involves recognizing a pattern or phenomenon that piques your interest and then asking a specific question that your hypothesis will aim to answer. This step is crucial as it sets the direction for your targeted research .

Conducting Preliminary Research

Before you can formulate a hypothesis, you need to conduct preliminary research. This involves gathering as much information as possible about your topic. By reviewing existing literature and studies, you can gain insights into what is already known and identify gaps that your research could fill. This step ensures that your hypothesis is grounded in existing knowledge and is relevant to the field.

Formulating the Hypothesis Statement

Once you have identified your research question and conducted preliminary research, the next step is to formulate your hypothesis statement. A well-crafted hypothesis should be clear, specific, and testable. It should propose a relationship between variables that can be examined through experimentation or observation. Remember, a strong hypothesis not only predicts an outcome but also provides a basis for further investigation.

Characteristics of a Well-Written Hypothesis

A well-written hypothesis is essential for guiding your research and ensuring that your study is both meaningful and scientifically valid. Clarity and precision are paramount; your hypothesis should be articulated in a way that leaves no room for ambiguity. This means using specific language and clearly defining any terms or variables involved. A hypothesis must also be testable and falsifiable, meaning it should be structured in a way that allows for empirical testing and the possibility of being proven wrong. This is crucial for maintaining the scientific integrity of your research. Lastly, your hypothesis should be directly relevant to your research question, providing a focused direction for your study. By adhering to these characteristics, you can formulate a hypothesis that is both robust and reliable.

Types of Hypotheses in Research

Understanding the various types of hypotheses is crucial for any researcher. Each type serves a unique purpose and is used in different contexts to address the research question effectively.

Examples of Effective Hypotheses

Hypotheses in natural sciences.

In the natural sciences, hypotheses often predict relationships between variables based on empirical evidence. For instance, a hypothesis might state, "Plants exposed to higher levels of sunlight will grow faster than those in shaded areas." This hypothesis is clear and testable , making it a strong candidate for scientific investigation.

Hypotheses in Social Sciences

Social science hypotheses frequently address human behavior and societal trends. An example could be, "Individuals who engage in regular physical activity report higher levels of happiness compared to those who do not." This hypothesis is relevant to the research question and can be tested through surveys and observational studies.

Hypotheses in Applied Research

Applied research often focuses on practical problems and solutions. A typical hypothesis might be, "Implementing a four-day workweek will increase employee productivity." This hypothesis is specific and actionable , providing a clear direction for research and potential policy changes.

Common Pitfalls and How to Avoid Them

When crafting a hypothesis, it's crucial to be aware of common pitfalls that can undermine your research. Avoiding these mistakes will enhance the quality and reliability of your study.

Expert Tips for Writing a Hypothesis

Consulting existing literature.

Before you start formulating your hypothesis, it's crucial to delve into existing literature. This step helps in demystifying the concept of a thesis statement and provides a foundation for your research. By reviewing previous studies, you can identify gaps in the research and build upon them. This not only strengthens your hypothesis but also ensures its relevance in the academic community.

Peer Review and Feedback

Engaging with peers and mentors for feedback is an invaluable part of the hypothesis-writing process. Constructive criticism can help you refine your hypothesis, making it more precise and testable. Don't hesitate to share your drafts and be open to suggestions. This collaborative approach can significantly reduce thesis anxiety and improve the quality of your work.

Iterative Refinement

Writing a hypothesis is not a one-time task; it requires iterative refinement. Start with a broad idea and gradually narrow it down through multiple revisions. This process involves continuously testing and tweaking your hypothesis to ensure it aligns with your research objectives. Remember, a well-crafted hypothesis is the result of meticulous planning and constant improvement.

Crafting a solid hypothesis is crucial for the success of your thesis. Our experts at Research Rebels have compiled essential tips to guide you through this process. Don't let uncertainty hold you back. Visit our website to explore our comprehensive Thesis Action Plan and claim your special offer now !

In conclusion, writing a hypothesis is a fundamental step in the scientific research process that requires careful consideration and precision. By following the expert tips and examples provided in this article, researchers can craft hypotheses that are clear, testable, and relevant to their studies. A well-formulated hypothesis not only guides the direction of the research but also provides a framework for analyzing results and drawing meaningful conclusions. As such, mastering the art of hypothesis writing is essential for any researcher aiming to contribute valuable insights to their field of study.

Frequently Asked Questions

What is a hypothesis.

A hypothesis is a tentative statement predicting a relationship between variables, which can be tested through scientific research.

Why is a hypothesis important in scientific research?

A hypothesis provides a focused direction for research, allowing scientists to make predictions and test their validity through experimentation.

What are the key characteristics of a well-written hypothesis?

A well-written hypothesis should be clear, precise, testable, falsifiable, and relevant to the research question.

What is the difference between a null hypothesis and an alternative hypothesis?

A null hypothesis states that there is no effect or relationship between variables, while an alternative hypothesis suggests that there is an effect or relationship.

How can I ensure my hypothesis is testable?

To ensure your hypothesis is testable, it should be specific and measurable, with clearly defined variables and a methodology for testing.

What are common mistakes to avoid when writing a hypothesis?

Common mistakes include making hypotheses that are too broad, using ambiguous language, and failing to ensure the hypothesis is testable.

Student celebrating with thesis and calendar in background

40 Days to Bachelor Thesis Excellence: A Student’s Blueprint

The feedback loop: navigating peer reviews and supervisor input, how to conduct a systematic review and write-up in 7 steps (using prisma, pico and ai).

Persona redactando la tesis de un trabajo de investigación

Mastering the Art: How to Write the Thesis Statement of a Research Paper

Estudiante redactando propuesta de investigación doctoral

Cómo escribir una propuesta de investigación para un doctorado

Researcher measuring document length with a ruler.

How to Determine the Perfect Research Proposal Length

How Do I Start Writing My Thesis: A Step-by-Step Guide

How Do I Start Writing My Thesis: A Step-by-Step Guide

Icons and timeline illustrating research planning steps

From Idea to Proposal: 6 Steps to Efficiently Plan Your Research Project in 2024

Student planning thesis with calendar and books

Three Months to a Perfect Bachelor Thesis: A Detailed Plan for Students

Conquering Bibliography Fears: Mastering Citations in Thesis Writing

Conquering Bibliography Fears: Mastering Citations in Thesis Writing

Comprehensive Thesis Guide

Thesis Action Plan

Research Proposal Compass

  • Blog Articles
  • Affiliate Program
  • Terms and Conditions
  • Payment and Shipping Terms
  • Privacy Policy
  • Return Policy

© 2024 Research Rebels, All rights reserved.

Your cart is currently empty.

U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings

Preview improvements coming to the PMC website in October 2024. Learn More or Try it out now .

  • Advanced Search
  • Journal List
  • J Korean Med Sci
  • v.36(50); 2021 Dec 27

Logo of jkms

Formulating Hypotheses for Different Study Designs

Durga prasanna misra.

1 Department of Clinical Immunology and Rheumatology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India.

Armen Yuri Gasparyan

2 Departments of Rheumatology and Research and Development, Dudley Group NHS Foundation Trust (Teaching Trust of the University of Birmingham, UK), Russells Hall Hospital, Dudley, UK.

Olena Zimba

3 Department of Internal Medicine #2, Danylo Halytsky Lviv National Medical University, Lviv, Ukraine.

Marlen Yessirkepov

4 Department of Biology and Biochemistry, South Kazakhstan Medical Academy, Shymkent, Kazakhstan.

Vikas Agarwal

George d. kitas.

5 Centre for Epidemiology versus Arthritis, University of Manchester, Manchester, UK.

Generating a testable working hypothesis is the first step towards conducting original research. Such research may prove or disprove the proposed hypothesis. Case reports, case series, online surveys and other observational studies, clinical trials, and narrative reviews help to generate hypotheses. Observational and interventional studies help to test hypotheses. A good hypothesis is usually based on previous evidence-based reports. Hypotheses without evidence-based justification and a priori ideas are not received favourably by the scientific community. Original research to test a hypothesis should be carefully planned to ensure appropriate methodology and adequate statistical power. While hypotheses can challenge conventional thinking and may be controversial, they should not be destructive. A hypothesis should be tested by ethically sound experiments with meaningful ethical and clinical implications. The coronavirus disease 2019 pandemic has brought into sharp focus numerous hypotheses, some of which were proven (e.g. effectiveness of corticosteroids in those with hypoxia) while others were disproven (e.g. ineffectiveness of hydroxychloroquine and ivermectin).

Graphical Abstract

An external file that holds a picture, illustration, etc.
Object name is jkms-36-e338-abf001.jpg

DEFINING WORKING AND STANDALONE SCIENTIFIC HYPOTHESES

Science is the systematized description of natural truths and facts. Routine observations of existing life phenomena lead to the creative thinking and generation of ideas about mechanisms of such phenomena and related human interventions. Such ideas presented in a structured format can be viewed as hypotheses. After generating a hypothesis, it is necessary to test it to prove its validity. Thus, hypothesis can be defined as a proposed mechanism of a naturally occurring event or a proposed outcome of an intervention. 1 , 2

Hypothesis testing requires choosing the most appropriate methodology and adequately powering statistically the study to be able to “prove” or “disprove” it within predetermined and widely accepted levels of certainty. This entails sample size calculation that often takes into account previously published observations and pilot studies. 2 , 3 In the era of digitization, hypothesis generation and testing may benefit from the availability of numerous platforms for data dissemination, social networking, and expert validation. Related expert evaluations may reveal strengths and limitations of proposed ideas at early stages of post-publication promotion, preventing the implementation of unsupported controversial points. 4

Thus, hypothesis generation is an important initial step in the research workflow, reflecting accumulating evidence and experts' stance. In this article, we overview the genesis and importance of scientific hypotheses and their relevance in the era of the coronavirus disease 2019 (COVID-19) pandemic.

DO WE NEED HYPOTHESES FOR ALL STUDY DESIGNS?

Broadly, research can be categorized as primary or secondary. In the context of medicine, primary research may include real-life observations of disease presentations and outcomes. Single case descriptions, which often lead to new ideas and hypotheses, serve as important starting points or justifications for case series and cohort studies. The importance of case descriptions is particularly evident in the context of the COVID-19 pandemic when unique, educational case reports have heralded a new era in clinical medicine. 5

Case series serve similar purpose to single case reports, but are based on a slightly larger quantum of information. Observational studies, including online surveys, describe the existing phenomena at a larger scale, often involving various control groups. Observational studies include variable-scale epidemiological investigations at different time points. Interventional studies detail the results of therapeutic interventions.

Secondary research is based on already published literature and does not directly involve human or animal subjects. Review articles are generated by secondary research. These could be systematic reviews which follow methods akin to primary research but with the unit of study being published papers rather than humans or animals. Systematic reviews have a rigid structure with a mandatory search strategy encompassing multiple databases, systematic screening of search results against pre-defined inclusion and exclusion criteria, critical appraisal of study quality and an optional component of collating results across studies quantitatively to derive summary estimates (meta-analysis). 6 Narrative reviews, on the other hand, have a more flexible structure. Systematic literature searches to minimise bias in selection of articles are highly recommended but not mandatory. 7 Narrative reviews are influenced by the authors' viewpoint who may preferentially analyse selected sets of articles. 8

In relation to primary research, case studies and case series are generally not driven by a working hypothesis. Rather, they serve as a basis to generate a hypothesis. Observational or interventional studies should have a hypothesis for choosing research design and sample size. The results of observational and interventional studies further lead to the generation of new hypotheses, testing of which forms the basis of future studies. Review articles, on the other hand, may not be hypothesis-driven, but form fertile ground to generate future hypotheses for evaluation. Fig. 1 summarizes which type of studies are hypothesis-driven and which lead on to hypothesis generation.

An external file that holds a picture, illustration, etc.
Object name is jkms-36-e338-g001.jpg

STANDARDS OF WORKING AND SCIENTIFIC HYPOTHESES

A review of the published literature did not enable the identification of clearly defined standards for working and scientific hypotheses. It is essential to distinguish influential versus not influential hypotheses, evidence-based hypotheses versus a priori statements and ideas, ethical versus unethical, or potentially harmful ideas. The following points are proposed for consideration while generating working and scientific hypotheses. 1 , 2 Table 1 summarizes these points.

Points to be considered while evaluating the validity of hypotheses
Backed by evidence-based data
Testable by relevant study designs
Supported by preliminary (pilot) studies
Testable by ethical studies
Maintaining a balance between scientific temper and controversy

Evidence-based data

A scientific hypothesis should have a sound basis on previously published literature as well as the scientist's observations. Randomly generated (a priori) hypotheses are unlikely to be proven. A thorough literature search should form the basis of a hypothesis based on published evidence. 7

Unless a scientific hypothesis can be tested, it can neither be proven nor be disproven. Therefore, a scientific hypothesis should be amenable to testing with the available technologies and the present understanding of science.

Supported by pilot studies

If a hypothesis is based purely on a novel observation by the scientist in question, it should be grounded on some preliminary studies to support it. For example, if a drug that targets a specific cell population is hypothesized to be useful in a particular disease setting, then there must be some preliminary evidence that the specific cell population plays a role in driving that disease process.

Testable by ethical studies

The hypothesis should be testable by experiments that are ethically acceptable. 9 For example, a hypothesis that parachutes reduce mortality from falls from an airplane cannot be tested using a randomized controlled trial. 10 This is because it is obvious that all those jumping from a flying plane without a parachute would likely die. Similarly, the hypothesis that smoking tobacco causes lung cancer cannot be tested by a clinical trial that makes people take up smoking (since there is considerable evidence for the health hazards associated with smoking). Instead, long-term observational studies comparing outcomes in those who smoke and those who do not, as was performed in the landmark epidemiological case control study by Doll and Hill, 11 are more ethical and practical.

Balance between scientific temper and controversy

Novel findings, including novel hypotheses, particularly those that challenge established norms, are bound to face resistance for their wider acceptance. Such resistance is inevitable until the time such findings are proven with appropriate scientific rigor. However, hypotheses that generate controversy are generally unwelcome. For example, at the time the pandemic of human immunodeficiency virus (HIV) and AIDS was taking foot, there were numerous deniers that refused to believe that HIV caused AIDS. 12 , 13 Similarly, at a time when climate change is causing catastrophic changes to weather patterns worldwide, denial that climate change is occurring and consequent attempts to block climate change are certainly unwelcome. 14 The denialism and misinformation during the COVID-19 pandemic, including unfortunate examples of vaccine hesitancy, are more recent examples of controversial hypotheses not backed by science. 15 , 16 An example of a controversial hypothesis that was a revolutionary scientific breakthrough was the hypothesis put forth by Warren and Marshall that Helicobacter pylori causes peptic ulcers. Initially, the hypothesis that a microorganism could cause gastritis and gastric ulcers faced immense resistance. When the scientists that proposed the hypothesis themselves ingested H. pylori to induce gastritis in themselves, only then could they convince the wider world about their hypothesis. Such was the impact of the hypothesis was that Barry Marshall and Robin Warren were awarded the Nobel Prize in Physiology or Medicine in 2005 for this discovery. 17 , 18

DISTINGUISHING THE MOST INFLUENTIAL HYPOTHESES

Influential hypotheses are those that have stood the test of time. An archetype of an influential hypothesis is that proposed by Edward Jenner in the eighteenth century that cowpox infection protects against smallpox. While this observation had been reported for nearly a century before this time, it had not been suitably tested and publicised until Jenner conducted his experiments on a young boy by demonstrating protection against smallpox after inoculation with cowpox. 19 These experiments were the basis for widespread smallpox immunization strategies worldwide in the 20th century which resulted in the elimination of smallpox as a human disease today. 20

Other influential hypotheses are those which have been read and cited widely. An example of this is the hygiene hypothesis proposing an inverse relationship between infections in early life and allergies or autoimmunity in adulthood. An analysis reported that this hypothesis had been cited more than 3,000 times on Scopus. 1

LESSONS LEARNED FROM HYPOTHESES AMIDST THE COVID-19 PANDEMIC

The COVID-19 pandemic devastated the world like no other in recent memory. During this period, various hypotheses emerged, understandably so considering the public health emergency situation with innumerable deaths and suffering for humanity. Within weeks of the first reports of COVID-19, aberrant immune system activation was identified as a key driver of organ dysfunction and mortality in this disease. 21 Consequently, numerous drugs that suppress the immune system or abrogate the activation of the immune system were hypothesized to have a role in COVID-19. 22 One of the earliest drugs hypothesized to have a benefit was hydroxychloroquine. Hydroxychloroquine was proposed to interfere with Toll-like receptor activation and consequently ameliorate the aberrant immune system activation leading to pathology in COVID-19. 22 The drug was also hypothesized to have a prophylactic role in preventing infection or disease severity in COVID-19. It was also touted as a wonder drug for the disease by many prominent international figures. However, later studies which were well-designed randomized controlled trials failed to demonstrate any benefit of hydroxychloroquine in COVID-19. 23 , 24 , 25 , 26 Subsequently, azithromycin 27 , 28 and ivermectin 29 were hypothesized as potential therapies for COVID-19, but were not supported by evidence from randomized controlled trials. The role of vitamin D in preventing disease severity was also proposed, but has not been proven definitively until now. 30 , 31 On the other hand, randomized controlled trials identified the evidence supporting dexamethasone 32 and interleukin-6 pathway blockade with tocilizumab as effective therapies for COVID-19 in specific situations such as at the onset of hypoxia. 33 , 34 Clues towards the apparent effectiveness of various drugs against severe acute respiratory syndrome coronavirus 2 in vitro but their ineffectiveness in vivo have recently been identified. Many of these drugs are weak, lipophilic bases and some others induce phospholipidosis which results in apparent in vitro effectiveness due to non-specific off-target effects that are not replicated inside living systems. 35 , 36

Another hypothesis proposed was the association of the routine policy of vaccination with Bacillus Calmette-Guerin (BCG) with lower deaths due to COVID-19. This hypothesis emerged in the middle of 2020 when COVID-19 was still taking foot in many parts of the world. 37 , 38 Subsequently, many countries which had lower deaths at that time point went on to have higher numbers of mortality, comparable to other areas of the world. Furthermore, the hypothesis that BCG vaccination reduced COVID-19 mortality was a classic example of ecological fallacy. Associations between population level events (ecological studies; in this case, BCG vaccination and COVID-19 mortality) cannot be directly extrapolated to the individual level. Furthermore, such associations cannot per se be attributed as causal in nature, and can only serve to generate hypotheses that need to be tested at the individual level. 39

IS TRADITIONAL PEER REVIEW EFFICIENT FOR EVALUATION OF WORKING AND SCIENTIFIC HYPOTHESES?

Traditionally, publication after peer review has been considered the gold standard before any new idea finds acceptability amongst the scientific community. Getting a work (including a working or scientific hypothesis) reviewed by experts in the field before experiments are conducted to prove or disprove it helps to refine the idea further as well as improve the experiments planned to test the hypothesis. 40 A route towards this has been the emergence of journals dedicated to publishing hypotheses such as the Central Asian Journal of Medical Hypotheses and Ethics. 41 Another means of publishing hypotheses is through registered research protocols detailing the background, hypothesis, and methodology of a particular study. If such protocols are published after peer review, then the journal commits to publishing the completed study irrespective of whether the study hypothesis is proven or disproven. 42 In the post-pandemic world, online research methods such as online surveys powered via social media channels such as Twitter and Instagram might serve as critical tools to generate as well as to preliminarily test the appropriateness of hypotheses for further evaluation. 43 , 44

Some radical hypotheses might be difficult to publish after traditional peer review. These hypotheses might only be acceptable by the scientific community after they are tested in research studies. Preprints might be a way to disseminate such controversial and ground-breaking hypotheses. 45 However, scientists might prefer to keep their hypotheses confidential for the fear of plagiarism of ideas, avoiding online posting and publishing until they have tested the hypotheses.

SUGGESTIONS ON GENERATING AND PUBLISHING HYPOTHESES

Publication of hypotheses is important, however, a balance is required between scientific temper and controversy. Journal editors and reviewers might keep in mind these specific points, summarized in Table 2 and detailed hereafter, while judging the merit of hypotheses for publication. Keeping in mind the ethical principle of primum non nocere, a hypothesis should be published only if it is testable in a manner that is ethically appropriate. 46 Such hypotheses should be grounded in reality and lend themselves to further testing to either prove or disprove them. It must be considered that subsequent experiments to prove or disprove a hypothesis have an equal chance of failing or succeeding, akin to tossing a coin. A pre-conceived belief that a hypothesis is unlikely to be proven correct should not form the basis of rejection of such a hypothesis for publication. In this context, hypotheses generated after a thorough literature search to identify knowledge gaps or based on concrete clinical observations on a considerable number of patients (as opposed to random observations on a few patients) are more likely to be acceptable for publication by peer-reviewed journals. Also, hypotheses should be considered for publication or rejection based on their implications for science at large rather than whether the subsequent experiments to test them end up with results in favour of or against the original hypothesis.

Points to be considered before a hypothesis is acceptable for publication
Experiments required to test hypotheses should be ethically acceptable as per the World Medical Association declaration on ethics and related statements
Pilot studies support hypotheses
Single clinical observations and expert opinion surveys may support hypotheses
Testing hypotheses requires robust methodology and statistical power
Hypotheses that challenge established views and concepts require proper evidence-based justification

Hypotheses form an important part of the scientific literature. The COVID-19 pandemic has reiterated the importance and relevance of hypotheses for dealing with public health emergencies and highlighted the need for evidence-based and ethical hypotheses. A good hypothesis is testable in a relevant study design, backed by preliminary evidence, and has positive ethical and clinical implications. General medical journals might consider publishing hypotheses as a specific article type to enable more rapid advancement of science.

Disclosure: The authors have no potential conflicts of interest to disclose.

Author Contributions:

  • Data curation: Gasparyan AY, Misra DP, Zimba O, Yessirkepov M, Agarwal V, Kitas GD.

Educational resources and simple solutions for your research journey

Research hypothesis: What it is, how to write it, types, and examples

What is a Research Hypothesis: How to Write it, Types, and Examples

how to make hypothesis in a case study

Any research begins with a research question and a research hypothesis . A research question alone may not suffice to design the experiment(s) needed to answer it. A hypothesis is central to the scientific method. But what is a hypothesis ? A hypothesis is a testable statement that proposes a possible explanation to a phenomenon, and it may include a prediction. Next, you may ask what is a research hypothesis ? Simply put, a research hypothesis is a prediction or educated guess about the relationship between the variables that you want to investigate.  

It is important to be thorough when developing your research hypothesis. Shortcomings in the framing of a hypothesis can affect the study design and the results. A better understanding of the research hypothesis definition and characteristics of a good hypothesis will make it easier for you to develop your own hypothesis for your research. Let’s dive in to know more about the types of research hypothesis , how to write a research hypothesis , and some research hypothesis examples .  

Table of Contents

What is a hypothesis ?  

A hypothesis is based on the existing body of knowledge in a study area. Framed before the data are collected, a hypothesis states the tentative relationship between independent and dependent variables, along with a prediction of the outcome.  

What is a research hypothesis ?  

Young researchers starting out their journey are usually brimming with questions like “ What is a hypothesis ?” “ What is a research hypothesis ?” “How can I write a good research hypothesis ?”   

A research hypothesis is a statement that proposes a possible explanation for an observable phenomenon or pattern. It guides the direction of a study and predicts the outcome of the investigation. A research hypothesis is testable, i.e., it can be supported or disproven through experimentation or observation.     

how to make hypothesis in a case study

Characteristics of a good hypothesis  

Here are the characteristics of a good hypothesis :  

  • Clearly formulated and free of language errors and ambiguity  
  • Concise and not unnecessarily verbose  
  • Has clearly defined variables  
  • Testable and stated in a way that allows for it to be disproven  
  • Can be tested using a research design that is feasible, ethical, and practical   
  • Specific and relevant to the research problem  
  • Rooted in a thorough literature search  
  • Can generate new knowledge or understanding.  

How to create an effective research hypothesis  

A study begins with the formulation of a research question. A researcher then performs background research. This background information forms the basis for building a good research hypothesis . The researcher then performs experiments, collects, and analyzes the data, interprets the findings, and ultimately, determines if the findings support or negate the original hypothesis.  

Let’s look at each step for creating an effective, testable, and good research hypothesis :  

  • Identify a research problem or question: Start by identifying a specific research problem.   
  • Review the literature: Conduct an in-depth review of the existing literature related to the research problem to grasp the current knowledge and gaps in the field.   
  • Formulate a clear and testable hypothesis : Based on the research question, use existing knowledge to form a clear and testable hypothesis . The hypothesis should state a predicted relationship between two or more variables that can be measured and manipulated. Improve the original draft till it is clear and meaningful.  
  • State the null hypothesis: The null hypothesis is a statement that there is no relationship between the variables you are studying.   
  • Define the population and sample: Clearly define the population you are studying and the sample you will be using for your research.  
  • Select appropriate methods for testing the hypothesis: Select appropriate research methods, such as experiments, surveys, or observational studies, which will allow you to test your research hypothesis .  

Remember that creating a research hypothesis is an iterative process, i.e., you might have to revise it based on the data you collect. You may need to test and reject several hypotheses before answering the research problem.  

How to write a research hypothesis  

When you start writing a research hypothesis , you use an “if–then” statement format, which states the predicted relationship between two or more variables. Clearly identify the independent variables (the variables being changed) and the dependent variables (the variables being measured), as well as the population you are studying. Review and revise your hypothesis as needed.  

An example of a research hypothesis in this format is as follows:  

“ If [athletes] follow [cold water showers daily], then their [endurance] increases.”  

Population: athletes  

Independent variable: daily cold water showers  

Dependent variable: endurance  

You may have understood the characteristics of a good hypothesis . But note that a research hypothesis is not always confirmed; a researcher should be prepared to accept or reject the hypothesis based on the study findings.  

how to make hypothesis in a case study

Research hypothesis checklist  

Following from above, here is a 10-point checklist for a good research hypothesis :  

  • Testable: A research hypothesis should be able to be tested via experimentation or observation.  
  • Specific: A research hypothesis should clearly state the relationship between the variables being studied.  
  • Based on prior research: A research hypothesis should be based on existing knowledge and previous research in the field.  
  • Falsifiable: A research hypothesis should be able to be disproven through testing.  
  • Clear and concise: A research hypothesis should be stated in a clear and concise manner.  
  • Logical: A research hypothesis should be logical and consistent with current understanding of the subject.  
  • Relevant: A research hypothesis should be relevant to the research question and objectives.  
  • Feasible: A research hypothesis should be feasible to test within the scope of the study.  
  • Reflects the population: A research hypothesis should consider the population or sample being studied.  
  • Uncomplicated: A good research hypothesis is written in a way that is easy for the target audience to understand.  

By following this research hypothesis checklist , you will be able to create a research hypothesis that is strong, well-constructed, and more likely to yield meaningful results.  

Research hypothesis: What it is, how to write it, types, and examples

Types of research hypothesis  

Different types of research hypothesis are used in scientific research:  

1. Null hypothesis:

A null hypothesis states that there is no change in the dependent variable due to changes to the independent variable. This means that the results are due to chance and are not significant. A null hypothesis is denoted as H0 and is stated as the opposite of what the alternative hypothesis states.   

Example: “ The newly identified virus is not zoonotic .”  

2. Alternative hypothesis:

This states that there is a significant difference or relationship between the variables being studied. It is denoted as H1 or Ha and is usually accepted or rejected in favor of the null hypothesis.  

Example: “ The newly identified virus is zoonotic .”  

3. Directional hypothesis :

This specifies the direction of the relationship or difference between variables; therefore, it tends to use terms like increase, decrease, positive, negative, more, or less.   

Example: “ The inclusion of intervention X decreases infant mortality compared to the original treatment .”   

4. Non-directional hypothesis:

While it does not predict the exact direction or nature of the relationship between the two variables, a non-directional hypothesis states the existence of a relationship or difference between variables but not the direction, nature, or magnitude of the relationship. A non-directional hypothesis may be used when there is no underlying theory or when findings contradict previous research.  

Example, “ Cats and dogs differ in the amount of affection they express .”  

5. Simple hypothesis :

A simple hypothesis only predicts the relationship between one independent and another independent variable.  

Example: “ Applying sunscreen every day slows skin aging .”  

6 . Complex hypothesis :

A complex hypothesis states the relationship or difference between two or more independent and dependent variables.   

Example: “ Applying sunscreen every day slows skin aging, reduces sun burn, and reduces the chances of skin cancer .” (Here, the three dependent variables are slowing skin aging, reducing sun burn, and reducing the chances of skin cancer.)  

7. Associative hypothesis:  

An associative hypothesis states that a change in one variable results in the change of the other variable. The associative hypothesis defines interdependency between variables.  

Example: “ There is a positive association between physical activity levels and overall health .”  

8 . Causal hypothesis:

A causal hypothesis proposes a cause-and-effect interaction between variables.  

Example: “ Long-term alcohol use causes liver damage .”  

Note that some of the types of research hypothesis mentioned above might overlap. The types of hypothesis chosen will depend on the research question and the objective of the study.  

how to make hypothesis in a case study

Research hypothesis examples  

Here are some good research hypothesis examples :  

“The use of a specific type of therapy will lead to a reduction in symptoms of depression in individuals with a history of major depressive disorder.”  

“Providing educational interventions on healthy eating habits will result in weight loss in overweight individuals.”  

“Plants that are exposed to certain types of music will grow taller than those that are not exposed to music.”  

“The use of the plant growth regulator X will lead to an increase in the number of flowers produced by plants.”  

Characteristics that make a research hypothesis weak are unclear variables, unoriginality, being too general or too vague, and being untestable. A weak hypothesis leads to weak research and improper methods.   

Some bad research hypothesis examples (and the reasons why they are “bad”) are as follows:  

“This study will show that treatment X is better than any other treatment . ” (This statement is not testable, too broad, and does not consider other treatments that may be effective.)  

“This study will prove that this type of therapy is effective for all mental disorders . ” (This statement is too broad and not testable as mental disorders are complex and different disorders may respond differently to different types of therapy.)  

“Plants can communicate with each other through telepathy . ” (This statement is not testable and lacks a scientific basis.)  

Importance of testable hypothesis  

If a research hypothesis is not testable, the results will not prove or disprove anything meaningful. The conclusions will be vague at best. A testable hypothesis helps a researcher focus on the study outcome and understand the implication of the question and the different variables involved. A testable hypothesis helps a researcher make precise predictions based on prior research.  

To be considered testable, there must be a way to prove that the hypothesis is true or false; further, the results of the hypothesis must be reproducible.  

Research hypothesis: What it is, how to write it, types, and examples

Frequently Asked Questions (FAQs) on research hypothesis  

1. What is the difference between research question and research hypothesis ?  

A research question defines the problem and helps outline the study objective(s). It is an open-ended statement that is exploratory or probing in nature. Therefore, it does not make predictions or assumptions. It helps a researcher identify what information to collect. A research hypothesis , however, is a specific, testable prediction about the relationship between variables. Accordingly, it guides the study design and data analysis approach.

2. When to reject null hypothesis ?

A null hypothesis should be rejected when the evidence from a statistical test shows that it is unlikely to be true. This happens when the test statistic (e.g., p -value) is less than the defined significance level (e.g., 0.05). Rejecting the null hypothesis does not necessarily mean that the alternative hypothesis is true; it simply means that the evidence found is not compatible with the null hypothesis.  

3. How can I be sure my hypothesis is testable?  

A testable hypothesis should be specific and measurable, and it should state a clear relationship between variables that can be tested with data. To ensure that your hypothesis is testable, consider the following:  

  • Clearly define the key variables in your hypothesis. You should be able to measure and manipulate these variables in a way that allows you to test the hypothesis.  
  • The hypothesis should predict a specific outcome or relationship between variables that can be measured or quantified.   
  • You should be able to collect the necessary data within the constraints of your study.  
  • It should be possible for other researchers to replicate your study, using the same methods and variables.   
  • Your hypothesis should be testable by using appropriate statistical analysis techniques, so you can draw conclusions, and make inferences about the population from the sample data.  
  • The hypothesis should be able to be disproven or rejected through the collection of data.  

4. How do I revise my research hypothesis if my data does not support it?  

If your data does not support your research hypothesis , you will need to revise it or develop a new one. You should examine your data carefully and identify any patterns or anomalies, re-examine your research question, and/or revisit your theory to look for any alternative explanations for your results. Based on your review of the data, literature, and theories, modify your research hypothesis to better align it with the results you obtained. Use your revised hypothesis to guide your research design and data collection. It is important to remain objective throughout the process.  

5. I am performing exploratory research. Do I need to formulate a research hypothesis?  

As opposed to “confirmatory” research, where a researcher has some idea about the relationship between the variables under investigation, exploratory research (or hypothesis-generating research) looks into a completely new topic about which limited information is available. Therefore, the researcher will not have any prior hypotheses. In such cases, a researcher will need to develop a post-hoc hypothesis. A post-hoc research hypothesis is generated after these results are known.  

6. How is a research hypothesis different from a research question?

A research question is an inquiry about a specific topic or phenomenon, typically expressed as a question. It seeks to explore and understand a particular aspect of the research subject. In contrast, a research hypothesis is a specific statement or prediction that suggests an expected relationship between variables. It is formulated based on existing knowledge or theories and guides the research design and data analysis.

7. Can a research hypothesis change during the research process?

Yes, research hypotheses can change during the research process. As researchers collect and analyze data, new insights and information may emerge that require modification or refinement of the initial hypotheses. This can be due to unexpected findings, limitations in the original hypotheses, or the need to explore additional dimensions of the research topic. Flexibility is crucial in research, allowing for adaptation and adjustment of hypotheses to align with the evolving understanding of the subject matter.

8. How many hypotheses should be included in a research study?

The number of research hypotheses in a research study varies depending on the nature and scope of the research. It is not necessary to have multiple hypotheses in every study. Some studies may have only one primary hypothesis, while others may have several related hypotheses. The number of hypotheses should be determined based on the research objectives, research questions, and the complexity of the research topic. It is important to ensure that the hypotheses are focused, testable, and directly related to the research aims.

9. Can research hypotheses be used in qualitative research?

Yes, research hypotheses can be used in qualitative research, although they are more commonly associated with quantitative research. In qualitative research, hypotheses may be formulated as tentative or exploratory statements that guide the investigation. Instead of testing hypotheses through statistical analysis, qualitative researchers may use the hypotheses to guide data collection and analysis, seeking to uncover patterns, themes, or relationships within the qualitative data. The emphasis in qualitative research is often on generating insights and understanding rather than confirming or rejecting specific research hypotheses through statistical testing.

Editage All Access is a subscription-based platform that unifies the best AI tools and services designed to speed up, simplify, and streamline every step of a researcher’s journey. The Editage All Access Pack is a one-of-a-kind subscription that unlocks full access to an AI writing assistant, literature recommender, journal finder, scientific illustration tool, and exclusive discounts on professional publication services from Editage.  

Based on 22+ years of experience in academia, Editage All Access empowers researchers to put their best research forward and move closer to success. Explore our top AI Tools pack, AI Tools + Publication Services pack, or Build Your Own Plan. Find everything a researcher needs to succeed, all in one place –  Get All Access now starting at just $14 a month !    

Related Posts

research funding sources

What are the Best Research Funding Sources

inductive research

Inductive vs. Deductive Research Approach

  • Resources Home 🏠
  • Try SciSpace Copilot
  • Search research papers
  • Add Copilot Extension
  • Try AI Detector
  • Try Paraphraser
  • Try Citation Generator
  • April Papers
  • June Papers
  • July Papers

SciSpace Resources

The Craft of Writing a Strong Hypothesis

Deeptanshu D

Table of Contents

Writing a hypothesis is one of the essential elements of a scientific research paper. It needs to be to the point, clearly communicating what your research is trying to accomplish. A blurry, drawn-out, or complexly-structured hypothesis can confuse your readers. Or worse, the editor and peer reviewers.

A captivating hypothesis is not too intricate. This blog will take you through the process so that, by the end of it, you have a better idea of how to convey your research paper's intent in just one sentence.

What is a Hypothesis?

The first step in your scientific endeavor, a hypothesis, is a strong, concise statement that forms the basis of your research. It is not the same as a thesis statement , which is a brief summary of your research paper .

The sole purpose of a hypothesis is to predict your paper's findings, data, and conclusion. It comes from a place of curiosity and intuition . When you write a hypothesis, you're essentially making an educated guess based on scientific prejudices and evidence, which is further proven or disproven through the scientific method.

The reason for undertaking research is to observe a specific phenomenon. A hypothesis, therefore, lays out what the said phenomenon is. And it does so through two variables, an independent and dependent variable.

The independent variable is the cause behind the observation, while the dependent variable is the effect of the cause. A good example of this is “mixing red and blue forms purple.” In this hypothesis, mixing red and blue is the independent variable as you're combining the two colors at your own will. The formation of purple is the dependent variable as, in this case, it is conditional to the independent variable.

Different Types of Hypotheses‌

Types-of-hypotheses

Types of hypotheses

Some would stand by the notion that there are only two types of hypotheses: a Null hypothesis and an Alternative hypothesis. While that may have some truth to it, it would be better to fully distinguish the most common forms as these terms come up so often, which might leave you out of context.

Apart from Null and Alternative, there are Complex, Simple, Directional, Non-Directional, Statistical, and Associative and casual hypotheses. They don't necessarily have to be exclusive, as one hypothesis can tick many boxes, but knowing the distinctions between them will make it easier for you to construct your own.

1. Null hypothesis

A null hypothesis proposes no relationship between two variables. Denoted by H 0 , it is a negative statement like “Attending physiotherapy sessions does not affect athletes' on-field performance.” Here, the author claims physiotherapy sessions have no effect on on-field performances. Even if there is, it's only a coincidence.

2. Alternative hypothesis

Considered to be the opposite of a null hypothesis, an alternative hypothesis is donated as H1 or Ha. It explicitly states that the dependent variable affects the independent variable. A good  alternative hypothesis example is “Attending physiotherapy sessions improves athletes' on-field performance.” or “Water evaporates at 100 °C. ” The alternative hypothesis further branches into directional and non-directional.

  • Directional hypothesis: A hypothesis that states the result would be either positive or negative is called directional hypothesis. It accompanies H1 with either the ‘<' or ‘>' sign.
  • Non-directional hypothesis: A non-directional hypothesis only claims an effect on the dependent variable. It does not clarify whether the result would be positive or negative. The sign for a non-directional hypothesis is ‘≠.'

3. Simple hypothesis

A simple hypothesis is a statement made to reflect the relation between exactly two variables. One independent and one dependent. Consider the example, “Smoking is a prominent cause of lung cancer." The dependent variable, lung cancer, is dependent on the independent variable, smoking.

4. Complex hypothesis

In contrast to a simple hypothesis, a complex hypothesis implies the relationship between multiple independent and dependent variables. For instance, “Individuals who eat more fruits tend to have higher immunity, lesser cholesterol, and high metabolism.” The independent variable is eating more fruits, while the dependent variables are higher immunity, lesser cholesterol, and high metabolism.

5. Associative and casual hypothesis

Associative and casual hypotheses don't exhibit how many variables there will be. They define the relationship between the variables. In an associative hypothesis, changing any one variable, dependent or independent, affects others. In a casual hypothesis, the independent variable directly affects the dependent.

6. Empirical hypothesis

Also referred to as the working hypothesis, an empirical hypothesis claims a theory's validation via experiments and observation. This way, the statement appears justifiable and different from a wild guess.

Say, the hypothesis is “Women who take iron tablets face a lesser risk of anemia than those who take vitamin B12.” This is an example of an empirical hypothesis where the researcher  the statement after assessing a group of women who take iron tablets and charting the findings.

7. Statistical hypothesis

The point of a statistical hypothesis is to test an already existing hypothesis by studying a population sample. Hypothesis like “44% of the Indian population belong in the age group of 22-27.” leverage evidence to prove or disprove a particular statement.

Characteristics of a Good Hypothesis

Writing a hypothesis is essential as it can make or break your research for you. That includes your chances of getting published in a journal. So when you're designing one, keep an eye out for these pointers:

  • A research hypothesis has to be simple yet clear to look justifiable enough.
  • It has to be testable — your research would be rendered pointless if too far-fetched into reality or limited by technology.
  • It has to be precise about the results —what you are trying to do and achieve through it should come out in your hypothesis.
  • A research hypothesis should be self-explanatory, leaving no doubt in the reader's mind.
  • If you are developing a relational hypothesis, you need to include the variables and establish an appropriate relationship among them.
  • A hypothesis must keep and reflect the scope for further investigations and experiments.

Separating a Hypothesis from a Prediction

Outside of academia, hypothesis and prediction are often used interchangeably. In research writing, this is not only confusing but also incorrect. And although a hypothesis and prediction are guesses at their core, there are many differences between them.

A hypothesis is an educated guess or even a testable prediction validated through research. It aims to analyze the gathered evidence and facts to define a relationship between variables and put forth a logical explanation behind the nature of events.

Predictions are assumptions or expected outcomes made without any backing evidence. They are more fictionally inclined regardless of where they originate from.

For this reason, a hypothesis holds much more weight than a prediction. It sticks to the scientific method rather than pure guesswork. "Planets revolve around the Sun." is an example of a hypothesis as it is previous knowledge and observed trends. Additionally, we can test it through the scientific method.

Whereas "COVID-19 will be eradicated by 2030." is a prediction. Even though it results from past trends, we can't prove or disprove it. So, the only way this gets validated is to wait and watch if COVID-19 cases end by 2030.

Finally, How to Write a Hypothesis

Quick-tips-on-how-to-write-a-hypothesis

Quick tips on writing a hypothesis

1.  Be clear about your research question

A hypothesis should instantly address the research question or the problem statement. To do so, you need to ask a question. Understand the constraints of your undertaken research topic and then formulate a simple and topic-centric problem. Only after that can you develop a hypothesis and further test for evidence.

2. Carry out a recce

Once you have your research's foundation laid out, it would be best to conduct preliminary research. Go through previous theories, academic papers, data, and experiments before you start curating your research hypothesis. It will give you an idea of your hypothesis's viability or originality.

Making use of references from relevant research papers helps draft a good research hypothesis. SciSpace Discover offers a repository of over 270 million research papers to browse through and gain a deeper understanding of related studies on a particular topic. Additionally, you can use SciSpace Copilot , your AI research assistant, for reading any lengthy research paper and getting a more summarized context of it. A hypothesis can be formed after evaluating many such summarized research papers. Copilot also offers explanations for theories and equations, explains paper in simplified version, allows you to highlight any text in the paper or clip math equations and tables and provides a deeper, clear understanding of what is being said. This can improve the hypothesis by helping you identify potential research gaps.

3. Create a 3-dimensional hypothesis

Variables are an essential part of any reasonable hypothesis. So, identify your independent and dependent variable(s) and form a correlation between them. The ideal way to do this is to write the hypothetical assumption in the ‘if-then' form. If you use this form, make sure that you state the predefined relationship between the variables.

In another way, you can choose to present your hypothesis as a comparison between two variables. Here, you must specify the difference you expect to observe in the results.

4. Write the first draft

Now that everything is in place, it's time to write your hypothesis. For starters, create the first draft. In this version, write what you expect to find from your research.

Clearly separate your independent and dependent variables and the link between them. Don't fixate on syntax at this stage. The goal is to ensure your hypothesis addresses the issue.

5. Proof your hypothesis

After preparing the first draft of your hypothesis, you need to inspect it thoroughly. It should tick all the boxes, like being concise, straightforward, relevant, and accurate. Your final hypothesis has to be well-structured as well.

Research projects are an exciting and crucial part of being a scholar. And once you have your research question, you need a great hypothesis to begin conducting research. Thus, knowing how to write a hypothesis is very important.

Now that you have a firmer grasp on what a good hypothesis constitutes, the different kinds there are, and what process to follow, you will find it much easier to write your hypothesis, which ultimately helps your research.

Now it's easier than ever to streamline your research workflow with SciSpace Discover . Its integrated, comprehensive end-to-end platform for research allows scholars to easily discover, write and publish their research and fosters collaboration.

It includes everything you need, including a repository of over 270 million research papers across disciplines, SEO-optimized summaries and public profiles to show your expertise and experience.

If you found these tips on writing a research hypothesis useful, head over to our blog on Statistical Hypothesis Testing to learn about the top researchers, papers, and institutions in this domain.

Frequently Asked Questions (FAQs)

1. what is the definition of hypothesis.

According to the Oxford dictionary, a hypothesis is defined as “An idea or explanation of something that is based on a few known facts, but that has not yet been proved to be true or correct”.

2. What is an example of hypothesis?

The hypothesis is a statement that proposes a relationship between two or more variables. An example: "If we increase the number of new users who join our platform by 25%, then we will see an increase in revenue."

3. What is an example of null hypothesis?

A null hypothesis is a statement that there is no relationship between two variables. The null hypothesis is written as H0. The null hypothesis states that there is no effect. For example, if you're studying whether or not a particular type of exercise increases strength, your null hypothesis will be "there is no difference in strength between people who exercise and people who don't."

4. What are the types of research?

• Fundamental research

• Applied research

• Qualitative research

• Quantitative research

• Mixed research

• Exploratory research

• Longitudinal research

• Cross-sectional research

• Field research

• Laboratory research

• Fixed research

• Flexible research

• Action research

• Policy research

• Classification research

• Comparative research

• Causal research

• Inductive research

• Deductive research

5. How to write a hypothesis?

• Your hypothesis should be able to predict the relationship and outcome.

• Avoid wordiness by keeping it simple and brief.

• Your hypothesis should contain observable and testable outcomes.

• Your hypothesis should be relevant to the research question.

6. What are the 2 types of hypothesis?

• Null hypotheses are used to test the claim that "there is no difference between two groups of data".

• Alternative hypotheses test the claim that "there is a difference between two data groups".

7. Difference between research question and research hypothesis?

A research question is a broad, open-ended question you will try to answer through your research. A hypothesis is a statement based on prior research or theory that you expect to be true due to your study. Example - Research question: What are the factors that influence the adoption of the new technology? Research hypothesis: There is a positive relationship between age, education and income level with the adoption of the new technology.

8. What is plural for hypothesis?

The plural of hypothesis is hypotheses. Here's an example of how it would be used in a statement, "Numerous well-considered hypotheses are presented in this part, and they are supported by tables and figures that are well-illustrated."

9. What is the red queen hypothesis?

The red queen hypothesis in evolutionary biology states that species must constantly evolve to avoid extinction because if they don't, they will be outcompeted by other species that are evolving. Leigh Van Valen first proposed it in 1973; since then, it has been tested and substantiated many times.

10. Who is known as the father of null hypothesis?

The father of the null hypothesis is Sir Ronald Fisher. He published a paper in 1925 that introduced the concept of null hypothesis testing, and he was also the first to use the term itself.

11. When to reject null hypothesis?

You need to find a significant difference between your two populations to reject the null hypothesis. You can determine that by running statistical tests such as an independent sample t-test or a dependent sample t-test. You should reject the null hypothesis if the p-value is less than 0.05.

how to make hypothesis in a case study

You might also like

Consensus GPT vs. SciSpace GPT: Choose the Best GPT for Research

Consensus GPT vs. SciSpace GPT: Choose the Best GPT for Research

Sumalatha G

Literature Review and Theoretical Framework: Understanding the Differences

Nikhil Seethi

Types of Essays in Academic Writing - Quick Guide (2024)

How to Write a Research Hypothesis

  • Research Process
  • Peer Review

Since grade school, we've all been familiar with hypotheses. The hypothesis is an essential step of the scientific method. But what makes an effective research hypothesis, how do you create one, and what types of hypotheses are there? We answer these questions and more.

Updated on April 27, 2022

the word hypothesis being typed on white paper

What is a research hypothesis?

General hypothesis.

Since grade school, we've all been familiar with the term “hypothesis.” A hypothesis is a fact-based guess or prediction that has not been proven. It is an essential step of the scientific method. The hypothesis of a study is a drive for experimentation to either prove the hypothesis or dispute it.

Research Hypothesis

A research hypothesis is more specific than a general hypothesis. It is an educated, expected prediction of the outcome of a study that is testable.

What makes an effective research hypothesis?

A good research hypothesis is a clear statement of the relationship between a dependent variable(s) and independent variable(s) relevant to the study that can be disproven.

Research hypothesis checklist

Once you've written a possible hypothesis, make sure it checks the following boxes:

  • It must be testable: You need a means to prove your hypothesis. If you can't test it, it's not a hypothesis.
  • It must include a dependent and independent variable: At least one independent variable ( cause ) and one dependent variable ( effect ) must be included.
  • The language must be easy to understand: Be as clear and concise as possible. Nothing should be left to interpretation.
  • It must be relevant to your research topic: You probably shouldn't be talking about cats and dogs if your research topic is outer space. Stay relevant to your topic.

How to create an effective research hypothesis

Pose it as a question first.

Start your research hypothesis from a journalistic approach. Ask one of the five W's: Who, what, when, where, or why.

A possible initial question could be: Why is the sky blue?

Do the preliminary research

Once you have a question in mind, read research around your topic. Collect research from academic journals.

If you're looking for information about the sky and why it is blue, research information about the atmosphere, weather, space, the sun, etc.

Write a draft hypothesis

Once you're comfortable with your subject and have preliminary knowledge, create a working hypothesis. Don't stress much over this. Your first hypothesis is not permanent. Look at it as a draft.

Your first draft of a hypothesis could be: Certain molecules in the Earth's atmosphere are responsive to the sky being the color blue.

Make your working draft perfect

Take your working hypothesis and make it perfect. Narrow it down to include only the information listed in the “Research hypothesis checklist” above.

Now that you've written your working hypothesis, narrow it down. Your new hypothesis could be: Light from the sun hitting oxygen molecules in the sky makes the color of the sky appear blue.

Write a null hypothesis

Your null hypothesis should be the opposite of your research hypothesis. It should be able to be disproven by your research.

In this example, your null hypothesis would be: Light from the sun hitting oxygen molecules in the sky does not make the color of the sky appear blue.

Why is it important to have a clear, testable hypothesis?

One of the main reasons a manuscript can be rejected from a journal is because of a weak hypothesis. “Poor hypothesis, study design, methodology, and improper use of statistics are other reasons for rejection of a manuscript,” says Dr. Ish Kumar Dhammi and Dr. Rehan-Ul-Haq in Indian Journal of Orthopaedics.

According to Dr. James M. Provenzale in American Journal of Roentgenology , “The clear declaration of a research question (or hypothesis) in the Introduction is critical for reviewers to understand the intent of the research study. It is best to clearly state the study goal in plain language (for example, “We set out to determine whether condition x produces condition y.”) An insufficient problem statement is one of the more common reasons for manuscript rejection.”

Characteristics that make a hypothesis weak include:

  • Unclear variables
  • Unoriginality
  • Too general
  • Too specific

A weak hypothesis leads to weak research and methods . The goal of a paper is to prove or disprove a hypothesis - or to prove or disprove a null hypothesis. If the hypothesis is not a dependent variable of what is being studied, the paper's methods should come into question.

A strong hypothesis is essential to the scientific method. A hypothesis states an assumed relationship between at least two variables and the experiment then proves or disproves that relationship with statistical significance. Without a proven and reproducible relationship, the paper feeds into the reproducibility crisis. Learn more about writing for reproducibility .

In a study published in The Journal of Obstetrics and Gynecology of India by Dr. Suvarna Satish Khadilkar, she reviewed 400 rejected manuscripts to see why they were rejected. Her studies revealed that poor methodology was a top reason for the submission having a final disposition of rejection.

Aside from publication chances, Dr. Gareth Dyke believes a clear hypothesis helps efficiency.

“Developing a clear and testable hypothesis for your research project means that you will not waste time, energy, and money with your work,” said Dyke. “Refining a hypothesis that is both meaningful, interesting, attainable, and testable is the goal of all effective research.”

Types of research hypotheses

There can be overlap in these types of hypotheses.

Simple hypothesis

A simple hypothesis is a hypothesis at its most basic form. It shows the relationship of one independent and one independent variable.

Example: Drinking soda (independent variable) every day leads to obesity (dependent variable).

Complex hypothesis

A complex hypothesis shows the relationship of two or more independent and dependent variables.

Example: Drinking soda (independent variable) every day leads to obesity (dependent variable) and heart disease (dependent variable).

Directional hypothesis

A directional hypothesis guesses which way the results of an experiment will go. It uses words like increase, decrease, higher, lower, positive, negative, more, or less. It is also frequently used in statistics.

Example: Humans exposed to radiation have a higher risk of cancer than humans not exposed to radiation.

Non-directional hypothesis

A non-directional hypothesis says there will be an effect on the dependent variable, but it does not say which direction.

Associative hypothesis

An associative hypothesis says that when one variable changes, so does the other variable.

Alternative hypothesis

An alternative hypothesis states that the variables have a relationship.

  • The opposite of a null hypothesis

Example: An apple a day keeps the doctor away.

Null hypothesis

A null hypothesis states that there is no relationship between the two variables. It is posed as the opposite of what the alternative hypothesis states.

Researchers use a null hypothesis to work to be able to reject it. A null hypothesis:

  • Can never be proven
  • Can only be rejected
  • Is the opposite of an alternative hypothesis

Example: An apple a day does not keep the doctor away.

Logical hypothesis

A logical hypothesis is a suggested explanation while using limited evidence.

Example: Bats can navigate in the dark better than tigers.

In this hypothesis, the researcher knows that tigers cannot see in the dark, and bats mostly live in darkness.

Empirical hypothesis

An empirical hypothesis is also called a “working hypothesis.” It uses the trial and error method and changes around the independent variables.

  • An apple a day keeps the doctor away.
  • Two apples a day keep the doctor away.
  • Three apples a day keep the doctor away.

In this case, the research changes the hypothesis as the researcher learns more about his/her research.

Statistical hypothesis

A statistical hypothesis is a look of a part of a population or statistical model. This type of hypothesis is especially useful if you are making a statement about a large population. Instead of having to test the entire population of Illinois, you could just use a smaller sample of people who live there.

Example: 70% of people who live in Illinois are iron deficient.

Causal hypothesis

A causal hypothesis states that the independent variable will have an effect on the dependent variable.

Example: Using tobacco products causes cancer.

Final thoughts

Make sure your research is error-free before you send it to your preferred journal . Check our our English Editing services to avoid your chances of desk rejection.

Jonny Rhein, BA

Jonny Rhein, BA

See our "Privacy Policy"

Enago Academy

How to Develop a Good Research Hypothesis

' src=

The story of a research study begins by asking a question. Researchers all around the globe are asking curious questions and formulating research hypothesis. However, whether the research study provides an effective conclusion depends on how well one develops a good research hypothesis. Research hypothesis examples could help researchers get an idea as to how to write a good research hypothesis.

This blog will help you understand what is a research hypothesis, its characteristics and, how to formulate a research hypothesis

Table of Contents

What is Hypothesis?

Hypothesis is an assumption or an idea proposed for the sake of argument so that it can be tested. It is a precise, testable statement of what the researchers predict will be outcome of the study.  Hypothesis usually involves proposing a relationship between two variables: the independent variable (what the researchers change) and the dependent variable (what the research measures).

What is a Research Hypothesis?

Research hypothesis is a statement that introduces a research question and proposes an expected result. It is an integral part of the scientific method that forms the basis of scientific experiments. Therefore, you need to be careful and thorough when building your research hypothesis. A minor flaw in the construction of your hypothesis could have an adverse effect on your experiment. In research, there is a convention that the hypothesis is written in two forms, the null hypothesis, and the alternative hypothesis (called the experimental hypothesis when the method of investigation is an experiment).

Characteristics of a Good Research Hypothesis

As the hypothesis is specific, there is a testable prediction about what you expect to happen in a study. You may consider drawing hypothesis from previously published research based on the theory.

A good research hypothesis involves more effort than just a guess. In particular, your hypothesis may begin with a question that could be further explored through background research.

To help you formulate a promising research hypothesis, you should ask yourself the following questions:

  • Is the language clear and focused?
  • What is the relationship between your hypothesis and your research topic?
  • Is your hypothesis testable? If yes, then how?
  • What are the possible explanations that you might want to explore?
  • Does your hypothesis include both an independent and dependent variable?
  • Can you manipulate your variables without hampering the ethical standards?
  • Does your research predict the relationship and outcome?
  • Is your research simple and concise (avoids wordiness)?
  • Is it clear with no ambiguity or assumptions about the readers’ knowledge
  • Is your research observable and testable results?
  • Is it relevant and specific to the research question or problem?

research hypothesis example

The questions listed above can be used as a checklist to make sure your hypothesis is based on a solid foundation. Furthermore, it can help you identify weaknesses in your hypothesis and revise it if necessary.

Source: Educational Hub

How to formulate a research hypothesis.

A testable hypothesis is not a simple statement. It is rather an intricate statement that needs to offer a clear introduction to a scientific experiment, its intentions, and the possible outcomes. However, there are some important things to consider when building a compelling hypothesis.

1. State the problem that you are trying to solve.

Make sure that the hypothesis clearly defines the topic and the focus of the experiment.

2. Try to write the hypothesis as an if-then statement.

Follow this template: If a specific action is taken, then a certain outcome is expected.

3. Define the variables

Independent variables are the ones that are manipulated, controlled, or changed. Independent variables are isolated from other factors of the study.

Dependent variables , as the name suggests are dependent on other factors of the study. They are influenced by the change in independent variable.

4. Scrutinize the hypothesis

Evaluate assumptions, predictions, and evidence rigorously to refine your understanding.

Types of Research Hypothesis

The types of research hypothesis are stated below:

1. Simple Hypothesis

It predicts the relationship between a single dependent variable and a single independent variable.

2. Complex Hypothesis

It predicts the relationship between two or more independent and dependent variables.

3. Directional Hypothesis

It specifies the expected direction to be followed to determine the relationship between variables and is derived from theory. Furthermore, it implies the researcher’s intellectual commitment to a particular outcome.

4. Non-directional Hypothesis

It does not predict the exact direction or nature of the relationship between the two variables. The non-directional hypothesis is used when there is no theory involved or when findings contradict previous research.

5. Associative and Causal Hypothesis

The associative hypothesis defines interdependency between variables. A change in one variable results in the change of the other variable. On the other hand, the causal hypothesis proposes an effect on the dependent due to manipulation of the independent variable.

6. Null Hypothesis

Null hypothesis states a negative statement to support the researcher’s findings that there is no relationship between two variables. There will be no changes in the dependent variable due the manipulation of the independent variable. Furthermore, it states results are due to chance and are not significant in terms of supporting the idea being investigated.

7. Alternative Hypothesis

It states that there is a relationship between the two variables of the study and that the results are significant to the research topic. An experimental hypothesis predicts what changes will take place in the dependent variable when the independent variable is manipulated. Also, it states that the results are not due to chance and that they are significant in terms of supporting the theory being investigated.

Research Hypothesis Examples of Independent and Dependent Variables

Research Hypothesis Example 1 The greater number of coal plants in a region (independent variable) increases water pollution (dependent variable). If you change the independent variable (building more coal factories), it will change the dependent variable (amount of water pollution).
Research Hypothesis Example 2 What is the effect of diet or regular soda (independent variable) on blood sugar levels (dependent variable)? If you change the independent variable (the type of soda you consume), it will change the dependent variable (blood sugar levels)

You should not ignore the importance of the above steps. The validity of your experiment and its results rely on a robust testable hypothesis. Developing a strong testable hypothesis has few advantages, it compels us to think intensely and specifically about the outcomes of a study. Consequently, it enables us to understand the implication of the question and the different variables involved in the study. Furthermore, it helps us to make precise predictions based on prior research. Hence, forming a hypothesis would be of great value to the research. Here are some good examples of testable hypotheses.

More importantly, you need to build a robust testable research hypothesis for your scientific experiments. A testable hypothesis is a hypothesis that can be proved or disproved as a result of experimentation.

Importance of a Testable Hypothesis

To devise and perform an experiment using scientific method, you need to make sure that your hypothesis is testable. To be considered testable, some essential criteria must be met:

  • There must be a possibility to prove that the hypothesis is true.
  • There must be a possibility to prove that the hypothesis is false.
  • The results of the hypothesis must be reproducible.

Without these criteria, the hypothesis and the results will be vague. As a result, the experiment will not prove or disprove anything significant.

What are your experiences with building hypotheses for scientific experiments? What challenges did you face? How did you overcome these challenges? Please share your thoughts with us in the comments section.

Frequently Asked Questions

The steps to write a research hypothesis are: 1. Stating the problem: Ensure that the hypothesis defines the research problem 2. Writing a hypothesis as an 'if-then' statement: Include the action and the expected outcome of your study by following a ‘if-then’ structure. 3. Defining the variables: Define the variables as Dependent or Independent based on their dependency to other factors. 4. Scrutinizing the hypothesis: Identify the type of your hypothesis

Hypothesis testing is a statistical tool which is used to make inferences about a population data to draw conclusions for a particular hypothesis.

Hypothesis in statistics is a formal statement about the nature of a population within a structured framework of a statistical model. It is used to test an existing hypothesis by studying a population.

Research hypothesis is a statement that introduces a research question and proposes an expected result. It forms the basis of scientific experiments.

The different types of hypothesis in research are: • Null hypothesis: Null hypothesis is a negative statement to support the researcher’s findings that there is no relationship between two variables. • Alternate hypothesis: Alternate hypothesis predicts the relationship between the two variables of the study. • Directional hypothesis: Directional hypothesis specifies the expected direction to be followed to determine the relationship between variables. • Non-directional hypothesis: Non-directional hypothesis does not predict the exact direction or nature of the relationship between the two variables. • Simple hypothesis: Simple hypothesis predicts the relationship between a single dependent variable and a single independent variable. • Complex hypothesis: Complex hypothesis predicts the relationship between two or more independent and dependent variables. • Associative and casual hypothesis: Associative and casual hypothesis predicts the relationship between two or more independent and dependent variables. • Empirical hypothesis: Empirical hypothesis can be tested via experiments and observation. • Statistical hypothesis: A statistical hypothesis utilizes statistical models to draw conclusions about broader populations.

' src=

Wow! You really simplified your explanation that even dummies would find it easy to comprehend. Thank you so much.

Thanks a lot for your valuable guidance.

I enjoy reading the post. Hypotheses are actually an intrinsic part in a study. It bridges the research question and the methodology of the study.

Useful piece!

This is awesome.Wow.

It very interesting to read the topic, can you guide me any specific example of hypothesis process establish throw the Demand and supply of the specific product in market

Nicely explained

It is really a useful for me Kindly give some examples of hypothesis

It was a well explained content ,can you please give me an example with the null and alternative hypothesis illustrated

clear and concise. thanks.

So Good so Amazing

Good to learn

Thanks a lot for explaining to my level of understanding

Explained well and in simple terms. Quick read! Thank you

It awesome. It has really positioned me in my research project

Rate this article Cancel Reply

Your email address will not be published.

how to make hypothesis in a case study

Enago Academy's Most Popular Articles

Content Analysis vs Thematic Analysis: What's the difference?

  • Reporting Research

Choosing the Right Analytical Approach: Thematic analysis vs. content analysis for data interpretation

In research, choosing the right approach to understand data is crucial for deriving meaningful insights.…

Cross-sectional and Longitudinal Study Design

Comparing Cross Sectional and Longitudinal Studies: 5 steps for choosing the right approach

The process of choosing the right research design can put ourselves at the crossroads of…

how to make hypothesis in a case study

  • Industry News

COPE Forum Discussion Highlights Challenges and Urges Clarity in Institutional Authorship Standards

The COPE forum discussion held in December 2023 initiated with a fundamental question — is…

Networking in Academic Conferences

  • Career Corner

Unlocking the Power of Networking in Academic Conferences

Embarking on your first academic conference experience? Fear not, we got you covered! Academic conferences…

Research recommendation

Research Recommendations – Guiding policy-makers for evidence-based decision making

Research recommendations play a crucial role in guiding scholars and researchers toward fruitful avenues of…

Choosing the Right Analytical Approach: Thematic analysis vs. content analysis for…

Comparing Cross Sectional and Longitudinal Studies: 5 steps for choosing the right…

How to Design Effective Research Questionnaires for Robust Findings

how to make hypothesis in a case study

Sign-up to read more

Subscribe for free to get unrestricted access to all our resources on research writing and academic publishing including:

  • 2000+ blog articles
  • 50+ Webinars
  • 10+ Expert podcasts
  • 50+ Infographics
  • 10+ Checklists
  • Research Guides

We hate spam too. We promise to protect your privacy and never spam you.

  • Publishing Research
  • AI in Academia
  • Promoting Research
  • Diversity and Inclusion
  • Infographics
  • Expert Video Library
  • Other Resources
  • Enago Learn
  • Upcoming & On-Demand Webinars
  • Peer-Review Week 2023
  • Open Access Week 2023
  • Conference Videos
  • Enago Report
  • Journal Finder
  • Enago Plagiarism & AI Grammar Check
  • Editing Services
  • Publication Support Services
  • Research Impact
  • Translation Services
  • Publication solutions
  • AI-Based Solutions
  • Thought Leadership
  • Call for Articles
  • Call for Speakers
  • Author Training
  • Edit Profile

I am looking for Editing/ Proofreading services for my manuscript Tentative date of next journal submission:

how to make hypothesis in a case study

In your opinion, what is the most effective way to improve integrity in the peer review process?

  • Research Process
  • Manuscript Preparation
  • Manuscript Review
  • Publication Process
  • Publication Recognition
  • Language Editing Services
  • Translation Services

Elsevier QRcode Wechat

What is and How to Write a Good Hypothesis in Research?

  • 4 minute read
  • 351.1K views

Table of Contents

One of the most important aspects of conducting research is constructing a strong hypothesis. But what makes a hypothesis in research effective? In this article, we’ll look at the difference between a hypothesis and a research question, as well as the elements of a good hypothesis in research. We’ll also include some examples of effective hypotheses, and what pitfalls to avoid.

What is a Hypothesis in Research?

Simply put, a hypothesis is a research question that also includes the predicted or expected result of the research. Without a hypothesis, there can be no basis for a scientific or research experiment. As such, it is critical that you carefully construct your hypothesis by being deliberate and thorough, even before you set pen to paper. Unless your hypothesis is clearly and carefully constructed, any flaw can have an adverse, and even grave, effect on the quality of your experiment and its subsequent results.

Research Question vs Hypothesis

It’s easy to confuse research questions with hypotheses, and vice versa. While they’re both critical to the Scientific Method, they have very specific differences. Primarily, a research question, just like a hypothesis, is focused and concise. But a hypothesis includes a prediction based on the proposed research, and is designed to forecast the relationship of and between two (or more) variables. Research questions are open-ended, and invite debate and discussion, while hypotheses are closed, e.g. “The relationship between A and B will be C.”

A hypothesis is generally used if your research topic is fairly well established, and you are relatively certain about the relationship between the variables that will be presented in your research. Since a hypothesis is ideally suited for experimental studies, it will, by its very existence, affect the design of your experiment. The research question is typically used for new topics that have not yet been researched extensively. Here, the relationship between different variables is less known. There is no prediction made, but there may be variables explored. The research question can be casual in nature, simply trying to understand if a relationship even exists, descriptive or comparative.

How to Write Hypothesis in Research

Writing an effective hypothesis starts before you even begin to type. Like any task, preparation is key, so you start first by conducting research yourself, and reading all you can about the topic that you plan to research. From there, you’ll gain the knowledge you need to understand where your focus within the topic will lie.

Remember that a hypothesis is a prediction of the relationship that exists between two or more variables. Your job is to write a hypothesis, and design the research, to “prove” whether or not your prediction is correct. A common pitfall is to use judgments that are subjective and inappropriate for the construction of a hypothesis. It’s important to keep the focus and language of your hypothesis objective.

An effective hypothesis in research is clearly and concisely written, and any terms or definitions clarified and defined. Specific language must also be used to avoid any generalities or assumptions.

Use the following points as a checklist to evaluate the effectiveness of your research hypothesis:

  • Predicts the relationship and outcome
  • Simple and concise – avoid wordiness
  • Clear with no ambiguity or assumptions about the readers’ knowledge
  • Observable and testable results
  • Relevant and specific to the research question or problem

Research Hypothesis Example

Perhaps the best way to evaluate whether or not your hypothesis is effective is to compare it to those of your colleagues in the field. There is no need to reinvent the wheel when it comes to writing a powerful research hypothesis. As you’re reading and preparing your hypothesis, you’ll also read other hypotheses. These can help guide you on what works, and what doesn’t, when it comes to writing a strong research hypothesis.

Here are a few generic examples to get you started.

Eating an apple each day, after the age of 60, will result in a reduction of frequency of physician visits.

Budget airlines are more likely to receive more customer complaints. A budget airline is defined as an airline that offers lower fares and fewer amenities than a traditional full-service airline. (Note that the term “budget airline” is included in the hypothesis.

Workplaces that offer flexible working hours report higher levels of employee job satisfaction than workplaces with fixed hours.

Each of the above examples are specific, observable and measurable, and the statement of prediction can be verified or shown to be false by utilizing standard experimental practices. It should be noted, however, that often your hypothesis will change as your research progresses.

Language Editing Plus

Elsevier’s Language Editing Plus service can help ensure that your research hypothesis is well-designed, and articulates your research and conclusions. Our most comprehensive editing package, you can count on a thorough language review by native-English speakers who are PhDs or PhD candidates. We’ll check for effective logic and flow of your manuscript, as well as document formatting for your chosen journal, reference checks, and much more.

Systematic Literature Review or Literature Review

Systematic Literature Review or Literature Review?

Problem Statement

How to Write an Effective Problem Statement for Your Research Paper

You may also like.

Academic paper format

Submission 101: What format should be used for academic papers?

Being Mindful of Tone and Structure in Artilces

Page-Turner Articles are More Than Just Good Arguments: Be Mindful of Tone and Structure!

How to Ensure Inclusivity in Your Scientific Writing

A Must-see for Researchers! How to Ensure Inclusivity in Your Scientific Writing

impactful introduction section

Make Hook, Line, and Sinker: The Art of Crafting Engaging Introductions

Limitations of a Research

Can Describing Study Limitations Improve the Quality of Your Paper?

Guide to Crafting Impactful Sentences

A Guide to Crafting Shorter, Impactful Sentences in Academic Writing

Write an Excellent Discussion in Your Manuscript

6 Steps to Write an Excellent Discussion in Your Manuscript

How to Write Clear Civil Engineering Papers

How to Write Clear and Crisp Civil Engineering Papers? Here are 5 Key Tips to Consider

Input your search keywords and press Enter.

  • Translators
  • Graphic Designers

Solve

Please enter the email address you used for your account. Your sign in information will be sent to your email address after it has been verified.

How To Write a Strong Research Hypothesis

ContentQueen

Are you looking to take your research project to the next level? Have you heard of the power of a hypothesis but need to figure out how to formulate one that will unlock potential discoveries? We can help!

So get ready; it's time to dive into unlocking the power of research! This blog post will explore what makes a well-crafted and powerful hypothesis - from identifying a research question to developing supporting evidence.

By learning how to craft a compelling hypothesis, you'll have more tremendous success in every step of your research project.

What are hypotheses, and why are they important?

A hypothesis is an educated guess or a proposition based on limited evidence as a starting point for further investigation. It provides a framework for research and allows researchers to refine their ideas, collect data, and draw conclusions. Hypotheses are essential to the process because they will enable us to organize our thoughts and test theories properly.

Hypotheses are used in many fields , from medicine to psychology to economics. In each area, developing hypotheses based on observations enable researchers to make predictions about their data and guide them toward finding meaningful results.

For example, in medicine, hypotheses can be used to predict which treatments will be most effective for particular conditions or which drugs may have adverse effects when taken together. This allows doctors to make better decisions when caring for patients.

In psychology, hypotheses are often used in experiments to determine whether certain variables influence behavior or mental processes. By testing different combinations of variables, psychologists can identify patterns and understand why people behave the way they do.

In economics, hypotheses provide economists with a framework for analyzing the relationship between economic variables such as wages and consumer spending habits. By understanding these relationships, economists can better understand how economic forces affect the economy.

Overall, hypotheses play an essential role in helping scientists develop new ideas and draw meaningful conclusions from the collected data. Without taking the step to create hypotheses, it would be difficult for researchers to make sense of the vast amounts of information available today and use it effectively in their investigations.

How to determine an effective research question to form your hypothesis

When conducting research, having a compelling research question is critical . Properly formulating this question will allow the researcher to develop their hypothesis. A research question provides a clear and focused goal for your research study and also gives direction on how to get there. A compelling research question should be specific, answerable in the context of your field of study, significant, novel (not already answered by previous studies), and timely – that is, relevant to current events or trends.

Before determining the best research question, you must first understand your topic. Think about the area of knowledge that interests you most and narrow it down to a single theme or concept within this topic. Focus on what interests you most within this theme, and make sure there is room for further exploration and analysis. Once you have chosen a specific topic and narrowed down your focus, you can begin formulating questions related to your project.

To ensure relevance and impact to your field of study, choose questions that address essential issues in the literature or suggest solutions to existing problems. Avoid overly broad topics with unclear objectives; instead, opt for focused questions to enable targeted data collection and analysis with concrete results.

Additionally, consider time frames when formulating questions. If the issue has been discussed extensively in the past but has not been revisited recently, then it's likely not worthy of a new investigation.

Once you have developed some potential questions related to your topic, review them carefully and decide which question best captures the essence of what you want to learn through researching this topic.

Ask yourself:

  • Is this question answerable?
  • Does it fit within my field of study?
  • Is it significant enough?
  • Would its findings be novel?

If so, then congratulations! You have identified a compelling research question.

Tips for crafting a well-crafted hypothesis

Once you have formulated the official research question, you may develop the formal hypothesis. When composing a hypothesis, it's essential to think carefully about the question you are trying to answer.

A solid hypothesis should be testable, meaning that it can be verified or disproved through research. It should also be specific and focused on one issue at a time. Here are some tips for crafting a well-crafted hypothesis:

  • Consider the goal of your research: Think about what it is that you want to learn or determine from your experiment and make sure that your hypothesis reflects this goal.
  • Create an educated guess as to why something is happening: Your hypothesis should explain why something is occurring based on what evidence you already have and direct further investigation into the matter. For example, if you hypothesize that increased carbon dioxide levels in the atmosphere will lead to global warming, your research should focus on examining this relationship further.
  • Define any variables or parameters involved in the experiment: This includes things like temperature or chemical composition that could potentially affect the outcome of any experiments done in pursuit of testing your hypothesis.
  • Use clear and precise language: Make sure your hypothesis is written with clear and precise language so that anyone reading it can understand exactly what you are attempting to investigate or explain. Avoid complex words and keep sentences short whenever possible.

Following these simple tips will help ensure that your hypothesis is well-crafted and ready for testing!

Examples of evidence that can support your hypothesis

When it comes to developing a hypothesis, supporting evidence is essential for making sure it holds up. This evidence helps strengthen the argument that is being driven by providing facts and logical reasoning that support the hypothesis.

Examples of evidence that can be used to back up a hypothesis include using data from experiments, case studies, and other research projects. Data from experiments can provide insight into how certain variables interact to form a particular outcome.

Case studies may offer greater depth in understanding a specific phenomenon's cause and effect; research projects may yield results that confirm or refute existing theories on a subject.

In addition to these traditional forms of evidence, personal experiences or observations can also help to support a hypothesis. For example, if someone's daily commute has been consistently faster since they changed routes, they could use their personal experience to argue that making this change resulted in shorter commutes.

Similarly, suppose someone has witnessed how two variables consistently coincide (i.e., when one goes up, another goes down). In that case, this could be used to support the notion that there is some correlation between these two aspects.

Overall, evidence to support your hypothesis is crucial for ensuring its validity and credibility. While conducting experiments or researching may seem like time-consuming processes, having solid supporting evidence will make it much easier to defend your ideas convincingly when challenged.

Therefore, it is crucial to take the time necessary to gather credible sources of information to provide the most substantial possible backing for your hypotheses.

Understanding the potential of hypotheses and how they can help your research project progress

The power of research lies in the ability to develop and test hypotheses. A hypothesis is a statement or an idea that can be tested to determine its validity.

Essentially, it is a form of educated guesswork that helps researchers form conclusions about their data. By developing a hypothesis for a research project, you are effectively setting up the framework for further exploration.

When developing a hypothesis, you must consider both the expected outcomes and possible alternative explanations. This will help you focus on testing the possible results without getting sidetracked by irrelevant information. Once you have established a concrete hypothesis, it can then be used as a basis for further research and experimentation.

The process of testing hypotheses is an integral part of the scientific method and can help researchers build confidence in their findings and conclusions. Through careful observation and experimentation, researchers can compare their results against what they initially hypothesized, allowing them to draw more accurate conclusions about their data. As such, hypotheses play an essential role in helping researchers connect the dots between different pieces of evidence and form meaningful conclusions.

Overall, understanding how hypotheses can be used in research projects can be immensely beneficial in helping progress towards reaching meaningful insights from their data. By setting up expectations ahead of time and then testing them against real-world conditions, researchers can gain valuable insights that could potentially change the way we understand our world – now that's something worth exploring!

Final thoughts

A hypothesis is a proposed explanation for an observable phenomenon. It's important to note that hypotheses are not the same thing as theories–a theory is a much broader and well-established frame of reference that explains multiple phenomena.

Generally, scientists form a research question and then narrow it down to a testable hypothesis. After making observations and conducting experiments to gather data, researchers can use evidence to support or reject the hypothesis.

By following these steps to formulate a solid hypothesis, you will be on your way to developing a successful research project. Happy researching!

Header image by Bnenin .

Research Paper Guide

How To Write A Hypothesis

Last updated on: Feb 8, 2023

How to Write a Hypothesis - A Step-by-Step Guide

By: Nathan D.

Reviewed By: Rylee W.

Published on: Jul 16, 2019

How to Write a Hypothesis

A hypothesis is generally a statement that a researcher has to test through scientific methods subjectively. Unlike a thesis statement, a hypothesis does not require a researcher to prove it right in any circumstance.

It is a statement that is developed prior to research, experiment, or data collection. In simple words, it is a proposed explanation for any idea, study, or phenomenon.

For  research paper writing , thesis, case studies, or dissertation, you will have to write a hypothesis first. Continue reading the article to learn how to write a good hypothesis effectively.

How to Write a Hypothesis

On this Page

What is a Hypothesis?

A hypothesis is a proposed or supposition explanation that a researcher forms based on limited reference about a specific phenomenon. This statement is further investigated to analyze its validity and significance.

A hypothesis statement is an initial point from where an investigation begins. Moreover, it translates the major research question into a prediction.

In professional terms, a hypothesis is an idea whose merit requires evaluation and interpretation. For this purpose, the researcher needs to define the specifics of the hypothesis in operational terms.

It requires a researcher to study in detail whether to approve it or disapprove of it. In this process, the hypothesis either becomes a part of the theory, or a theory itself.

Functions of Hypothesis

Learning the correct writing procedure is not enough if you are not aware of the basic functions that your hypothesis performs. To make your hypothesis stand out, understand the below-given functions

  • First and foremost, a hypothesis contributes to making your research, observation, and experiment possible
  • This helps in starting the basic investigation about the subject
  • It verifies the observation
  • It provides the right direction to your inquiries

Components of a Hypothesis

Like other sentences and statements, a hypothesis has major components that play a significant role in making it impactful. It is essential to learn about these parts when you are researching academics.

The following are the different components of the hypothesis:

Components of Hypothesis

How to Write a Hypothesis?

Just like every other formal or academic task, writing a hypothesis includes a process. Although there are no set of rules to follow while developing a hypothesis.

However, it is recommended that you follow some steps to ensure a quality statement. These steps will make it easier for you to formulate a strong hypothesis to provide a great direction for your research.

Following is a step-by-step- procedure to write a hypothesis.

1. Develop a Question

When writing a hypothesis, the first thing is to develop a research question that you want to answer in your research. The question that you will formulate should be specific, focused, and researchable within the constraints of your assignment.

2. Conduct a Basic Research

The initial answer to your research question will be spontaneous and based on pre-existing knowledge about the subject. Search for theories and information to form a basic assumption that you will investigate further.

At this stage of creating a hypothesis, a researcher can develop a conceptual framework to identify the variables and their relationship.

3. Develop a Rough Hypothesis

Formulate a rough statement on the available knowledge to provide an idea about what to expect from your research. Brainstorm the answer for this raw question and present it into a clear and concise sentence.

4. Refine the Statement Made

Now that you have a rough statement in hand, it is time to refine and make it a testable hypothesis. There are several ways to shape your hypothesis, but you can arrange your statement keeping in view the parts.

Make sure that your refined statement must contain the following things:

  • Relevant variables
  • The group being studied
  • The predicted result of the research or experiment

5. Phrasing the Hypothesis

The hypothesis can be phrased in three ways. Depending on the requirement of the research and the field type, select a phrasing pattern.

  • To phrase the hypothesis, identify the variables, use a simple prediction pattern of “if...then” form. Present the independent variable first and then the dependent variable in your hypothesis statement.
  • When developing a hypothesis for academic research, you can choose correlation and effect phrasing. In this way, you directly present the predicted relationship between the two variables.
  • If the statement compares the two groups, the paraphrasing of the hypothesis can be done by stating the expected difference.

6. Write a Null Hypothesis

If your research is based on statistical testing of the hypothesis, you will have to present a null hypothesis. The null hypothesis states that there is no relationship or association between the two variables.

How to Write a Null Hypothesis?

There are two types of hypotheses, the null hypothesis, and the alternative hypothesis. A null hypothesis states that there is no difference between certain characteristics of a population while an alternative hypothesis states otherwise.

So, how does a null hypothesis work? Below is a four-step process to come up with a null hypothesis.

  • The analyst will come up with two hypotheses and test them.
  • Next, he formulates an analysis plan and decides the ways through which those hypotheses would be analyzed.
  • The sample data and hypotheses are evaluated and analyzed.
  • The final step is to analyze the acquired results and decide whether the null hypothesis is correct or not.

Other than null analysis, alternative hypotheses are also used. An alternative hypothesis is opposite to the null hypothesis and they are independent of each other.

What kind of Sources should I Add to my Hypothesis

It is important to look for credible and relevant sources of information while writing a hypothesis for your  research proposal . A researcher has to consult these sources to check the reliability and validity of your primary idea.

In case you are wondering what sources will work best for your hypothesis, check out the following:

  • Find relevant phenomena that have some resemblance to yours
  • Evaluate the studies and observations from the past
  • Analyze what the current time has to say about the idea
  • Search the competitor’s ideas and opinions
  • Analyze scientific theories
  • Dig deeper into the patterns that influence people and their thinking

Types of Hypothesis

Depending on the field and  research methods  to collect data, hypotheses can have different types. When writing a research paper, it is essential to know all the types well to form a strong and relevant hypothesis.

Following are the six main types of hypothesis:

  • Simple Hypothesis  - A simple hypothesis is a statement that shows a relationship between two variables; an independent and dependent variable. For example, doing exercise can help you lose weight faster. Here doing exercise is an independent variable while losing weight is dependent.
  • Complex Hypothesis  - A complex hypothesis presents a relationship between two or more dependent and independent variables. For example, exercising and eating lots of vegetables can reduce weight and other fatal diseases such as heart disease.
  • Directional Hypothesis  - A directional hypothesis is a statement that presents the researcher’s commitment to a particular result. Moreover, the relationship between different variables also predicts its nature. For example, people who are sleep-deprived for 24 hours will have more cold symptoms than those who oversleep.
  • Non-Directional Hypothesis  - A non-directional hypothesis is used when there is no theory involved. It shows an existing relationship between two variables without highlighting the exact relationship’s nature.
  • Null Hypothesis  - A null hypothesis states that there is no relationship between the two variables. Similarly, it also contended that there is not enough information to state the scientific hypothesis. The ‘H0’ symbol denotes this hypothesis.
  • Alternative Hypothesis  - It is a statement that the research forms when he disapproves the null hypothesis. As the name suggests, it is an alternative statement to your null hypothesis highlighting the relationship between the variables. It is denoted by ‘H1’.
  • Associative and Causal Hypothesis  - In an associative hypothesis, a change in one variable results in a difference in the other variable. On the other hand, the causal hypothesis presents a cause and effect interaction between the two variables.

Characteristics of a Good Hypothesis

Professional writers believe that a hypothesis has certain features that help it become stronger and more effective. These characteristics include:

  • To make the hypothesis credible, it should be clear and precise
  • If you have chosen a hypothesis type that will state the relationship between the two variables, it should be obvious
  • A strong hypothesis is specific and has clear scope for conducting more studies and tests
  • The explanation of the hypothesis must be simple. Keep in mind that the simplicity of the hypothesis has nothing to do with its significance

Only a strong hypothesis will motivate the readers to read the entire paper. So make sure that you carefully develop a hypothesis for your research.

Hypothesis Examples

If you are writing a paper for the first time, it is suggested by professionals to go through a few examples. It will help you understand the pattern in which you should be working.

Below-given are examples of how hypotheses are developed for different research experiments.

HOW TO WRITE A HYPOTHESIS FOR RESEARCH PAPER

HOW TO WRITE A HYPOTHESIS FOR SCIENTIFIC RESEARCH

Going through these examples will help you understand better which course of action should be chosen for your research. If it is still difficult for you to look for sources and write a compelling hypothesis, get help from professionals.

5StarEssays.com is a professional ‘ write my essay for me? ’ service that provides different academic writing services. Whether you are looking for an expert to write a compelling essay or any form of paper, we have your back.

Our experts draft all your assignments carefully, ensuring that each part is well-written and structured. Get your assignment today by simply placing your order at the most affordable price.

Frequently Asked Questions

How do you turn a question into a hypothesis.

You can change and transform a question into a hypothesis by changing it into a statement.

Is a hypothesis a prediction?

No, a hypothesis is not a prediction but rather a possibility. The researcher ‘hopes’ to obtain a certain kind of result through the experimentation. This possibility or expected results are the hypothesis.

Can a hypothesis be a question?

No, a hypothesis is and should be a statement and not a question.

Do all research papers have a hypothesis?

No, some research papers are based on exploratory research, which is used to develop the hypothesis. So, such a research paper does not need a hypothesis.

Nathan D.

Masters Essay, College Admission Essay

Nathan completed his Ph.D. in journalism and has been writing articles for well-respected publications for many years now. His work is carefully researched and insightful, showing a true passion for the written word. Nathan's clients appreciate his expertise, deep understanding of the process, and ability to communicate difficult concepts clearly.

Was This Blog Helpful?

Keep reading.

  • How to Write a Research Paper - Writing Guide & Examples

How to Write a Hypothesis

  • 20+ Thesis Statement Examples for Research Papers

How to Write a Hypothesis

  • Learn How to Write an Abstract - Steps & Examples

How to Write a Hypothesis

  • How to Write a Literature Review: Steps and Outline

How to Write a Hypothesis

  • How to Start a Research Paper - 9 Simple Steps

How to Write a Hypothesis

  • Psychology Research Topics - 170+ Ideas for Your Paper

How to Write a Hypothesis

  • Writing a Research Proposal - Outline, Format, and Examples

How to Write a Hypothesis

  • Good Research Paper Topics & Ideas for Students

How to Write a Hypothesis

  • Good History Research Paper Topics For Your Help

How to Write a Hypothesis

  • How to Cite a Research Paper with the Help of Examples

How to Write a Hypothesis

  • How to Write a Research Methodology in 10 Simple Steps

How to Write a Hypothesis

  • Research Paper Outline - Basic Format & Sample

How to Write a Hypothesis

  • Research Paper Example: Samples to Write a Research Paper

How to Write a Hypothesis

  • Great Sociology Research Topics & Ideas (2024)

How to Write a Hypothesis

People Also Read

  • how to title an essay
  • types of qualitative research
  • college application essay
  • thematic statement
  • argumentative essay examples

Burdened With Assignments?

Bottom Slider

Advertisement

  • Homework Services: Essay Topics Generator

© 2024 - All rights reserved

Facebook Social Icon

  • Bipolar Disorder
  • Therapy Center
  • When To See a Therapist
  • Types of Therapy
  • Best Online Therapy
  • Best Couples Therapy
  • Managing Stress
  • Sleep and Dreaming
  • Understanding Emotions
  • Self-Improvement
  • Healthy Relationships
  • Student Resources
  • Personality Types
  • Sweepstakes
  • Guided Meditations
  • Verywell Mind Insights
  • 2024 Verywell Mind 25
  • Mental Health in the Classroom
  • Editorial Process
  • Meet Our Review Board
  • Crisis Support

How to Write a Great Hypothesis

Hypothesis Definition, Format, Examples, and Tips

Verywell / Alex Dos Diaz

  • The Scientific Method

Hypothesis Format

Falsifiability of a hypothesis.

  • Operationalization

Hypothesis Types

Hypotheses examples.

  • Collecting Data

A hypothesis is a tentative statement about the relationship between two or more variables. It is a specific, testable prediction about what you expect to happen in a study. It is a preliminary answer to your question that helps guide the research process.

Consider a study designed to examine the relationship between sleep deprivation and test performance. The hypothesis might be: "This study is designed to assess the hypothesis that sleep-deprived people will perform worse on a test than individuals who are not sleep-deprived."

At a Glance

A hypothesis is crucial to scientific research because it offers a clear direction for what the researchers are looking to find. This allows them to design experiments to test their predictions and add to our scientific knowledge about the world. This article explores how a hypothesis is used in psychology research, how to write a good hypothesis, and the different types of hypotheses you might use.

The Hypothesis in the Scientific Method

In the scientific method , whether it involves research in psychology, biology, or some other area, a hypothesis represents what the researchers think will happen in an experiment. The scientific method involves the following steps:

  • Forming a question
  • Performing background research
  • Creating a hypothesis
  • Designing an experiment
  • Collecting data
  • Analyzing the results
  • Drawing conclusions
  • Communicating the results

The hypothesis is a prediction, but it involves more than a guess. Most of the time, the hypothesis begins with a question which is then explored through background research. At this point, researchers then begin to develop a testable hypothesis.

Unless you are creating an exploratory study, your hypothesis should always explain what you  expect  to happen.

In a study exploring the effects of a particular drug, the hypothesis might be that researchers expect the drug to have some type of effect on the symptoms of a specific illness. In psychology, the hypothesis might focus on how a certain aspect of the environment might influence a particular behavior.

Remember, a hypothesis does not have to be correct. While the hypothesis predicts what the researchers expect to see, the goal of the research is to determine whether this guess is right or wrong. When conducting an experiment, researchers might explore numerous factors to determine which ones might contribute to the ultimate outcome.

In many cases, researchers may find that the results of an experiment  do not  support the original hypothesis. When writing up these results, the researchers might suggest other options that should be explored in future studies.

In many cases, researchers might draw a hypothesis from a specific theory or build on previous research. For example, prior research has shown that stress can impact the immune system. So a researcher might hypothesize: "People with high-stress levels will be more likely to contract a common cold after being exposed to the virus than people who have low-stress levels."

In other instances, researchers might look at commonly held beliefs or folk wisdom. "Birds of a feather flock together" is one example of folk adage that a psychologist might try to investigate. The researcher might pose a specific hypothesis that "People tend to select romantic partners who are similar to them in interests and educational level."

Elements of a Good Hypothesis

So how do you write a good hypothesis? When trying to come up with a hypothesis for your research or experiments, ask yourself the following questions:

  • Is your hypothesis based on your research on a topic?
  • Can your hypothesis be tested?
  • Does your hypothesis include independent and dependent variables?

Before you come up with a specific hypothesis, spend some time doing background research. Once you have completed a literature review, start thinking about potential questions you still have. Pay attention to the discussion section in the  journal articles you read . Many authors will suggest questions that still need to be explored.

How to Formulate a Good Hypothesis

To form a hypothesis, you should take these steps:

  • Collect as many observations about a topic or problem as you can.
  • Evaluate these observations and look for possible causes of the problem.
  • Create a list of possible explanations that you might want to explore.
  • After you have developed some possible hypotheses, think of ways that you could confirm or disprove each hypothesis through experimentation. This is known as falsifiability.

In the scientific method ,  falsifiability is an important part of any valid hypothesis. In order to test a claim scientifically, it must be possible that the claim could be proven false.

Students sometimes confuse the idea of falsifiability with the idea that it means that something is false, which is not the case. What falsifiability means is that  if  something was false, then it is possible to demonstrate that it is false.

One of the hallmarks of pseudoscience is that it makes claims that cannot be refuted or proven false.

The Importance of Operational Definitions

A variable is a factor or element that can be changed and manipulated in ways that are observable and measurable. However, the researcher must also define how the variable will be manipulated and measured in the study.

Operational definitions are specific definitions for all relevant factors in a study. This process helps make vague or ambiguous concepts detailed and measurable.

For example, a researcher might operationally define the variable " test anxiety " as the results of a self-report measure of anxiety experienced during an exam. A "study habits" variable might be defined by the amount of studying that actually occurs as measured by time.

These precise descriptions are important because many things can be measured in various ways. Clearly defining these variables and how they are measured helps ensure that other researchers can replicate your results.

Replicability

One of the basic principles of any type of scientific research is that the results must be replicable.

Replication means repeating an experiment in the same way to produce the same results. By clearly detailing the specifics of how the variables were measured and manipulated, other researchers can better understand the results and repeat the study if needed.

Some variables are more difficult than others to define. For example, how would you operationally define a variable such as aggression ? For obvious ethical reasons, researchers cannot create a situation in which a person behaves aggressively toward others.

To measure this variable, the researcher must devise a measurement that assesses aggressive behavior without harming others. The researcher might utilize a simulated task to measure aggressiveness in this situation.

Hypothesis Checklist

  • Does your hypothesis focus on something that you can actually test?
  • Does your hypothesis include both an independent and dependent variable?
  • Can you manipulate the variables?
  • Can your hypothesis be tested without violating ethical standards?

The hypothesis you use will depend on what you are investigating and hoping to find. Some of the main types of hypotheses that you might use include:

  • Simple hypothesis : This type of hypothesis suggests there is a relationship between one independent variable and one dependent variable.
  • Complex hypothesis : This type suggests a relationship between three or more variables, such as two independent and dependent variables.
  • Null hypothesis : This hypothesis suggests no relationship exists between two or more variables.
  • Alternative hypothesis : This hypothesis states the opposite of the null hypothesis.
  • Statistical hypothesis : This hypothesis uses statistical analysis to evaluate a representative population sample and then generalizes the findings to the larger group.
  • Logical hypothesis : This hypothesis assumes a relationship between variables without collecting data or evidence.

A hypothesis often follows a basic format of "If {this happens} then {this will happen}." One way to structure your hypothesis is to describe what will happen to the  dependent variable  if you change the  independent variable .

The basic format might be: "If {these changes are made to a certain independent variable}, then we will observe {a change in a specific dependent variable}."

A few examples of simple hypotheses:

  • "Students who eat breakfast will perform better on a math exam than students who do not eat breakfast."
  • "Students who experience test anxiety before an English exam will get lower scores than students who do not experience test anxiety."​
  • "Motorists who talk on the phone while driving will be more likely to make errors on a driving course than those who do not talk on the phone."
  • "Children who receive a new reading intervention will have higher reading scores than students who do not receive the intervention."

Examples of a complex hypothesis include:

  • "People with high-sugar diets and sedentary activity levels are more likely to develop depression."
  • "Younger people who are regularly exposed to green, outdoor areas have better subjective well-being than older adults who have limited exposure to green spaces."

Examples of a null hypothesis include:

  • "There is no difference in anxiety levels between people who take St. John's wort supplements and those who do not."
  • "There is no difference in scores on a memory recall task between children and adults."
  • "There is no difference in aggression levels between children who play first-person shooter games and those who do not."

Examples of an alternative hypothesis:

  • "People who take St. John's wort supplements will have less anxiety than those who do not."
  • "Adults will perform better on a memory task than children."
  • "Children who play first-person shooter games will show higher levels of aggression than children who do not." 

Collecting Data on Your Hypothesis

Once a researcher has formed a testable hypothesis, the next step is to select a research design and start collecting data. The research method depends largely on exactly what they are studying. There are two basic types of research methods: descriptive research and experimental research.

Descriptive Research Methods

Descriptive research such as  case studies ,  naturalistic observations , and surveys are often used when  conducting an experiment is difficult or impossible. These methods are best used to describe different aspects of a behavior or psychological phenomenon.

Once a researcher has collected data using descriptive methods, a  correlational study  can examine how the variables are related. This research method might be used to investigate a hypothesis that is difficult to test experimentally.

Experimental Research Methods

Experimental methods  are used to demonstrate causal relationships between variables. In an experiment, the researcher systematically manipulates a variable of interest (known as the independent variable) and measures the effect on another variable (known as the dependent variable).

Unlike correlational studies, which can only be used to determine if there is a relationship between two variables, experimental methods can be used to determine the actual nature of the relationship—whether changes in one variable actually  cause  another to change.

The hypothesis is a critical part of any scientific exploration. It represents what researchers expect to find in a study or experiment. In situations where the hypothesis is unsupported by the research, the research still has value. Such research helps us better understand how different aspects of the natural world relate to one another. It also helps us develop new hypotheses that can then be tested in the future.

Thompson WH, Skau S. On the scope of scientific hypotheses .  R Soc Open Sci . 2023;10(8):230607. doi:10.1098/rsos.230607

Taran S, Adhikari NKJ, Fan E. Falsifiability in medicine: what clinicians can learn from Karl Popper [published correction appears in Intensive Care Med. 2021 Jun 17;:].  Intensive Care Med . 2021;47(9):1054-1056. doi:10.1007/s00134-021-06432-z

Eyler AA. Research Methods for Public Health . 1st ed. Springer Publishing Company; 2020. doi:10.1891/9780826182067.0004

Nosek BA, Errington TM. What is replication ?  PLoS Biol . 2020;18(3):e3000691. doi:10.1371/journal.pbio.3000691

Aggarwal R, Ranganathan P. Study designs: Part 2 - Descriptive studies .  Perspect Clin Res . 2019;10(1):34-36. doi:10.4103/picr.PICR_154_18

Nevid J. Psychology: Concepts and Applications. Wadworth, 2013.

By Kendra Cherry, MSEd Kendra Cherry, MS, is a psychosocial rehabilitation specialist, psychology educator, and author of the "Everything Psychology Book."

PrepScholar

Choose Your Test

  • Search Blogs By Category
  • College Admissions
  • AP and IB Exams
  • GPA and Coursework

What Is a Hypothesis and How Do I Write One?

author image

General Education

body-glowing-question-mark

Think about something strange and unexplainable in your life. Maybe you get a headache right before it rains, or maybe you think your favorite sports team wins when you wear a certain color. If you wanted to see whether these are just coincidences or scientific fact, you would form a hypothesis, then create an experiment to see whether that hypothesis is true or not.

But what is a hypothesis, anyway? If you’re not sure about what a hypothesis is--or how to test for one!--you’re in the right place. This article will teach you everything you need to know about hypotheses, including: 

  • Defining the term “hypothesis” 
  • Providing hypothesis examples 
  • Giving you tips for how to write your own hypothesis

So let’s get started!

body-picture-ask-sign

What Is a Hypothesis?

Merriam Webster defines a hypothesis as “an assumption or concession made for the sake of argument.” In other words, a hypothesis is an educated guess . Scientists make a reasonable assumption--or a hypothesis--then design an experiment to test whether it’s true or not. Keep in mind that in science, a hypothesis should be testable. You have to be able to design an experiment that tests your hypothesis in order for it to be valid. 

As you could assume from that statement, it’s easy to make a bad hypothesis. But when you’re holding an experiment, it’s even more important that your guesses be good...after all, you’re spending time (and maybe money!) to figure out more about your observation. That’s why we refer to a hypothesis as an educated guess--good hypotheses are based on existing data and research to make them as sound as possible.

Hypotheses are one part of what’s called the scientific method .  Every (good) experiment or study is based in the scientific method. The scientific method gives order and structure to experiments and ensures that interference from scientists or outside influences does not skew the results. It’s important that you understand the concepts of the scientific method before holding your own experiment. Though it may vary among scientists, the scientific method is generally made up of six steps (in order):

  • Observation
  • Asking questions
  • Forming a hypothesis
  • Analyze the data
  • Communicate your results

You’ll notice that the hypothesis comes pretty early on when conducting an experiment. That’s because experiments work best when they’re trying to answer one specific question. And you can’t conduct an experiment until you know what you’re trying to prove!

Independent and Dependent Variables 

After doing your research, you’re ready for another important step in forming your hypothesis: identifying variables. Variables are basically any factor that could influence the outcome of your experiment . Variables have to be measurable and related to the topic being studied.

There are two types of variables:  independent variables and dependent variables. I ndependent variables remain constant . For example, age is an independent variable; it will stay the same, and researchers can look at different ages to see if it has an effect on the dependent variable. 

Speaking of dependent variables... dependent variables are subject to the influence of the independent variable , meaning that they are not constant. Let’s say you want to test whether a person’s age affects how much sleep they need. In that case, the independent variable is age (like we mentioned above), and the dependent variable is how much sleep a person gets. 

Variables will be crucial in writing your hypothesis. You need to be able to identify which variable is which, as both the independent and dependent variables will be written into your hypothesis. For instance, in a study about exercise, the independent variable might be the speed at which the respondents walk for thirty minutes, and the dependent variable would be their heart rate. In your study and in your hypothesis, you’re trying to understand the relationship between the two variables.

Elements of a Good Hypothesis

The best hypotheses start by asking the right questions . For instance, if you’ve observed that the grass is greener when it rains twice a week, you could ask what kind of grass it is, what elevation it’s at, and if the grass across the street responds to rain in the same way. Any of these questions could become the backbone of experiments to test why the grass gets greener when it rains fairly frequently.

As you’re asking more questions about your first observation, make sure you’re also making more observations . If it doesn’t rain for two weeks and the grass still looks green, that’s an important observation that could influence your hypothesis. You'll continue observing all throughout your experiment, but until the hypothesis is finalized, every observation should be noted.

Finally, you should consult secondary research before writing your hypothesis . Secondary research is comprised of results found and published by other people. You can usually find this information online or at your library. Additionally, m ake sure the research you find is credible and related to your topic. If you’re studying the correlation between rain and grass growth, it would help you to research rain patterns over the past twenty years for your county, published by a local agricultural association. You should also research the types of grass common in your area, the type of grass in your lawn, and whether anyone else has conducted experiments about your hypothesis. Also be sure you’re checking the quality of your research . Research done by a middle school student about what minerals can be found in rainwater would be less useful than an article published by a local university.

body-pencil-notebook-writing

Writing Your Hypothesis

Once you’ve considered all of the factors above, you’re ready to start writing your hypothesis. Hypotheses usually take a certain form when they’re written out in a research report.

When you boil down your hypothesis statement, you are writing down your best guess and not the question at hand . This means that your statement should be written as if it is fact already, even though you are simply testing it.

The reason for this is that, after you have completed your study, you'll either accept or reject your if-then or your null hypothesis. All hypothesis testing examples should be measurable and able to be confirmed or denied. You cannot confirm a question, only a statement! 

In fact, you come up with hypothesis examples all the time! For instance, when you guess on the outcome of a basketball game, you don’t say, “Will the Miami Heat beat the Boston Celtics?” but instead, “I think the Miami Heat will beat the Boston Celtics.” You state it as if it is already true, even if it turns out you’re wrong. You do the same thing when writing your hypothesis.

Additionally, keep in mind that hypotheses can range from very specific to very broad.  These hypotheses can be specific, but if your hypothesis testing examples involve a broad range of causes and effects, your hypothesis can also be broad.  

body-hand-number-two

The Two Types of Hypotheses

Now that you understand what goes into a hypothesis, it’s time to look more closely at the two most common types of hypothesis: the if-then hypothesis and the null hypothesis.

#1: If-Then Hypotheses

First of all, if-then hypotheses typically follow this formula:

If ____ happens, then ____ will happen.

The goal of this type of hypothesis is to test the causal relationship between the independent and dependent variable. It’s fairly simple, and each hypothesis can vary in how detailed it can be. We create if-then hypotheses all the time with our daily predictions. Here are some examples of hypotheses that use an if-then structure from daily life: 

  • If I get enough sleep, I’ll be able to get more work done tomorrow.
  • If the bus is on time, I can make it to my friend’s birthday party. 
  • If I study every night this week, I’ll get a better grade on my exam. 

In each of these situations, you’re making a guess on how an independent variable (sleep, time, or studying) will affect a dependent variable (the amount of work you can do, making it to a party on time, or getting better grades). 

You may still be asking, “What is an example of a hypothesis used in scientific research?” Take one of the hypothesis examples from a real-world study on whether using technology before bed affects children’s sleep patterns. The hypothesis read s:

“We hypothesized that increased hours of tablet- and phone-based screen time at bedtime would be inversely correlated with sleep quality and child attention.”

It might not look like it, but this is an if-then statement. The researchers basically said, “If children have more screen usage at bedtime, then their quality of sleep and attention will be worse.” The sleep quality and attention are the dependent variables and the screen usage is the independent variable. (Usually, the independent variable comes after the “if” and the dependent variable comes after the “then,” as it is the independent variable that affects the dependent variable.) This is an excellent example of how flexible hypothesis statements can be, as long as the general idea of “if-then” and the independent and dependent variables are present.

#2: Null Hypotheses

Your if-then hypothesis is not the only one needed to complete a successful experiment, however. You also need a null hypothesis to test it against. In its most basic form, the null hypothesis is the opposite of your if-then hypothesis . When you write your null hypothesis, you are writing a hypothesis that suggests that your guess is not true, and that the independent and dependent variables have no relationship .

One null hypothesis for the cell phone and sleep study from the last section might say: 

“If children have more screen usage at bedtime, their quality of sleep and attention will not be worse.” 

In this case, this is a null hypothesis because it’s asking the opposite of the original thesis! 

Conversely, if your if-then hypothesis suggests that your two variables have no relationship, then your null hypothesis would suggest that there is one. So, pretend that there is a study that is asking the question, “Does the amount of followers on Instagram influence how long people spend on the app?” The independent variable is the amount of followers, and the dependent variable is the time spent. But if you, as the researcher, don’t think there is a relationship between the number of followers and time spent, you might write an if-then hypothesis that reads:

“If people have many followers on Instagram, they will not spend more time on the app than people who have less.”

In this case, the if-then suggests there isn’t a relationship between the variables. In that case, one of the null hypothesis examples might say:

“If people have many followers on Instagram, they will spend more time on the app than people who have less.”

You then test both the if-then and the null hypothesis to gauge if there is a relationship between the variables, and if so, how much of a relationship. 

feature_tips

4 Tips to Write the Best Hypothesis

If you’re going to take the time to hold an experiment, whether in school or by yourself, you’re also going to want to take the time to make sure your hypothesis is a good one. The best hypotheses have four major elements in common: plausibility, defined concepts, observability, and general explanation.

#1: Plausibility

At first glance, this quality of a hypothesis might seem obvious. When your hypothesis is plausible, that means it’s possible given what we know about science and general common sense. However, improbable hypotheses are more common than you might think. 

Imagine you’re studying weight gain and television watching habits. If you hypothesize that people who watch more than  twenty hours of television a week will gain two hundred pounds or more over the course of a year, this might be improbable (though it’s potentially possible). Consequently, c ommon sense can tell us the results of the study before the study even begins.

Improbable hypotheses generally go against  science, as well. Take this hypothesis example: 

“If a person smokes one cigarette a day, then they will have lungs just as healthy as the average person’s.” 

This hypothesis is obviously untrue, as studies have shown again and again that cigarettes negatively affect lung health. You must be careful that your hypotheses do not reflect your own personal opinion more than they do scientifically-supported findings. This plausibility points to the necessity of research before the hypothesis is written to make sure that your hypothesis has not already been disproven.

#2: Defined Concepts

The more advanced you are in your studies, the more likely that the terms you’re using in your hypothesis are specific to a limited set of knowledge. One of the hypothesis testing examples might include the readability of printed text in newspapers, where you might use words like “kerning” and “x-height.” Unless your readers have a background in graphic design, it’s likely that they won’t know what you mean by these terms. Thus, it’s important to either write what they mean in the hypothesis itself or in the report before the hypothesis.

Here’s what we mean. Which of the following sentences makes more sense to the common person?

If the kerning is greater than average, more words will be read per minute.

If the space between letters is greater than average, more words will be read per minute.

For people reading your report that are not experts in typography, simply adding a few more words will be helpful in clarifying exactly what the experiment is all about. It’s always a good idea to make your research and findings as accessible as possible. 

body-blue-eye

Good hypotheses ensure that you can observe the results. 

#3: Observability

In order to measure the truth or falsity of your hypothesis, you must be able to see your variables and the way they interact. For instance, if your hypothesis is that the flight patterns of satellites affect the strength of certain television signals, yet you don’t have a telescope to view the satellites or a television to monitor the signal strength, you cannot properly observe your hypothesis and thus cannot continue your study.

Some variables may seem easy to observe, but if you do not have a system of measurement in place, you cannot observe your hypothesis properly. Here’s an example: if you’re experimenting on the effect of healthy food on overall happiness, but you don’t have a way to monitor and measure what “overall happiness” means, your results will not reflect the truth. Monitoring how often someone smiles for a whole day is not reasonably observable, but having the participants state how happy they feel on a scale of one to ten is more observable. 

In writing your hypothesis, always keep in mind how you'll execute the experiment.

#4: Generalizability 

Perhaps you’d like to study what color your best friend wears the most often by observing and documenting the colors she wears each day of the week. This might be fun information for her and you to know, but beyond you two, there aren’t many people who could benefit from this experiment. When you start an experiment, you should note how generalizable your findings may be if they are confirmed. Generalizability is basically how common a particular phenomenon is to other people’s everyday life.

Let’s say you’re asking a question about the health benefits of eating an apple for one day only, you need to realize that the experiment may be too specific to be helpful. It does not help to explain a phenomenon that many people experience. If you find yourself with too specific of a hypothesis, go back to asking the big question: what is it that you want to know, and what do you think will happen between your two variables?

body-experiment-chemistry

Hypothesis Testing Examples

We know it can be hard to write a good hypothesis unless you’ve seen some good hypothesis examples. We’ve included four hypothesis examples based on some made-up experiments. Use these as templates or launch pads for coming up with your own hypotheses.

Experiment #1: Students Studying Outside (Writing a Hypothesis)

You are a student at PrepScholar University. When you walk around campus, you notice that, when the temperature is above 60 degrees, more students study in the quad. You want to know when your fellow students are more likely to study outside. With this information, how do you make the best hypothesis possible?

You must remember to make additional observations and do secondary research before writing your hypothesis. In doing so, you notice that no one studies outside when it’s 75 degrees and raining, so this should be included in your experiment. Also, studies done on the topic beforehand suggested that students are more likely to study in temperatures less than 85 degrees. With this in mind, you feel confident that you can identify your variables and write your hypotheses:

If-then: “If the temperature in Fahrenheit is less than 60 degrees, significantly fewer students will study outside.”

Null: “If the temperature in Fahrenheit is less than 60 degrees, the same number of students will study outside as when it is more than 60 degrees.”

These hypotheses are plausible, as the temperatures are reasonably within the bounds of what is possible. The number of people in the quad is also easily observable. It is also not a phenomenon specific to only one person or at one time, but instead can explain a phenomenon for a broader group of people.

To complete this experiment, you pick the month of October to observe the quad. Every day (except on the days where it’s raining)from 3 to 4 PM, when most classes have released for the day, you observe how many people are on the quad. You measure how many people come  and how many leave. You also write down the temperature on the hour. 

After writing down all of your observations and putting them on a graph, you find that the most students study on the quad when it is 70 degrees outside, and that the number of students drops a lot once the temperature reaches 60 degrees or below. In this case, your research report would state that you accept or “failed to reject” your first hypothesis with your findings.

Experiment #2: The Cupcake Store (Forming a Simple Experiment)

Let’s say that you work at a bakery. You specialize in cupcakes, and you make only two colors of frosting: yellow and purple. You want to know what kind of customers are more likely to buy what kind of cupcake, so you set up an experiment. Your independent variable is the customer’s gender, and the dependent variable is the color of the frosting. What is an example of a hypothesis that might answer the question of this study?

Here’s what your hypotheses might look like: 

If-then: “If customers’ gender is female, then they will buy more yellow cupcakes than purple cupcakes.”

Null: “If customers’ gender is female, then they will be just as likely to buy purple cupcakes as yellow cupcakes.”

This is a pretty simple experiment! It passes the test of plausibility (there could easily be a difference), defined concepts (there’s nothing complicated about cupcakes!), observability (both color and gender can be easily observed), and general explanation ( this would potentially help you make better business decisions ).

body-bird-feeder

Experiment #3: Backyard Bird Feeders (Integrating Multiple Variables and Rejecting the If-Then Hypothesis)

While watching your backyard bird feeder, you realized that different birds come on the days when you change the types of seeds. You decide that you want to see more cardinals in your backyard, so you decide to see what type of food they like the best and set up an experiment. 

However, one morning, you notice that, while some cardinals are present, blue jays are eating out of your backyard feeder filled with millet. You decide that, of all of the other birds, you would like to see the blue jays the least. This means you'll have more than one variable in your hypothesis. Your new hypotheses might look like this: 

If-then: “If sunflower seeds are placed in the bird feeders, then more cardinals will come than blue jays. If millet is placed in the bird feeders, then more blue jays will come than cardinals.”

Null: “If either sunflower seeds or millet are placed in the bird, equal numbers of cardinals and blue jays will come.”

Through simple observation, you actually find that cardinals come as often as blue jays when sunflower seeds or millet is in the bird feeder. In this case, you would reject your “if-then” hypothesis and “fail to reject” your null hypothesis . You cannot accept your first hypothesis, because it’s clearly not true. Instead you found that there was actually no relation between your different variables. Consequently, you would need to run more experiments with different variables to see if the new variables impact the results.

Experiment #4: In-Class Survey (Including an Alternative Hypothesis)

You’re about to give a speech in one of your classes about the importance of paying attention. You want to take this opportunity to test a hypothesis you’ve had for a while: 

If-then: If students sit in the first two rows of the classroom, then they will listen better than students who do not.

Null: If students sit in the first two rows of the classroom, then they will not listen better or worse than students who do not.

You give your speech and then ask your teacher if you can hand out a short survey to the class. On the survey, you’ve included questions about some of the topics you talked about. When you get back the results, you’re surprised to see that not only do the students in the first two rows not pay better attention, but they also scored worse than students in other parts of the classroom! Here, both your if-then and your null hypotheses are not representative of your findings. What do you do?

This is when you reject both your if-then and null hypotheses and instead create an alternative hypothesis . This type of hypothesis is used in the rare circumstance that neither of your hypotheses is able to capture your findings . Now you can use what you’ve learned to draft new hypotheses and test again! 

Key Takeaways: Hypothesis Writing

The more comfortable you become with writing hypotheses, the better they will become. The structure of hypotheses is flexible and may need to be changed depending on what topic you are studying. The most important thing to remember is the purpose of your hypothesis and the difference between the if-then and the null . From there, in forming your hypothesis, you should constantly be asking questions, making observations, doing secondary research, and considering your variables. After you have written your hypothesis, be sure to edit it so that it is plausible, clearly defined, observable, and helpful in explaining a general phenomenon.

Writing a hypothesis is something that everyone, from elementary school children competing in a science fair to professional scientists in a lab, needs to know how to do. Hypotheses are vital in experiments and in properly executing the scientific method . When done correctly, hypotheses will set up your studies for success and help you to understand the world a little better, one experiment at a time.

body-whats-next-post-it-note

What’s Next?

If you’re studying for the science portion of the ACT, there’s definitely a lot you need to know. We’ve got the tools to help, though! Start by checking out our ultimate study guide for the ACT Science subject test. Once you read through that, be sure to download our recommended ACT Science practice tests , since they’re one of the most foolproof ways to improve your score. (And don’t forget to check out our expert guide book , too.)

If you love science and want to major in a scientific field, you should start preparing in high school . Here are the science classes you should take to set yourself up for success.

If you’re trying to think of science experiments you can do for class (or for a science fair!), here’s a list of 37 awesome science experiments you can do at home

Trending Now

How to Get Into Harvard and the Ivy League

How to Get a Perfect 4.0 GPA

How to Write an Amazing College Essay

What Exactly Are Colleges Looking For?

ACT vs. SAT: Which Test Should You Take?

When should you take the SAT or ACT?

Get Your Free

PrepScholar

Find Your Target SAT Score

Free Complete Official SAT Practice Tests

How to Get a Perfect SAT Score, by an Expert Full Scorer

Score 800 on SAT Math

Score 800 on SAT Reading and Writing

How to Improve Your Low SAT Score

Score 600 on SAT Math

Score 600 on SAT Reading and Writing

Find Your Target ACT Score

Complete Official Free ACT Practice Tests

How to Get a Perfect ACT Score, by a 36 Full Scorer

Get a 36 on ACT English

Get a 36 on ACT Math

Get a 36 on ACT Reading

Get a 36 on ACT Science

How to Improve Your Low ACT Score

Get a 24 on ACT English

Get a 24 on ACT Math

Get a 24 on ACT Reading

Get a 24 on ACT Science

Stay Informed

Get the latest articles and test prep tips!

Follow us on Facebook (icon)

Ashley Sufflé Robinson has a Ph.D. in 19th Century English Literature. As a content writer for PrepScholar, Ashley is passionate about giving college-bound students the in-depth information they need to get into the school of their dreams.

Ask a Question Below

Have any questions about this article or other topics? Ask below and we'll reply!

Illustration

  • Research Paper Guides
  • Basics of Research Paper Writing

How to Write a Hypothesis: Step-by-Step Guide and Examples

  • Speech Topics
  • Basics of Essay Writing
  • Essay Topics
  • Other Essays
  • Main Academic Essays
  • Research Paper Topics
  • Miscellaneous
  • Chicago/ Turabian
  • Data & Statistics
  • Methodology
  • Admission Writing Tips
  • Admission Advice
  • Other Guides
  • Student Life
  • Studying Tips
  • Understanding Plagiarism
  • Academic Writing Tips
  • Basics of Dissertation & Thesis Writing

Illustration

  • Essay Guides
  • Formatting Guides
  • Basics of Research Process
  • Admission Guides
  • Dissertation & Thesis Guides

thumbnail@2x.png

Table of contents

Illustration

Use our free Readability checker

Each academic research revolves around specific statement or problem — a research hypothesis. 

A hypothesis is a suggested prediction for a phenomenon or observed event, based on prior knowledge or research. It is a tentative statement that can be tested through further investigation and analysis. A hypothesis usually takes the form of a statement that suggests a relationship between two or more variables.

Every research project, be it a a term paper, research paper or a dissertation, should begin with defining a hypothesis. While this may seem simple, in reality beginners face a lot of problems. This includes difficulty with formulating a hypothesis accurately and capturing the main idea. In this blog post, we will tell you how to write a hypothesis so it is accurate and correct.

What Is a Research Hypothesis: Expanded Definition

A research hypothesis is a statement or assumption that answers a question you asked earlier but haven't tested yet. In fact, this is basis of your work which you use to prove or reject your assumption. Major research projects most often deal with several hypotheses. These relate to various aspects of an issue under study. Thus, you will divide assumptions by research sectors and study them in a segmented manner. When making an assignment, one must work based on an existing theory and gained knowledge. One must also take into account that it must be testable. That is, it can be rejected or confirmed with methods of scientific research. Hypothesis example may look like this:

In your work, you must prove or reject this hypothesis by providing survey results. Show some statistical analysis , study of reports and other processed data.

Remeber that you can hire a paper writer who will integrate survey outcomes and conduct statistical analysis in your research paper hypothesis. 

Variables in Hypotheses

To make a qualitative guess, you should consider variables in your hypothesis. They can be divided into independent and dependent ones. In fact, you must establish causal relationship between two or more variables. Independent ( confounding variable ) is what researcher can control or change, i.e. initial condition. Dependent ( extraneous variable ) is what researcher studies. It is observed in created conditions. Before you start learning how to write an assignment with independent and dependent variables, you should define the main idea of your work. For example, you take an assumption that eating hedgehog meat reduces risk of cardiovascular disease. Independent variable is hedgehog meat consumption, which is cause. Improvement in cardiovascular health is a dependent variable – an intended effect.

How to Write a Hypothesis: 5 Simple Writing Steps

Novice researchers most frequently ask how to write a hypothesis statement. This is a complex process that includes compilation of laconic predictions. These are based on conducted experiments. We can support you in this task. We have developed 5 steps for researchers so they can write a high-quality and comprehensive assignment.

Step 1. Generate a Question Before Writing Your Hypothesis

At the first stage of writing a hypothesis for a research paper you must define a research question that you need to answer. It should be focused on particular problem. Try to make it specific and yet suitable for research within framework of your project. To write quality assignment, you must use 6 classic statements. Thus, you must clarify: who, what, where, when, why and how. You must make question understandable in terms of positioning problem. Example of correct hypothesis:

Step 2. Gather Preliminary Research for Your Hypothesis

Before writing a research hypothesis, conduct some preliminary research to find out if your assumption is working and can be proved. You will get the key insights through observations or experiments. You can also use results of your colleagues who have already studied this issue. Thus, you will build a concept with formulated variables. You will study them and identify relationships between them.

Step 3. Write a Strong Hypothesis

With results of preliminary preparation and research questions, you can study how to write a strong hypothesis . First of all, highlight the main testing problem. You must formulate it as briefly as possible. Try to avoid stretching statements in an attempt to make paper longer. Be as clear as possible, avoid vague judgments. For example:

This is not good option. It is better to apply hypothesis in the form of:

This is a clear sentence that is devoid of unnecessary details. It allows you to immediately see an expected effect. Get practical help in writing research paper if you wish for more quality.

Step 4. Refine Your Research Hypothesis

Make sure a hypothesis for a research proposal formulated correctly. You must check if it has following elements:

  • Dependent and independent variables.
  • An object or phenomenon for testing.
  • Expected outcome of study that you plan to work through. This must be part of an experiment or an observation.

This way, you will specify question under study. You also will be able to verify it if needed. That is, you will move from general to particular.

Step 5. Write a Null Hypothesis

You may need to write a null hypothesis. Why and when, you may ask? When you use this method for processing specific statistics. You should specify if you plan to prove your point on its basis. In fact, it is clear position that doesn’t establish links between variables. For example, this statement is null hypothesis:

It is basis for presenting one's own opinion. It allows to build an evidence base stemming from researcher's evidence.

What Is the Difference Between a Null Hypothesis and an Alternative Hypothesis

To better understand how to write null and alternative hypothesis that will form backbone of study, examine testable statements. Based on results, null hypothesis is prepared. It is a statement with no connection between variables. At the same time, scientists usually work with an alternative hypothesis. Here, they have already found a connection between phenomena. Ever considered custom research paper writing service ? So, the above statement about frequency of doctor visits can be modified to research of: 

Hypothesis Examples

Quite often, researchers find it difficult to formulate basis for  writing a research paper . Therefore, some examples of hypothesis will be useful for them. This will correspond to if-then connections. With their help you will also briefly outline the main part of current research. We will help you in formulating an assignment and offer several working options:

Tips on Writing a Hypothesis

It’s difficult to start writing a hypothesis for a research proposal. Especially for aspiring academics! After all, it is important that an assignment is clear and specific. It must also be viable for further development. Here are some tips to help you formulate your statement:

  • Analyze interesting aspects. Review current studies and problems on the selected topic. Highlight what you wanted to explore, perhaps it will be a concept close to your previous works.
  • Clarify the details. Spend time on preliminary analysis. You must also highlight controversial aspects and contemporary issues. Sometimes, even well-researched phenomena can be promising.
  • Focus on your own work. It’s always easier to continue than to start anew. At the same time, you might not have considered all the theses in the previous study.
  • Make the variables clear. Avoid ambiguous statements.

Sounds a bit difficult? College paper help is there for you.

How to Write a Scientific Hypothesis: Final Thoughts

So, if you've come this far, you should already know how to how to write a hypothesis step by step. Before starting writing, analyze the problem and the topic. You should highlight the thesis that can be developed further. We recommend going through the following steps:

  • Define the question you expect to receive an answer to.
  • Do some preliminary research.
  • Write it strongly.
  • Refine it with variables, subject and phenomenon, and expected result.
  • Make a null hypothesis and consider a different option.

Illustration

Let our assistants write your hypothesis for you! Choose a paper writer to your liking, send them your requirements and get a great paper in no-time!

Frequently Asked Questions About Writing a Good Hypothesis

1. how can i improve my hypothesis.

To make the hypothesis working and of high quality, be sure you select both independent and dependent variables and add them to the statement. Examine the relationships of these elements. Think if you can prove them and explain them in further research.

2. Is there a maximum number of hypotheses that is allowed in one research paper?

You can write as many hypotheses as you want for your paper, because it all depends on your view on the topic and the desire to develop it in several directions. The main thing is that your project shouldn't be overloaded with too many hypotheses and that you pay enough attention to each of them.

3. How do I test my hypothesis?

It’s easy to test the statement before you write a hypothesis for a research proposal. Do an experiment: ask your question and try answering it. If you succeed, this assignment can be used for more detailed study.

4. How long is a hypothesis?

While writing the hypothesis, you must make it as direct as possible and, at the same time, clear it of extraneous judgments. Typically, it's 20 words long. We don’t recommend exceeding this volume, so as not to face difficulties in interpretation.

Joe_Eckel_1_ab59a03630.jpg

Joe Eckel is an expert on Dissertations writing. He makes sure that each student gets precious insights on composing A-grade academic writing.

Illustration

You may also like

Research questions

  • Privacy Policy

Research Method

Home » Case Study – Methods, Examples and Guide

Case Study – Methods, Examples and Guide

Table of Contents

Case Study Research

A case study is a research method that involves an in-depth examination and analysis of a particular phenomenon or case, such as an individual, organization, community, event, or situation.

It is a qualitative research approach that aims to provide a detailed and comprehensive understanding of the case being studied. Case studies typically involve multiple sources of data, including interviews, observations, documents, and artifacts, which are analyzed using various techniques, such as content analysis, thematic analysis, and grounded theory. The findings of a case study are often used to develop theories, inform policy or practice, or generate new research questions.

Types of Case Study

Types and Methods of Case Study are as follows:

Single-Case Study

A single-case study is an in-depth analysis of a single case. This type of case study is useful when the researcher wants to understand a specific phenomenon in detail.

For Example , A researcher might conduct a single-case study on a particular individual to understand their experiences with a particular health condition or a specific organization to explore their management practices. The researcher collects data from multiple sources, such as interviews, observations, and documents, and uses various techniques to analyze the data, such as content analysis or thematic analysis. The findings of a single-case study are often used to generate new research questions, develop theories, or inform policy or practice.

Multiple-Case Study

A multiple-case study involves the analysis of several cases that are similar in nature. This type of case study is useful when the researcher wants to identify similarities and differences between the cases.

For Example, a researcher might conduct a multiple-case study on several companies to explore the factors that contribute to their success or failure. The researcher collects data from each case, compares and contrasts the findings, and uses various techniques to analyze the data, such as comparative analysis or pattern-matching. The findings of a multiple-case study can be used to develop theories, inform policy or practice, or generate new research questions.

Exploratory Case Study

An exploratory case study is used to explore a new or understudied phenomenon. This type of case study is useful when the researcher wants to generate hypotheses or theories about the phenomenon.

For Example, a researcher might conduct an exploratory case study on a new technology to understand its potential impact on society. The researcher collects data from multiple sources, such as interviews, observations, and documents, and uses various techniques to analyze the data, such as grounded theory or content analysis. The findings of an exploratory case study can be used to generate new research questions, develop theories, or inform policy or practice.

Descriptive Case Study

A descriptive case study is used to describe a particular phenomenon in detail. This type of case study is useful when the researcher wants to provide a comprehensive account of the phenomenon.

For Example, a researcher might conduct a descriptive case study on a particular community to understand its social and economic characteristics. The researcher collects data from multiple sources, such as interviews, observations, and documents, and uses various techniques to analyze the data, such as content analysis or thematic analysis. The findings of a descriptive case study can be used to inform policy or practice or generate new research questions.

Instrumental Case Study

An instrumental case study is used to understand a particular phenomenon that is instrumental in achieving a particular goal. This type of case study is useful when the researcher wants to understand the role of the phenomenon in achieving the goal.

For Example, a researcher might conduct an instrumental case study on a particular policy to understand its impact on achieving a particular goal, such as reducing poverty. The researcher collects data from multiple sources, such as interviews, observations, and documents, and uses various techniques to analyze the data, such as content analysis or thematic analysis. The findings of an instrumental case study can be used to inform policy or practice or generate new research questions.

Case Study Data Collection Methods

Here are some common data collection methods for case studies:

Interviews involve asking questions to individuals who have knowledge or experience relevant to the case study. Interviews can be structured (where the same questions are asked to all participants) or unstructured (where the interviewer follows up on the responses with further questions). Interviews can be conducted in person, over the phone, or through video conferencing.

Observations

Observations involve watching and recording the behavior and activities of individuals or groups relevant to the case study. Observations can be participant (where the researcher actively participates in the activities) or non-participant (where the researcher observes from a distance). Observations can be recorded using notes, audio or video recordings, or photographs.

Documents can be used as a source of information for case studies. Documents can include reports, memos, emails, letters, and other written materials related to the case study. Documents can be collected from the case study participants or from public sources.

Surveys involve asking a set of questions to a sample of individuals relevant to the case study. Surveys can be administered in person, over the phone, through mail or email, or online. Surveys can be used to gather information on attitudes, opinions, or behaviors related to the case study.

Artifacts are physical objects relevant to the case study. Artifacts can include tools, equipment, products, or other objects that provide insights into the case study phenomenon.

How to conduct Case Study Research

Conducting a case study research involves several steps that need to be followed to ensure the quality and rigor of the study. Here are the steps to conduct case study research:

  • Define the research questions: The first step in conducting a case study research is to define the research questions. The research questions should be specific, measurable, and relevant to the case study phenomenon under investigation.
  • Select the case: The next step is to select the case or cases to be studied. The case should be relevant to the research questions and should provide rich and diverse data that can be used to answer the research questions.
  • Collect data: Data can be collected using various methods, such as interviews, observations, documents, surveys, and artifacts. The data collection method should be selected based on the research questions and the nature of the case study phenomenon.
  • Analyze the data: The data collected from the case study should be analyzed using various techniques, such as content analysis, thematic analysis, or grounded theory. The analysis should be guided by the research questions and should aim to provide insights and conclusions relevant to the research questions.
  • Draw conclusions: The conclusions drawn from the case study should be based on the data analysis and should be relevant to the research questions. The conclusions should be supported by evidence and should be clearly stated.
  • Validate the findings: The findings of the case study should be validated by reviewing the data and the analysis with participants or other experts in the field. This helps to ensure the validity and reliability of the findings.
  • Write the report: The final step is to write the report of the case study research. The report should provide a clear description of the case study phenomenon, the research questions, the data collection methods, the data analysis, the findings, and the conclusions. The report should be written in a clear and concise manner and should follow the guidelines for academic writing.

Examples of Case Study

Here are some examples of case study research:

  • The Hawthorne Studies : Conducted between 1924 and 1932, the Hawthorne Studies were a series of case studies conducted by Elton Mayo and his colleagues to examine the impact of work environment on employee productivity. The studies were conducted at the Hawthorne Works plant of the Western Electric Company in Chicago and included interviews, observations, and experiments.
  • The Stanford Prison Experiment: Conducted in 1971, the Stanford Prison Experiment was a case study conducted by Philip Zimbardo to examine the psychological effects of power and authority. The study involved simulating a prison environment and assigning participants to the role of guards or prisoners. The study was controversial due to the ethical issues it raised.
  • The Challenger Disaster: The Challenger Disaster was a case study conducted to examine the causes of the Space Shuttle Challenger explosion in 1986. The study included interviews, observations, and analysis of data to identify the technical, organizational, and cultural factors that contributed to the disaster.
  • The Enron Scandal: The Enron Scandal was a case study conducted to examine the causes of the Enron Corporation’s bankruptcy in 2001. The study included interviews, analysis of financial data, and review of documents to identify the accounting practices, corporate culture, and ethical issues that led to the company’s downfall.
  • The Fukushima Nuclear Disaster : The Fukushima Nuclear Disaster was a case study conducted to examine the causes of the nuclear accident that occurred at the Fukushima Daiichi Nuclear Power Plant in Japan in 2011. The study included interviews, analysis of data, and review of documents to identify the technical, organizational, and cultural factors that contributed to the disaster.

Application of Case Study

Case studies have a wide range of applications across various fields and industries. Here are some examples:

Business and Management

Case studies are widely used in business and management to examine real-life situations and develop problem-solving skills. Case studies can help students and professionals to develop a deep understanding of business concepts, theories, and best practices.

Case studies are used in healthcare to examine patient care, treatment options, and outcomes. Case studies can help healthcare professionals to develop critical thinking skills, diagnose complex medical conditions, and develop effective treatment plans.

Case studies are used in education to examine teaching and learning practices. Case studies can help educators to develop effective teaching strategies, evaluate student progress, and identify areas for improvement.

Social Sciences

Case studies are widely used in social sciences to examine human behavior, social phenomena, and cultural practices. Case studies can help researchers to develop theories, test hypotheses, and gain insights into complex social issues.

Law and Ethics

Case studies are used in law and ethics to examine legal and ethical dilemmas. Case studies can help lawyers, policymakers, and ethical professionals to develop critical thinking skills, analyze complex cases, and make informed decisions.

Purpose of Case Study

The purpose of a case study is to provide a detailed analysis of a specific phenomenon, issue, or problem in its real-life context. A case study is a qualitative research method that involves the in-depth exploration and analysis of a particular case, which can be an individual, group, organization, event, or community.

The primary purpose of a case study is to generate a comprehensive and nuanced understanding of the case, including its history, context, and dynamics. Case studies can help researchers to identify and examine the underlying factors, processes, and mechanisms that contribute to the case and its outcomes. This can help to develop a more accurate and detailed understanding of the case, which can inform future research, practice, or policy.

Case studies can also serve other purposes, including:

  • Illustrating a theory or concept: Case studies can be used to illustrate and explain theoretical concepts and frameworks, providing concrete examples of how they can be applied in real-life situations.
  • Developing hypotheses: Case studies can help to generate hypotheses about the causal relationships between different factors and outcomes, which can be tested through further research.
  • Providing insight into complex issues: Case studies can provide insights into complex and multifaceted issues, which may be difficult to understand through other research methods.
  • Informing practice or policy: Case studies can be used to inform practice or policy by identifying best practices, lessons learned, or areas for improvement.

Advantages of Case Study Research

There are several advantages of case study research, including:

  • In-depth exploration: Case study research allows for a detailed exploration and analysis of a specific phenomenon, issue, or problem in its real-life context. This can provide a comprehensive understanding of the case and its dynamics, which may not be possible through other research methods.
  • Rich data: Case study research can generate rich and detailed data, including qualitative data such as interviews, observations, and documents. This can provide a nuanced understanding of the case and its complexity.
  • Holistic perspective: Case study research allows for a holistic perspective of the case, taking into account the various factors, processes, and mechanisms that contribute to the case and its outcomes. This can help to develop a more accurate and comprehensive understanding of the case.
  • Theory development: Case study research can help to develop and refine theories and concepts by providing empirical evidence and concrete examples of how they can be applied in real-life situations.
  • Practical application: Case study research can inform practice or policy by identifying best practices, lessons learned, or areas for improvement.
  • Contextualization: Case study research takes into account the specific context in which the case is situated, which can help to understand how the case is influenced by the social, cultural, and historical factors of its environment.

Limitations of Case Study Research

There are several limitations of case study research, including:

  • Limited generalizability : Case studies are typically focused on a single case or a small number of cases, which limits the generalizability of the findings. The unique characteristics of the case may not be applicable to other contexts or populations, which may limit the external validity of the research.
  • Biased sampling: Case studies may rely on purposive or convenience sampling, which can introduce bias into the sample selection process. This may limit the representativeness of the sample and the generalizability of the findings.
  • Subjectivity: Case studies rely on the interpretation of the researcher, which can introduce subjectivity into the analysis. The researcher’s own biases, assumptions, and perspectives may influence the findings, which may limit the objectivity of the research.
  • Limited control: Case studies are typically conducted in naturalistic settings, which limits the control that the researcher has over the environment and the variables being studied. This may limit the ability to establish causal relationships between variables.
  • Time-consuming: Case studies can be time-consuming to conduct, as they typically involve a detailed exploration and analysis of a specific case. This may limit the feasibility of conducting multiple case studies or conducting case studies in a timely manner.
  • Resource-intensive: Case studies may require significant resources, including time, funding, and expertise. This may limit the ability of researchers to conduct case studies in resource-constrained settings.

About the author

' src=

Muhammad Hassan

Researcher, Academic Writer, Web developer

You may also like

Focus Groups in Qualitative Research

Focus Groups – Steps, Examples and Guide

Qualitative Research Methods

Qualitative Research Methods

Ethnographic Research

Ethnographic Research -Types, Methods and Guide

Applied Research

Applied Research – Types, Methods and Examples

Explanatory Research

Explanatory Research – Types, Methods, Guide

Basic Research

Basic Research – Types, Methods and Examples

Point Loma logo

Organizing Your Social Sciences Research Paper: Writing a Case Study

  • Purpose of Guide
  • Design Flaws to Avoid
  • Independent and Dependent Variables
  • Glossary of Research Terms
  • Narrowing a Topic Idea
  • Broadening a Topic Idea
  • Extending the Timeliness of a Topic Idea
  • Academic Writing Style
  • Choosing a Title
  • Making an Outline
  • Paragraph Development
  • Executive Summary
  • The C.A.R.S. Model
  • Background Information
  • The Research Problem/Question
  • Theoretical Framework
  • Citation Tracking
  • Content Alert Services
  • Evaluating Sources
  • Reading Research Effectively
  • Primary Sources
  • Secondary Sources
  • Tiertiary Sources
  • What Is Scholarly vs. Popular?
  • Qualitative Methods
  • Quantitative Methods
  • Using Non-Textual Elements
  • Limitations of the Study
  • Common Grammar Mistakes
  • Writing Concisely
  • Avoiding Plagiarism
  • Footnotes or Endnotes?
  • Further Readings
  • Annotated Bibliography
  • Dealing with Nervousness
  • Using Visual Aids
  • Grading Someone Else's Paper
  • Types of Structured Group Activities
  • Group Project Survival Skills
  • Multiple Book Review Essay
  • Reviewing Collected Essays
  • Writing a Case Study
  • About Informed Consent
  • Writing Field Notes
  • Writing a Policy Memo
  • Writing a Research Proposal
  • Bibliography

The term case study refers to both a method of analysis and a specific research design for examining a problem, both of which are used in most circumstances to generalize across populations. This tab focuses on the latter--how to design and organize a research paper in the social sciences that analyzes a specific case.

A case study research paper examines a person, place, event, phenomenon, or other type of subject of analysis in order to extrapolate  key themes and results that help predict future trends, illuminate previously hidden issues that can be applied to practice, and/or provide a means for understanding an important research problem with greater clarity. A case study paper usually examines a single subject of analysis, but case study papers can also be designed as a comparative investigation that shows relationships between two or among more than two subjects. The methods used to study a case can rest within a quantitative, qualitative, or mixed-method investigative paradigm.

Case Studies . Writing@CSU. Colorado State University; Mills, Albert J. , Gabrielle Durepos, and Eiden Wiebe, editors. Encyclopedia of Case Study Research . Thousand Oaks, CA: SAGE Publications, 2010 ; “What is a Case Study?” In Swanborn, Peter G. Case Study Research: What, Why and How? London: SAGE, 2010.

How to Approach Writing a Case Study Research Paper

General information about how to choose a topic to investigate can be found under the " Choosing a Research Problem " tab in this writing guide. Review this page because it may help you identify a subject of analysis that can be investigated using a single case study design.

However, identifying a case to investigate involves more than choosing the research problem . A case study encompasses a problem contextualized around the application of in-depth analysis, interpretation, and discussion, often resulting in specific recommendations for action or for improving existing conditions. As Seawright and Gerring note, practical considerations such as time and access to information can influence case selection, but these issues should not be the sole factors used in describing the methodological justification for identifying a particular case to study. Given this, selecting a case includes considering the following:

  • Does the case represent an unusual or atypical example of a research problem that requires more in-depth analysis? Cases often represent a topic that rests on the fringes of prior investigations because the case may provide new ways of understanding the research problem. For example, if the research problem is to identify strategies to improve policies that support girl's access to secondary education in predominantly Muslim nations, you could consider using Azerbaijan as a case study rather than selecting a more obvious nation in the Middle East. Doing so may reveal important new insights into recommending how governments in other predominantly Muslim nations can formulate policies that support improved access to education for girls.
  • Does the case provide important insight or illuminate a previously hidden problem? In-depth analysis of a case can be based on the hypothesis that the case study will reveal trends or issues that have not been exposed in prior research or will reveal new and important implications for practice. For example, anecdotal evidence may suggest drug use among homeless veterans is related to their patterns of travel throughout the day. Assuming prior studies have not looked at individual travel choices as a way to study access to illicit drug use, a case study that observes a homeless veteran could reveal how issues of personal mobility choices facilitate regular access to illicit drugs. Note that it is important to conduct a thorough literature review to ensure that your assumption about the need to reveal new insights or previously hidden problems is valid and evidence-based.
  • Does the case challenge and offer a counter-point to prevailing assumptions? Over time, research on any given topic can fall into a trap of developing assumptions based on outdated studies that are still applied to new or changing conditions or the idea that something should simply be accepted as "common sense," even though the issue has not been thoroughly tested in practice. A case may offer you an opportunity to gather evidence that challenges prevailing assumptions about a research problem and provide a new set of recommendations applied to practice that have not been tested previously. For example, perhaps there has been a long practice among scholars to apply a particular theory in explaining the relationship between two subjects of analysis. Your case could challenge this assumption by applying an innovative theoretical framework [perhaps borrowed from another discipline] to the study a case in order to explore whether this approach offers new ways of understanding the research problem. Taking a contrarian stance is one of the most important ways that new knowledge and understanding develops from existing literature.
  • Does the case provide an opportunity to pursue action leading to the resolution of a problem? Another way to think about choosing a case to study is to consider how the results from investigating a particular case may result in findings that reveal ways in which to resolve an existing or emerging problem. For example, studying the case of an unforeseen incident, such as a fatal accident at a railroad crossing, can reveal hidden issues that could be applied to preventative measures that contribute to reducing the chance of accidents in the future. In this example, a case study investigating the accident could lead to a better understanding of where to strategically locate additional signals at other railroad crossings in order to better warn drivers of an approaching train, particularly when visibility is hindered by heavy rain, fog, or at night.
  • Does the case offer a new direction in future research? A case study can be used as a tool for exploratory research that points to a need for further examination of the research problem. A case can be used when there are few studies that help predict an outcome or that establish a clear understanding about how best to proceed in addressing a problem. For example, after conducting a thorough literature review [very important!], you discover that little research exists showing the ways in which women contribute to promoting water conservation in rural communities of Uganda. A case study of how women contribute to saving water in a particular village can lay the foundation for understanding the need for more thorough research that documents how women in their roles as cooks and family caregivers think about water as a valuable resource within their community throughout rural regions of east Africa. The case could also point to the need for scholars to apply feminist theories of work and family to the issue of water conservation.

Eisenhardt, Kathleen M. “Building Theories from Case Study Research.” Academy of Management Review 14 (October 1989): 532-550; Emmel, Nick. Sampling and Choosing Cases in Qualitative Research: A Realist Approach . Thousand Oaks, CA: SAGE Publications, 2013; Gerring, John. “What Is a Case Study and What Is It Good for?” American Political Science Review 98 (May 2004): 341-354; Mills, Albert J. , Gabrielle Durepos, and Eiden Wiebe, editors. Encyclopedia of Case Study Research . Thousand Oaks, CA: SAGE Publications, 2010; Seawright, Jason and John Gerring. "Case Selection Techniques in Case Study Research." Political Research Quarterly 61 (June 2008): 294-308.

Structure and Writing Style

The purpose of a paper in the social sciences designed around a case study is to thoroughly investigate a subject of analysis in order to reveal a new understanding about the research problem and, in so doing, contributing new knowledge to what is already known from previous studies. In applied social sciences disciplines [e.g., education, social work, public administration, etc.], case studies may also be used to reveal best practices, highlight key programs, or investigate interesting aspects of professional work. In general, the structure of a case study research paper is not all that different from a standard college-level research paper. However, there are subtle differences you should be aware of. Here are the key elements to organizing and writing a case study research paper.

I.  Introduction

As with any research paper, your introduction should serve as a roadmap for your readers to ascertain the scope and purpose of your study . The introduction to a case study research paper, however, should not only describe the research problem and its significance, but you should also succinctly describe why the case is being used and how it relates to addressing the problem. The two elements should be linked. With this in mind, a good introduction answers these four questions:

  • What was I studying? Describe the research problem and describe the subject of analysis you have chosen to address the problem. Explain how they are linked and what elements of the case will help to expand knowledge and understanding about the problem.
  • Why was this topic important to investigate? Describe the significance of the research problem and state why a case study design and the subject of analysis that the paper is designed around is appropriate in addressing the problem.
  • What did we know about this topic before I did this study? Provide background that helps lead the reader into the more in-depth literature review to follow. If applicable, summarize prior case study research applied to the research problem and why it fails to adequately address the research problem. Describe why your case will be useful. If no prior case studies have been used to address the research problem, explain why you have selected this subject of analysis.
  • How will this study advance new knowledge or new ways of understanding? Explain why your case study will be suitable in helping to expand knowledge and understanding about the research problem.

Each of these questions should be addressed in no more than a few paragraphs. Exceptions to this can be when you are addressing a complex research problem or subject of analysis that requires more in-depth background information.

II.  Literature Review

The literature review for a case study research paper is generally structured the same as it is for any college-level research paper. The difference, however, is that the literature review is focused on providing background information and  enabling historical interpretation of the subject of analysis in relation to the research problem the case is intended to address . This includes synthesizing studies that help to:

  • Place relevant works in the context of their contribution to understanding the case study being investigated . This would include summarizing studies that have used a similar subject of analysis to investigate the research problem. If there is literature using the same or a very similar case to study, you need to explain why duplicating past research is important [e.g., conditions have changed; prior studies were conducted long ago, etc.].
  • Describe the relationship each work has to the others under consideration that informs the reader why this case is applicable . Your literature review should include a description of any works that support using the case to study the research problem and the underlying research questions.
  • Identify new ways to interpret prior research using the case study . If applicable, review any research that has examined the research problem using a different research design. Explain how your case study design may reveal new knowledge or a new perspective or that can redirect research in an important new direction.
  • Resolve conflicts amongst seemingly contradictory previous studies . This refers to synthesizing any literature that points to unresolved issues of concern about the research problem and describing how the subject of analysis that forms the case study can help resolve these existing contradictions.
  • Point the way in fulfilling a need for additional research . Your review should examine any literature that lays a foundation for understanding why your case study design and the subject of analysis around which you have designed your study may reveal a new way of approaching the research problem or offer a perspective that points to the need for additional research.
  • Expose any gaps that exist in the literature that the case study could help to fill . Summarize any literature that not only shows how your subject of analysis contributes to understanding the research problem, but how your case contributes to a new way of understanding the problem that prior research has failed to do.
  • Locate your own research within the context of existing literature [very important!] . Collectively, your literature review should always place your case study within the larger domain of prior research about the problem. The overarching purpose of reviewing pertinent literature in a case study paper is to demonstrate that you have thoroughly identified and synthesized prior studies in the context of explaining the relevance of the case in addressing the research problem.

III.  Method

In this section, you explain why you selected a particular subject of analysis to study and the strategy you used to identify and ultimately decide that your case was appropriate in addressing the research problem. The way you describe the methods used varies depending on the type of subject of analysis that frames your case study.

If your subject of analysis is an incident or event . In the social and behavioral sciences, the event or incident that represents the case to be studied is usually bounded by time and place, with a clear beginning and end and with an identifiable location or position relative to its surroundings. The subject of analysis can be a rare or critical event or it can focus on a typical or regular event. The purpose of studying a rare event is to illuminate new ways of thinking about the broader research problem or to test a hypothesis. Critical incident case studies must describe the method by which you identified the event and explain the process by which you determined the validity of this case to inform broader perspectives about the research problem or to reveal new findings. However, the event does not have to be a rare or uniquely significant to support new thinking about the research problem or to challenge an existing hypothesis. For example, Walo, Bull, and Breen conducted a case study to identify and evaluate the direct and indirect economic benefits and costs of a local sports event in the City of Lismore, New South Wales, Australia. The purpose of their study was to provide new insights from measuring the impact of a typical local sports event that prior studies could not measure well because they focused on large "mega-events." Whether the event is rare or not, the methods section should include an explanation of the following characteristics of the event: a) when did it take place; b) what were the underlying circumstances leading to the event; c) what were the consequences of the event.

If your subject of analysis is a person. Explain why you selected this particular individual to be studied and describe what experience he or she has had that provides an opportunity to advance new understandings about the research problem. Mention any background about this person which might help the reader understand the significance of his/her experiences that make them worthy of study. This includes describing the relationships this person has had with other people, institutions, and/or events that support using him or her as the subject for a case study research paper. It is particularly important to differentiate the person as the subject of analysis from others and to succinctly explain how the person relates to examining the research problem.

If your subject of analysis is a place. In general, a case study that investigates a place suggests a subject of analysis that is unique or special in some way and that this uniqueness can be used to build new understanding or knowledge about the research problem. A case study of a place must not only describe its various attributes relevant to the research problem [e.g., physical, social, cultural, economic, political, etc.], but you must state the method by which you determined that this place will illuminate new understandings about the research problem. It is also important to articulate why a particular place as the case for study is being used if similar places also exist [i.e., if you are studying patterns of homeless encampments of veterans in open spaces, why study Echo Park in Los Angeles rather than Griffith Park?]. If applicable, describe what type of human activity involving this place makes it a good choice to study [e.g., prior research reveals Echo Park has more homeless veterans].

If your subject of analysis is a phenomenon. A phenomenon refers to a fact, occurrence, or circumstance that can be studied or observed but with the cause or explanation to be in question. In this sense, a phenomenon that forms your subject of analysis can encompass anything that can be observed or presumed to exist but is not fully understood. In the social and behavioral sciences, the case usually focuses on human interaction within a complex physical, social, economic, cultural, or political system. For example, the phenomenon could be the observation that many vehicles used by ISIS fighters are small trucks with English language advertisements on them. The research problem could be that ISIS fighters are difficult to combat because they are highly mobile. The research questions could be how and by what means are these vehicles used by ISIS being supplied to the militants and how might supply lines to these vehicles be cut? How might knowing the suppliers of these trucks from overseas reveal larger networks of collaborators and financial support? A case study of a phenomenon most often encompasses an in-depth analysis of a cause and effect that is grounded in an interactive relationship between people and their environment in some way.

NOTE:   The choice of the case or set of cases to study cannot appear random. Evidence that supports the method by which you identified and chose your subject of analysis should be linked to the findings from the literature review. Be sure to cite any prior studies that helped you determine that the case you chose was appropriate for investigating the research problem.

IV.  Discussion

The main elements of your discussion section are generally the same as any research paper, but centered around interpreting and drawing conclusions about the key findings from your case study. Note that a general social sciences research paper may contain a separate section to report findings. However, in a paper designed around a case study, it is more common to combine a description of the findings with the discussion about their implications. The objectives of your discussion section should include the following:

Reiterate the Research Problem/State the Major Findings Briefly reiterate the research problem you are investigating and explain why the subject of analysis around which you designed the case study were used. You should then describe the findings revealed from your study of the case using direct, declarative, and succinct proclamation of the study results. Highlight any findings that were unexpected or especially profound.

Explain the Meaning of the Findings and Why They are Important Systematically explain the meaning of your case study findings and why you believe they are important. Begin this part of the section by repeating what you consider to be your most important or surprising finding first, then systematically review each finding. Be sure to thoroughly extrapolate what your analysis of the case can tell the reader about situations or conditions beyond the actual case that was studied while, at the same time, being careful not to misconstrue or conflate a finding that undermines the external validity of your conclusions.

Relate the Findings to Similar Studies No study in the social sciences is so novel or possesses such a restricted focus that it has absolutely no relation to previously published research. The discussion section should relate your case study results to those found in other studies, particularly if questions raised from prior studies served as the motivation for choosing your subject of analysis. This is important because comparing and contrasting the findings of other studies helps to support the overall importance of your results and it highlights how and in what ways your case study design and the subject of analysis differs from prior research about the topic.

Consider Alternative Explanations of the Findings It is important to remember that the purpose of social science research is to discover and not to prove. When writing the discussion section, you should carefully consider all possible explanations for the case study results, rather than just those that fit your hypothesis or prior assumptions and biases. Be alert to what the in-depth analysis of the case may reveal about the research problem, including offering a contrarian perspective to what scholars have stated in prior research.

Acknowledge the Study's Limitations You can state the study's limitations in the conclusion section of your paper but describing the limitations of your subject of analysis in the discussion section provides an opportunity to identify the limitations and explain why they are not significant. This part of the discussion section should also note any unanswered questions or issues your case study could not address. More detailed information about how to document any limitations to your research can be found here .

Suggest Areas for Further Research Although your case study may offer important insights about the research problem, there are likely additional questions related to the problem that remain unanswered or findings that unexpectedly revealed themselves as a result of your in-depth analysis of the case. Be sure that the recommendations for further research are linked to the research problem and that you explain why your recommendations are valid in other contexts and based on the original assumptions of your study.

V.  Conclusion

As with any research paper, you should summarize your conclusion in clear, simple language; emphasize how the findings from your case study differs from or supports prior research and why. Do not simply reiterate the discussion section. Provide a synthesis of key findings presented in the paper to show how these converge to address the research problem. If you haven't already done so in the discussion section, be sure to document the limitations of your case study and needs for further research.

The function of your paper's conclusion is to: 1)  restate the main argument supported by the findings from the analysis of your case; 2) clearly state the context, background, and necessity of pursuing the research problem using a case study design in relation to an issue, controversy, or a gap found from reviewing the literature; and, 3) provide a place for you to persuasively and succinctly restate the significance of your research problem, given that the reader has now been presented with in-depth information about the topic.

Consider the following points to help ensure your conclusion is appropriate:

  • If the argument or purpose of your paper is complex, you may need to summarize these points for your reader.
  • If prior to your conclusion, you have not yet explained the significance of your findings or if you are proceeding inductively, use the conclusion of your paper to describe your main points and explain their significance.
  • Move from a detailed to a general level of consideration of the case study's findings that returns the topic to the context provided by the introduction or within a new context that emerges from your case study findings.

Note that, depending on the discipline you are writing in and your professor's preferences, the concluding paragraph may contain your final reflections on the evidence presented applied to practice or on the essay's central research problem. However, the nature of being introspective about the subject of analysis you have investigated will depend on whether you are explicitly asked to express your observations in this way.

Problems to Avoid

Overgeneralization One of the goals of a case study is to lay a foundation for understanding broader trends and issues applied to similar circumstances. However, be careful when drawing conclusions from your case study. They must be evidence-based and grounded in the results of the study; otherwise, it is merely speculation. Looking at a prior example, it would be incorrect to state that a factor in improving girls access to education in Azerbaijan and the policy implications this may have for improving access in other Muslim nations is due to girls access to social media if there is no documentary evidence from your case study to indicate this. There may be anecdotal evidence that retention rates were better for girls who were on social media, but this observation would only point to the need for further research and would not be a definitive finding if this was not a part of your original research agenda.

Failure to Document Limitations No case is going to reveal all that needs to be understood about a research problem. Therefore, just as you have to clearly state the limitations of a general research study , you must describe the specific limitations inherent in the subject of analysis. For example, the case of studying how women conceptualize the need for water conservation in a village in Uganda could have limited application in other cultural contexts or in areas where fresh water from rivers or lakes is plentiful and, therefore, conservation is understood differently than preserving access to a scarce resource.

Failure to Extrapolate All Possible Implications Just as you don't want to over-generalize from your case study findings, you also have to be thorough in the consideration of all possible outcomes or recommendations derived from your findings. If you do not, your reader may question the validity of your analysis, particularly if you failed to document an obvious outcome from your case study research. For example, in the case of studying the accident at the railroad crossing to evaluate where and what types of warning signals should be located, you failed to take into consideration speed limit signage as well as warning signals. When designing your case study, be sure you have thoroughly addressed all aspects of the problem and do not leave gaps in your analysis.

Case Studies . Writing@CSU. Colorado State University; Gerring, John. Case Study Research: Principles and Practices . New York: Cambridge University Press, 2007; Merriam, Sharan B. Qualitative Research and Case Study Applications in Education . Rev. ed. San Francisco, CA: Jossey-Bass, 1998; Miller, Lisa L. “The Use of Case Studies in Law and Social Science Research.” Annual Review of Law and Social Science 14 (2018): TBD; Mills, Albert J., Gabrielle Durepos, and Eiden Wiebe, editors. Encyclopedia of Case Study Research . Thousand Oaks, CA: SAGE Publications, 2010; Putney, LeAnn Grogan. "Case Study." In Encyclopedia of Research Design , Neil J. Salkind, editor. (Thousand Oaks, CA: SAGE Publications, 2010), pp. 116-120; Simons, Helen. Case Study Research in Practice . London: SAGE Publications, 2009;  Kratochwill,  Thomas R. and Joel R. Levin, editors. Single-Case Research Design and Analysis: New Development for Psychology and Education .  Hilldsale, NJ: Lawrence Erlbaum Associates, 1992; Swanborn, Peter G. Case Study Research: What, Why and How? London : SAGE, 2010; Yin, Robert K. Case Study Research: Design and Methods . 6th edition. Los Angeles, CA, SAGE Publications, 2014; Walo, Maree, Adrian Bull, and Helen Breen. “Achieving Economic Benefits at Local Events: A Case Study of a Local Sports Event.” Festival Management and Event Tourism 4 (1996): 95-106.

Writing Tip

At Least Five Misconceptions about Case Study Research

Social science case studies are often perceived as limited in their ability to create new knowledge because they are not randomly selected and findings cannot be generalized to larger populations. Flyvbjerg examines five misunderstandings about case study research and systematically "corrects" each one. To quote, these are:

Misunderstanding 1 :  General, theoretical [context-independent knowledge is more valuable than concrete, practical (context-dependent) knowledge. Misunderstanding 2 :  One cannot generalize on the basis of an individual case; therefore, the case study cannot contribute to scientific development. Misunderstanding 3 :  The case study is most useful for generating hypotheses; that is, in the first stage of a total research process, whereas other methods are more suitable for hypotheses testing and theory building. Misunderstanding 4 :  The case study contains a bias toward verification, that is, a tendency to confirm the researcher’s preconceived notions. Misunderstanding 5 :  It is often difficult to summarize and develop general propositions and theories on the basis of specific case studies [p. 221].

While writing your paper, think introspectively about how you addressed these misconceptions because to do so can help you strengthen the validity and reliability of your research by clarifying issues of case selection, the testing and challenging of existing assumptions, the interpretation of key findings, and the summation of case outcomes. Think of a case study research paper as a complete, in-depth narrative about the specific properties and key characteristics of your subject of analysis applied to the research problem.

Flyvbjerg, Bent. “Five Misunderstandings About Case-Study Research.” Qualitative Inquiry 12 (April 2006): 219-245.

  • << Previous: Reviewing Collected Essays
  • Next: Writing a Field Report >>
  • Last Updated: Jan 17, 2023 10:50 AM
  • URL: https://libguides.pointloma.edu/ResearchPaper

Hacking The Case Interview

Hacking the Case Interview

Using a hypothesis in case interviews

A hypothesis is an educated guess on the answer to the case based on the data and information that you have gathered so far.

Every single consulting firm uses a hypothesis-driven approach when working on projects to solve their clients’ business problems. Therefore, you should also use a hypothesis-driven approach when solving your case interviews.

Having a hypothesis-driven approach is critical to solving a case efficiently. A hypothesis ensures that you are prioritizing the most important issues or questions. It also helps you proactively lead the direction of the case in candidate-led case interviews.

If you can master the practice of developing and refining your hypothesis, you will demonstrate to consulting firms that you have the skills needed to be a successful consultant. You’ll be much more likely to pass your case interviews and receive consulting job offers.

In this article, we’ll cover:

  • Why you should always use a hypothesis-driven approach in your case interviews
  • When you should state your hypothesis during a case interview
  • How specific or broad your hypothesis needs to be
  • What to do if your hypothesis is wrong
  • What to do if your hypothesis is right

If you’re looking for a step-by-step shortcut to learn case interviews quickly, enroll in our case interview course . These insider strategies from a former Bain interviewer helped 30,000+ land consulting offers while saving hundreds of hours of prep time.

Why You Should Always Use a Hypothesis in Case Interviews

There are many reasons why you should use a hypothesis in a case interview.

A hypothesis helps you focus on relevant issues or questions

By having a hypothesis, you have an idea of what questions or issues will be relevant to supporting or rejecting your hypothesis. Therefore, you’ll be spending your time answering questions and conducting analyses that are relevant to getting you closer to solving the case.

If a question or analysis does not help you refine your hypothesis, it is likely not relevant to the case. Without a hypothesis, you’ll have a harder time determining what questions or issues are relevant.

A hypothesis helps you prioritize your time

In a case interview, you won’t have time to answer every question that you can think of. By having a hypothesis, you can focus your time and efforts on answering questions that will help you refine your hypothesis. 

This ensures that all of your time is spent on answering the most important questions of the case. Answering questions that have little impact on your hypothesis should be deprioritized.

A hypothesis helps you steer the direction of the case

With a hypothesis, you’ll always have some kind of idea of what to do next. You can propose answering a question or performing an analysis that would strengthen the support for your hypothesis. You could also propose a next step that would refine your hypothesis and make it more specific.

A hypothesis helps you develop your ultimate recommendation

Throughout the case, your hypothesis is basically a work in progress version of your recommendation. Once you have gathered enough information to support your hypothesis with data and evidence, your hypothesis becomes your recommendation at the end of the case.

By developing a hypothesis early in the case and continuing to refine it, you are getting a head start on developing your recommendation.  

Example of a non-hypothesis driven approach

Let’s see how much of a difference a hypothesis makes when going through a case interview. We’ll start with an example of a candidate solving a case without a hypothesis.

Interviewer : Our client is an airline company that services the United States. They have recently been experiencing a decline in profits. Your task for this case is to identify what is causing the decline in profits and what our client should do to address this issue.

Candidate : Has customer demand for travel decreased over this time?

Interviewer : This does not seem to be the case. Customer demand for travel has actually slightly increased over this time period.

Candidate : That’s interesting. Are there new competitors that have entered the market, thus taking market share from our client?

Interviewer : There are no major competitors that have entered the market.

Candidate : Have our fuel costs gone up?

Interviewer : Prices for fuel have been steady over the past few years.

Candidate : Perhaps demand for business travel has declined?

Interviewer : Yes, we are seeing a decline in business travelers. Let me share with you this exhibit…

Notice how unorganized the candidate’s approach is. It almost feels like the candidate is blindly guessing at what the cause of the decline in profits is. They ask a variety of different questions related to customer demand, competition, fuel costs, and business travel.

The candidate was lucky to eventually guess correctly what was causing the decline in profits. However, if business travel was not the answer, who knows how long it would take for the candidate to finally end up going down the right direction in this case.

Example of a hypothesis driven approach

Let’s look at how differently the case would proceed if the candidate had instead used a hypothesis-driven approach.

Candidate : A decline in profits is either due to a decrease in revenues, an increase in costs, or both. Perhaps the client’s costs have gone up. Do we have any information on how costs have changed over this time period?

Interviewer : Costs have remained flat during this time period.

Candidate : Okay, so an increase in costs is not what is driving a decline in profits. Therefore, the decline in profits is probably driven by a decrease in revenues. Do we have any information on how revenues have changed over this period?

Interviewer : Yes, revenues have gone down. What else would you like to know?

Candidate : Revenues are driven by quantity of tickets sold and price per ticket. Perhaps our client is selling fewer tickets. Do we have information on this?

Interviewer : There are two types of tickets, economy class and business class. Sales of economy tickets have been flat, but sales of business class tickets have gone down.

Candidate : I see. It seems that a decline in business class ticket sales is causing a decline in profits. I’d like to understand why business class ticket sales have declined. First, it’d be helpful to know whether this is an industry-wide problem or a company-specific problem. Have competitors also seen a decline in business class ticket sales?

Interviewer : Let me share with you this exhibit…

Notice that by developing a hypothesis from the beginning, the candidate is able to systematically tackle this case. Instead of blindly asking questions, the candidate methodically asks questions to support or reject their hypothesis.

When the candidate’s initial hypothesis that costs have increased was incorrect, the candidate quickly revised their hypothesis and continued testing it.

Regardless of whether or not the candidate’s hypothesis was correct, each hypothesis brought the candidate closer to the actual answer.

When to State Your Hypothesis in a Case Interview

You should try to state your hypothesis as early as you can in a case interview. Typically, candidates state their hypotheses after presenting their case framework to the interviewer and before proposing which area of their framework to start in.

Interviewer : Our client, Apple, is looking to enter the gaming computer market. Should they enter?

Candidate : Would you mind if I take a moment to develop a structure to tackle this question?

Interviewer : Sure, go ahead.

Candidate : To determine whether or not Apple should enter the gaming market, there are four areas I’d like to look into. 

First, I’d like to look at the gaming computer market attractiveness to see if it is an attractive market to enter. What is the market size and growth rate?

Second, I’d like to look into the competitive landscape to determine if Apple would be able to capture meaningful market share. Who are the competitors and how strong are they?

Third, I’d like to look at Apple’s capabilities to determine if they could successfully produce and launch a gaming computer product. Does Apple have the manufacturing capabilities and design expertise?

Finally, I’d like to look at expected profitability. What are expected revenues and costs from entering this market?

My initial thoughts are that Apple should enter the market because it is likely a large, growing market with decent profit margins. However, I need to confirm whether or not this is true. Do we have further information on the market size or growth rate of the gaming computer market?

Sometimes, you won’t have enough data or information to even make a hypothesis. In these circumstances, you should first explicitly state to the interviewer that you do not have sufficient information to make a well-informed hypothesis. Then, state what information you would first need to know to develop a reasonable hypothesis.

This way, you can demonstrate to the interviewer that you would like to use a hypothesis-driven approach without forcing yourself to make an arbitrary hypothesis.

Once you have gathered further information on the case, you should make a hypothesis as early as possible.

Interviewer : Our client, Coca-Cola, is looking to launch a new drink product. What type of product should they launch?

Candidate : There are many different types of drink products such as soft drinks, teas, coffees, fruit juices, and alcoholic beverages. To better narrow down what type of product Coca-Cola should launch, I’d like to first understand what Coca-Cola’s goals are for launching this product.

Interviewer : Coca-Cola is looking to diversify its revenue streams by expanding into drink categories that are growing rapidly that Coca-Cola does not have a presence in.

Candidate : I do know that healthy drink beverages is a small, but rapidly growing segment. This could be a potential market. However, to be more thorough, I’d like to look at all of the drink categories that Coca-Cola does not have a presence in and compare each categories’ growth rates, average profit margins, and potential synergies with Coca-Cola’s existing capabilities.

Candidate : From looking at this exhibit, it seems that low-calorie alcoholic beverages is the fastest grown segment with the highest margins. There is a reasonable level of production synergies Coca-Cola can take advantage. This seems like an attractive product to launch. 

To confirm my hypothesis, I’d like to see whether Coca-Cola could capture meaningful market share by looking at the competitive landscape. How many competitors are there and how much market share do they each have?

How Specific Your Case Interview Hypothesis Needs to Be

In general, your hypotheses near the beginning of the case will be broad while your hypotheses near the end of the case will be more specific. This makes sense because your hypothesis becomes more and more refined and focused as the case goes on.

Each time that you test your hypothesis, you should be getting slightly closer to the answer. In each of the previous two examples, notice how the hypothesis gets much more specific as the case progresses.

For example, if you are dealing with a  profitability case , the following hypotheses would be too specific to state as your first hypothesis:  

  • The decline in profits could be driven by the recent trade embargo between the United States and China
  • The decline in profits could be driven by a new competitor that has entered the market that is taking market share from our client by charging lower prices
  • The decline in profits could be driven by an increase in costs due to rising foreign currency exchange rates

These are specific hypotheses that are more appropriate near the end of the case interview if the information and data suggests these possibilities.

Conversely, the following hypotheses would be too broad to state near the end of the case interview:  

  • The decline in profits is due to a decline in revenue
  • The decline in profits is due to an increase in costs

These are broad hypotheses that should have been used near the beginning of the case interview as a starting point to narrow down the answer.

What to Do if Your Case Interview Hypothesis is Wrong

If your hypothesis is completely wrong, do not worry. This is not a reflection of your case interview capabilities or skills. Even the best case interview candidates will get their initial hypothesis wrong about 50% of the time.

If your hypothesis is wrong, you will need to develop another hypothesis. Most likely, the direction of the case that you are going down is going to be a dead end. Therefore, you need to be flexible and adaptable in developing a new hypothesis and picking a new direction of the case to pursue.

Here is an example of what this might look like: 

Candidate : I think the decline in profits could be driven by a decrease in revenue. Do we have further information on how revenues have changed over the past few years?

Interviewer : Revenues have remained flat.

Candidate : Okay, then a decline in revenue is not the driver behind the decline in profits. Therefore, I’d like to shift my focus onto costs. If revenue has been flat, costs must have gone up, which is why profits have gone down. Do we have a breakdown of our client’s costs and how they’ve changed over the past few years?

What to Do if Your Case Interview Hypothesis is Right  

If your hypothesis is right, know that you have made a significant step towards solving the case. However, the case does not end just because your hypothesis is correct. The next step is to refine your hypothesis by making it more specific.

Remember, at the end of the case interview, you want to recommend a specific course of action that the client should take.

Your initial hypothesis will likely be a fairly broad statement. Even if your hypothesis is correct, you may not have an idea of a specific course of action the client should take. Therefore, spend the time to hone in on the exact answer.

Here is an example of what this might look like:

Interviewer : Revenues have decreased by 30% over the past few years.

Candidate : Okay, then this means that a decline in revenue is a driver behind the decline in profits. I’d like to identify if there is a particular component of revenue that is responsible. Do we have a breakdown of revenue by some kind of meaningful segmentation?

  Interviewer : Yes, if we break down revenue by country, we see that revenue in China has declined significantly.

Candidate:  Okay, I think we have found the primary driver for the decline in profits. A decline in revenue in China is causing the decline in profits. I’d like to understand why this is happening by looking at customer needs in China, recent competitor moves, and market trends that may be impacting sales.

Land Your Dream Consulting Job

Here are the resources we recommend to land your dream consulting job:

For help landing consulting interviews

  • Resume Review & Editing : Transform your resume into one that will get you multiple consulting interviews

For help passing case interviews

  • Comprehensive Case Interview Course (our #1 recommendation): The only resource you need. Whether you have no business background, rusty math skills, or are short on time, this step-by-step course will transform you into a top 1% caser that lands multiple consulting offers.
  • Case Interview Coaching : Personalized, one-on-one coaching with a former Bain interviewer.
  • Hacking the Case Interview Book   (available on Amazon): Perfect for beginners that are short on time. Transform yourself from a stressed-out case interview newbie to a confident intermediate in under a week. Some readers finish this book in a day and can already tackle tough cases.
  • The Ultimate Case Interview Workbook (available on Amazon): Perfect for intermediates struggling with frameworks, case math, or generating business insights. No need to find a case partner – these drills, practice problems, and full-length cases can all be done by yourself.

For help passing consulting behavioral & fit interviews

  • Behavioral & Fit Interview Course : Be prepared for 98% of behavioral and fit questions in just a few hours. We'll teach you exactly how to draft answers that will impress your interviewer.

Land Multiple Consulting Offers

Complete, step-by-step case interview course. 30,000+ happy customers.

American Psychological Association

Title Page Setup

A title page is required for all APA Style papers. There are both student and professional versions of the title page. Students should use the student version of the title page unless their instructor or institution has requested they use the professional version. APA provides a student title page guide (PDF, 199KB) to assist students in creating their title pages.

Student title page

The student title page includes the paper title, author names (the byline), author affiliation, course number and name for which the paper is being submitted, instructor name, assignment due date, and page number, as shown in this example.

diagram of a student page

Title page setup is covered in the seventh edition APA Style manuals in the Publication Manual Section 2.3 and the Concise Guide Section 1.6

how to make hypothesis in a case study

Related handouts

  • Student Title Page Guide (PDF, 263KB)
  • Student Paper Setup Guide (PDF, 3MB)

Student papers do not include a running head unless requested by the instructor or institution.

Follow the guidelines described next to format each element of the student title page.

Paper title

Place the title three to four lines down from the top of the title page. Center it and type it in bold font. Capitalize of the title. Place the main title and any subtitle on separate double-spaced lines if desired. There is no maximum length for titles; however, keep titles focused and include key terms.

Author names

Place one double-spaced blank line between the paper title and the author names. Center author names on their own line. If there are two authors, use the word “and” between authors; if there are three or more authors, place a comma between author names and use the word “and” before the final author name.

Cecily J. Sinclair and Adam Gonzaga

Author affiliation

For a student paper, the affiliation is the institution where the student attends school. Include both the name of any department and the name of the college, university, or other institution, separated by a comma. Center the affiliation on the next double-spaced line after the author name(s).

Department of Psychology, University of Georgia

Course number and name

Provide the course number as shown on instructional materials, followed by a colon and the course name. Center the course number and name on the next double-spaced line after the author affiliation.

PSY 201: Introduction to Psychology

Instructor name

Provide the name of the instructor for the course using the format shown on instructional materials. Center the instructor name on the next double-spaced line after the course number and name.

Dr. Rowan J. Estes

Assignment due date

Provide the due date for the assignment. Center the due date on the next double-spaced line after the instructor name. Use the date format commonly used in your country.

October 18, 2020
18 October 2020

Use the page number 1 on the title page. Use the automatic page-numbering function of your word processing program to insert page numbers in the top right corner of the page header.

1

Professional title page

The professional title page includes the paper title, author names (the byline), author affiliation(s), author note, running head, and page number, as shown in the following example.

diagram of a professional title page

Follow the guidelines described next to format each element of the professional title page.

Paper title

Place the title three to four lines down from the top of the title page. Center it and type it in bold font. Capitalize of the title. Place the main title and any subtitle on separate double-spaced lines if desired. There is no maximum length for titles; however, keep titles focused and include key terms.

Author names

 

Place one double-spaced blank line between the paper title and the author names. Center author names on their own line. If there are two authors, use the word “and” between authors; if there are three or more authors, place a comma between author names and use the word “and” before the final author name.

Francesca Humboldt

When different authors have different affiliations, use superscript numerals after author names to connect the names to the appropriate affiliation(s). If all authors have the same affiliation, superscript numerals are not used (see Section 2.3 of the for more on how to set up bylines and affiliations).

Tracy Reuter , Arielle Borovsky , and Casey Lew-Williams

Author affiliation

 

For a professional paper, the affiliation is the institution at which the research was conducted. Include both the name of any department and the name of the college, university, or other institution, separated by a comma. Center the affiliation on the next double-spaced line after the author names; when there are multiple affiliations, center each affiliation on its own line.

 

Department of Nursing, Morrigan University

When different authors have different affiliations, use superscript numerals before affiliations to connect the affiliations to the appropriate author(s). Do not use superscript numerals if all authors share the same affiliations (see Section 2.3 of the for more).

Department of Psychology, Princeton University
Department of Speech, Language, and Hearing Sciences, Purdue University

Author note

Place the author note in the bottom half of the title page. Center and bold the label “Author Note.” Align the paragraphs of the author note to the left. For further information on the contents of the author note, see Section 2.7 of the .

n/a

The running head appears in all-capital letters in the page header of all pages, including the title page. Align the running head to the left margin. Do not use the label “Running head:” before the running head.

Prediction errors support children’s word learning

Use the page number 1 on the title page. Use the automatic page-numbering function of your word processing program to insert page numbers in the top right corner of the page header.

1

Cart

  • SUGGESTED TOPICS
  • The Magazine
  • Newsletters
  • Managing Yourself
  • Managing Teams
  • Work-life Balance
  • The Big Idea
  • Data & Visuals
  • Reading Lists
  • Case Selections
  • HBR Learning
  • Topic Feeds
  • Account Settings
  • Email Preferences

Embracing Gen AI at Work

  • H. James Wilson
  • Paul R. Daugherty

how to make hypothesis in a case study

The skills you need to succeed in the era of large language models

Today artificial intelligence can be harnessed by nearly anyone, using commands in everyday language instead of code. Soon it will transform more than 40% of all work activity, according to the authors’ research. In this new era of collaboration between humans and machines, the ability to leverage AI effectively will be critical to your professional success.

This article describes the three kinds of “fusion skills” you need to get the best results from gen AI. Intelligent interrogation involves instructing large language models to perform in ways that generate better outcomes—by, say, breaking processes down into steps or visualizing multiple potential paths to a solution. Judgment integration is about incorporating expert and ethical human discernment to make AI’s output more trustworthy, reliable, and accurate. It entails augmenting a model’s training sources with authoritative knowledge bases when necessary, keeping biases out of prompts, ensuring the privacy of any data used by the models, and scrutinizing suspect output. With reciprocal apprenticing, you tailor gen AI to your company’s specific business context by including rich organizational data and know-how into the commands you give it. As you become better at doing that, you yourself learn how to train the AI to tackle more-sophisticated challenges.

The AI revolution is already here. Learning these three skills will prepare you to thrive in it.

Generative artificial intelligence is expected to radically transform all kinds of jobs over the next few years. No longer the exclusive purview of technologists, AI can now be put to work by nearly anyone, using commands in everyday language instead of code. According to our research, most business functions and more than 40% of all U.S. work activity can be augmented, automated, or reinvented with gen AI. The changes are expected to have the largest impact on the legal, banking, insurance, and capital-market sectors—followed by retail, travel, health, and energy.

  • H. James Wilson is the global managing director of technology research and thought leadership at Accenture Research. He is the coauthor, with Paul R. Daugherty, of Human + Machine: Reimagining Work in the Age of AI, New and Expanded Edition (HBR Press, 2024). hjameswilson
  • Paul R. Daugherty is Accenture’s chief technology and innovation officer. He is the coauthor, with H. James Wilson, of Human + Machine: Reimagining Work in the Age of AI, New and Expanded Edition (HBR Press, 2024). pauldaugh

Partner Center

Information

  • Author Services

Initiatives

You are accessing a machine-readable page. In order to be human-readable, please install an RSS reader.

All articles published by MDPI are made immediately available worldwide under an open access license. No special permission is required to reuse all or part of the article published by MDPI, including figures and tables. For articles published under an open access Creative Common CC BY license, any part of the article may be reused without permission provided that the original article is clearly cited. For more information, please refer to https://www.mdpi.com/openaccess .

Feature papers represent the most advanced research with significant potential for high impact in the field. A Feature Paper should be a substantial original Article that involves several techniques or approaches, provides an outlook for future research directions and describes possible research applications.

Feature papers are submitted upon individual invitation or recommendation by the scientific editors and must receive positive feedback from the reviewers.

Editor’s Choice articles are based on recommendations by the scientific editors of MDPI journals from around the world. Editors select a small number of articles recently published in the journal that they believe will be particularly interesting to readers, or important in the respective research area. The aim is to provide a snapshot of some of the most exciting work published in the various research areas of the journal.

Original Submission Date Received: .

  • Active Journals
  • Find a Journal
  • Proceedings Series
  • For Authors
  • For Reviewers
  • For Editors
  • For Librarians
  • For Publishers
  • For Societies
  • For Conference Organizers
  • Open Access Policy
  • Institutional Open Access Program
  • Special Issues Guidelines
  • Editorial Process
  • Research and Publication Ethics
  • Article Processing Charges
  • Testimonials
  • Preprints.org
  • SciProfiles
  • Encyclopedia

information-logo

Article Menu

how to make hypothesis in a case study

  • Subscribe SciFeed
  • Recommended Articles
  • Google Scholar
  • on Google Scholar
  • Table of Contents

Find support for a specific problem in the support section of our website.

Please let us know what you think of our products and services.

Visit our dedicated information section to learn more about MDPI.

JSmol Viewer

Performance management decision-making model: case study on foreign language learning curriculums.

how to make hypothesis in a case study

1. Introduction

2. literature review, 2.1. questionnaire and pem, 2.2. index setting and statistical testing, 3. research methods, 4. an applied example, 5. conclusions, author contributions, informed consent statement, data availability statement, conflicts of interest.

  • Li, R. Research trends of blended language learning: A bibliometric synthesis of SSCI-indexed journal articles during 2000–2019. ReCALL 2022 , 34 , 309–326. [ Google Scholar ] [ CrossRef ]
  • Li, X.; Huang, X. Improvement and Optimization Method of College English Teaching Level Based on Convolutional Neural Network Model in an Embedded Systems Context. Comput. Aided Des. Appl. 2024 , 21 , 212–227. [ Google Scholar ] [ CrossRef ]
  • Graham, K.M.; Yeh, Y.F. Teachers’ implementation of bilingual education in Taiwan: Challenges and arrangements. Asia Pac. Educ. Rev. 2023 , 24 , 461–472. [ Google Scholar ] [ CrossRef ]
  • Chen, S.H. Establishment of a Performance-Evaluation Model for Service Quality in the Banking Industry. Serv. Ind. J. 2009 , 29 , 235–247. [ Google Scholar ] [ CrossRef ]
  • Marković, S.; Janković, S.R. Exploring the relationship between service quality and customer satisfaction in croatian hotel industry. Tour. Hosp. Manag.-Croat. 2013 , 19 , 149–164. [ Google Scholar ] [ CrossRef ]
  • Yang, C.C. Establishment and applications of the integrated model of service quality measurement. Manag. Serv. Qual. 2003 , 13 , 310–324. [ Google Scholar ] [ CrossRef ]
  • Wong, R.C.P.; Szeto, W.Y. An alternative methodology for evaluating the service quality of urban taxis. Transp. Policy 2018 , 69 , 132–140. [ Google Scholar ] [ CrossRef ]
  • Martínez-Caro, E.; Cegarra-Navarro, J.G.; Cepeda-Carrión, G. An application of the performance-evaluation model for e-learning quality in higher education. Total Qual. Manag. Bus. Excell. 2015 , 26 , 632–647. [ Google Scholar ] [ CrossRef ]
  • Mustafa, H.; Omar, B.; Mukhiar, S.N.S. Measuring destination competitiveness: An importance-performance analysis (IPA) of six top island destinations in South East Asia. Asia Pac. J. Tour. Res. 2020 , 25 , 223–243. [ Google Scholar ] [ CrossRef ]
  • Pai, F.Y.; Yeh, T.M. Effective implementation for introducing ISO/TS 16949 in semiconductor manufacturing industries, Total Qual. Manag. Bus. Excell. 2013 , 24 , 462–478. [ Google Scholar ] [ CrossRef ]
  • Jeng, M.Y.; Yeh, T.M.; Pai, F.Y. A Performance Evaluation Matrix for Measuring the Life Satisfaction of Older Adults Using eHealth Wearables. Healthcare 2022 , 10 , 605. [ Google Scholar ] [ CrossRef ]
  • Kucukaltan, B.; Irani, Z.; Aktas, E. A decision support model for identification and prioritization of key performance indicators in the logistics industry. Comput. Hum. Behav. 2016 , 65 , 346–358. [ Google Scholar ] [ CrossRef ]
  • Yu, C.M.; Chang, H.T.; Hsu, S.Y. An assessment of quality and quantity for foreign language training course to enhance students’ learning effectiveness. Int. J. Inf. Manag. Sci. 2017 , 28 , 53–66. [ Google Scholar ]
  • Yeh, L.C.; Tung, C.C.; Yang, S.Y.; Chen, J.H.; Shiau, F.H. The Development of the University Teacher Instructional Evaluation Scale. Psychol. Test. 2005 , 52 , 59–82. [ Google Scholar ]
  • Lambert, D.M.; Sharma, A. A customer-based competitive analysis for logistics decisions. Int. J. Phys. Distrib. Logist. Manag. 1990 , 20 , 17–24. [ Google Scholar ] [ CrossRef ]
  • Hung, Y.H.; Huang, M.L.; Chen, K.S. Service Quality Evaluation by Service Quality Performance Matrix. Total Qual. Manag. Bus. Excell. 2003 , 14 , 79–89. [ Google Scholar ] [ CrossRef ]
  • Yu, C.M.; Chang, H.T.; Chen, K.S. Developing a performance evaluation matrix to enhance the learner satisfaction of an e-learning system. Total Qual. Manag. Bus. Excell. 2018 , 29 , 727–745. [ Google Scholar ] [ CrossRef ]
  • Li, Y.; Wang, L.; Li, F. A data-driven prediction approach for sports team performance and its application to national basketball association. Omega 2021 , 98 , 102123. [ Google Scholar ] [ CrossRef ]
  • Nam, S.; Lee, H.C. A text analytics-based importance performance analysis and its application to airline service. Sustainability 2019 , 11 , 6153. [ Google Scholar ] [ CrossRef ]
  • Wu, J.; Wang, Y.; Zhang, R.; Cai, J. An approach to discovering product/service improvement priorities: Using dynamic importance-performance analysis. Sustainability 2018 , 10 , 3564. [ Google Scholar ] [ CrossRef ]
  • Gutierrez, D.M.; Scavarda, L.F.; Fiorencio, L.; Martins, R.A. Evolution of the performance measurement system in the logistics department of a broadcasting company: An a.ction research. Int. J. Prod. Econ. 2015 , 160 , 1–12. [ Google Scholar ] [ CrossRef ]
  • Rodriguez, R.R.; Saiz, J.J.A.; Bas, A.O. Quantitative relationships between key performance indicators for supporting decision-making processes. Comput. Ind. 2009 , 60 , 104–113. [ Google Scholar ] [ CrossRef ]
  • Cheng, S.W. Practical implementation of the process capability indices. Qual. Eng. 1994 , 7 , 239–259. [ Google Scholar ] [ CrossRef ]
  • Xu, Y.; Zhang, X.; Meng, P. A novel intelligent deep learning-based uncertainty-guided network training in market price. IEEE Trans. Ind. Inform. 2022 , 18 , 5705–5711. [ Google Scholar ] [ CrossRef ]
  • Chen, H.Y.; Lin, K.P. Fuzzy supplier selection model based on lifetime performance index. Expert Syst. Appl. 2022 , 208 , 118135. [ Google Scholar ] [ CrossRef ]
  • Durmuş, V. Does the healthcare decentralization provide better public health security capacity and health services satisfaction? An analysis of OECD countries. J. Health Organ. Manag. 2024 , 38 , 209–226. [ Google Scholar ] [ CrossRef ]
  • Syafrudin, M.; Alfian, G.; Fitriyani, N.L.; Rhee, J. Performance analysis of IoT-based sensor, big data processing, and machine learning model for real-time monitoring system in automotive manufacturing. Sensors 2018 , 18 , 2946. [ Google Scholar ] [ CrossRef ]
  • Gopalakrishnan, S.; Kumaran, M.S. Iiot framework based ml model to improve automobile industry product. Intell. Autom. Soft Comput. 2022 , 31 , 1435–1449. [ Google Scholar ] [ CrossRef ]

Click here to enlarge figure

DimensionItem j Zone
Dimension 1: teaching preparation1 Z
2 Z
j Z
Dimension 5: coursework and evaluation
DimensionItem Zone
Dimension 110.180.160.20
20.060.040.08
30.120.100.14
40.190.180.20
Dimension 250.090.070.11
60.370.350.39
7−0.38−0.39−0.37
80.230.210.25
9−0.01−0.030.01
Dimension 3100.020.000.04
110.050.030.07
Dimension 412−0.45−0.46−0.44
130.090.070.11
140.210.190.23
Dimension 5150.01−0.010.03
16−0.02−0.040.00
The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

Chen, K.-S.; Yu, C.-M.; Yu, C.-H.; Chen, Y.-P. Performance Management Decision-Making Model: Case Study on Foreign Language Learning Curriculums. Information 2024 , 15 , 481. https://doi.org/10.3390/info15080481

Chen K-S, Yu C-M, Yu C-H, Chen Y-P. Performance Management Decision-Making Model: Case Study on Foreign Language Learning Curriculums. Information . 2024; 15(8):481. https://doi.org/10.3390/info15080481

Chen, Kuen-Suan, Chun-Min Yu, Chun-Hung Yu, and Yen-Po Chen. 2024. "Performance Management Decision-Making Model: Case Study on Foreign Language Learning Curriculums" Information 15, no. 8: 481. https://doi.org/10.3390/info15080481

Article Metrics

Article access statistics, further information, mdpi initiatives, follow mdpi.

MDPI

Subscribe to receive issue release notifications and newsletters from MDPI journals

  • Contributors

Shopify and the Problem of Shareholder “Approval” at Multi-Class Companies

how to make hypothesis in a case study

Oren Lida is an Analyst and Dimitri Zagoroff is a Senior Editor at Glass, Lewis & Co. This post is based on their Glass Lewis memorandum.

Media reporting can make proxy season seem more dramatic than it is. While breathless coverage of board strife, impossibly high executive pay figures and shareholder activism at well-known companies is the norm, the overwhelming majority of director election and executive compensation proposals pass with majorities of 90% and upwards.

The handful of proposals that fail understandably draw headlines – yet many proposals opposed by a majority of shareholders fly under the radar. That’s because (with some  notable exceptions ) most reporting fails to acknowledge how multi-class share structures, which give certain shares typically held by founders and insiders more voting power than those held by institutional and retail investors, obscure investor sentiment.

Proxy voting is highly technical in and of itself, and its ultimate influence on how companies are run is even more complicated. So why does the impact of multi-class share structures matter? Because giving insiders and founders disproportionate voting power often serves to effectively silence ordinary shareholders, threatens the agency and objectivity of the board and removes a key safeguard against excessive pay, related party transactions, and other potential misuses of investor capital.

In this post, we look at how inequitable voting rights influenced 2024 AGM results at Shopify, and at the broader impact of multi-class share structures on the board and its role.

Case Study: Shopify Inc.

Two years ago, Shopify  controversially  implemented a “founder share” that gave CEO Tobi Lutke 40% voting rights indefinitely, even if his actual economic stake in the company goes down as low as ~2%. A majority of the company’s shares were voted against this arrangement – but because not all of the company’s shares had the same voting power, the founder share was nonetheless granted to Lutke.

At the 2024 AGM, Shopify’s now-cemented triple-class share structure again swung the vote on several proposals. Yet, as in 2022, most media coverage of the general meeting painted an incomplete picture of the results. A Financial Post headline on the day of the meeting  read  “Shopify shareholders approve executive pay plan they were urged to reject” while thelogic.co  reported  “Shopify shareholders approve executive pay plan, rejecting proxy push.” Shopify’s subsequent filings announced that all agenda items had been approved.

Like two years ago, the word “approve” is doing a lot of lifting.

According to S&P Capital IQ, institutional investors currently hold 815,336,783 shares in Shopify, or 63.3% of the economic exposure to the company’s share price performance. This translates into roughly 40% voting power, equivalent to that of the founder-CEO who only holds 6.2% of company’s total outstanding equity.

If the multi-class structure were collapsed and all shares voted on a one-to-one basis, the results indicate that well under half of shareholders supported the pay proposals, with support ranging from 34% for the option plan to 45% for the advisory say on pay. Meanwhile, we calculate that the re-election of director Gail Goodman would only have received 57% support.

how to make hypothesis in a case study

Impact on the Board

Given that Gail Goodman chairs Shopify’s compensation committee, it’s likely that shareholder opposition to her re-election stemmed from the same concerns that prompted a majority of them to reject the company’s option plan, LTIP and Say on Pay. However, her re-election is notable in and of itself, if only because this outcome was all but assured. For so long as the founder share exists, the election of any Shopify director favored by the CEO is effectively guaranteed, thanks to the effective control that 40% of voting power represents in practice.

This calls attention to the paradox of ‘independent’ directors on multi-class company boards: though they theoretically represent the interests of all shareholders, in practice only the superior voter can remove them from the board. The  board contest  that unfolded at Rogers Communications in late 2021, and regressing standards of its board’s independence in the years since, serves as a case in point.

The same issues arise at controlled companies with a single share class — but in those cases, where one share equals one vote, the alignment of voting and economic power serves to (somewhat) align the controlling party’s interest with that of the company as a whole. By contrast, under a multi-class structure, voting control doesn’t require a commensurate level of economic exposure, exacerbating the potential for conflicts between the long-term health of the business and the best interests of the “controlling” party.

Impact on Pay

The impact of this imbalanced power structure on the effectiveness of directors is perhaps most clearly evident in the negotiation of executive pay packages. Independent boards, usually in the form of a compensation or human resources sub-committee, are effectively tasked with negotiating on behalf of the company and its owners opposite the CEO. The board is buying CEO services. It needs to make an offer that the desired executive will accept.

The compensation package typically comprises company cash, stock and perquisites – however, that’s not all that’s on offer. Beyond their financial remuneration, founders at companies like Shopify enjoy a special relationship with the business, a stature, and an employment arrangement, that they could likely not achieve anywhere else without dedicating years. Theoretically, this unique wad of organizational capital should put the board in a strong position when negotiating CEO services.

However, Shopify’s negotiations earlier this year resulted in a new 9-figure grant to the CEO, who already owns over 6% of the business. The compensation committee explained in its 2024 proxy circular that this new mega-grant serves “to empower Mr. Lütke to focus on driving sustained performance” and that the dollar value of the award was reached after “reviewing various factors, including the annual CEO pay level of our compensation comparator group.” In making the comparison, the committee does not appear to have even considered that Mr. Lütke enjoys a far more privileged position than many of the other CEOs in Shopify’s compensation peer group.

Paradoxically, the astronomical incentives offered at Shopify, as well as at other multi-class companies like GFL Environmental (where, after factoring out superior voting shares, the latest say on pay barely received majority support), imply an executive on the verge of being tempted away by better offers – or, more realistically, a captive board that has difficulty pushing back on the CEO or fully representing the interests of other shareholders.

This all raises a worthwhile question of what type of negotiation occurs between an independent compensation committee and a CEO who ultimately has the final say on those same directors’ re-election; a perk which could not be swiftly replicated at any competitor companies.

Impact on Transparency

It’s notable that we had to perform the above calculations to untangle vote results ourselves. Even proponents of multi-class share structures, like the Institute for Governance of Private and Public Organizations (“IGOPP”) in Canada (see “Policy Paper No. 11: The Case for Dual-Class of Shares”, 2019), call for companies to disclose a breakdown of their voting results so that shareholders can more easily isolate the effect of the superior voting shares. The failure to provide such disclosure indicates that companies see value in opacity, and that directors who effectively owe their seat to the grace of the CEO are not in a position to extract even modest concessions.

Aligning Risks & Rewards

At least some of the muffled shareholder opposition to Shopify’s compensation proposals likely reflected the significant level of economic dilution that (most) of the company’s investors are exposed to as a result of equity grants, with the long-term incentive plans allowing for the issuance of up to 31% of issued share capital. Thanks to the founder share, Lutke effectively hasn’t had to absorb the impact of these issuances, since his minimum 40% voting power cannot be reduced by the new equity. This illustrates how “one share one vote” isn’t just a matter of fairness. Equitable voting rights align interests by exposing different parties to the same externalities, supporting the mutual accountability that itself underlies the corporate governance triangle. When certain parties are artificially insulated from certain externalities, such as the dilution that results from new issuances, perverse outcomes can occur.

North American corporate boards are already more insulated than those in other developed capital markets when it comes to the freedom to set executive compensation; like at U.S. listed companies, Canadian say-on-pay proposals are retrospective and advisory. More often than not, the CEO serves as board chair. In spite of relatively weak safeguards, shareholders at companies with ordinary capital structures can – and occasionally do – act as a backstop by coalescing against what they perceive to be problematic governance or excessive pay practices.  However, as shown above, at multi-class companies their ability to do so is effectively curtailed.

The retort to one-share, one-vote proponents is often to say that shareholders vote with their feet and could divest if they are unhappy with such a company’s governance or performance. This ignores that many institutional investors and their fiduciaries are invested through passive funds and may therefore not have an active choice, so long as the index does not exclude multi-class companies.

Investors increasingly appear to be taking notice of multi-class share structures, and the need for transparent disclosure. Earlier this year, a proposal calling for Meta Platforms (whose founder maintains majority voting control despite owning less than 15% of the equity ) to provide a class-by-class breakdown of its voting results received 17% support – or roughly 45% on a one-to-one basis. Similar proposals have gone to a vote at Bombardier, CGI, Power Corporation of Canada and Alimentation Couche-Tard.

Of course, with company filings and press reporting often failing to acknowledge the existence of these structures, let alone their impact, it’s possible that some shareholders aren’t even aware of the issue.

Post a Comment

Your email is never published nor shared. Required fields are marked *

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <s> <strike> <strong>

Supported By:

how to make hypothesis in a case study

Subscribe or Follow

Program on corporate governance advisory board.

  • William Ackman
  • Peter Atkins
  • Kerry E. Berchem
  • Richard Brand
  • Daniel Burch
  • Arthur B. Crozier
  • Renata J. Ferrari
  • John Finley
  • Carolyn Frantz
  • Andrew Freedman
  • Byron Georgiou
  • Joseph Hall
  • Jason M. Halper
  • David Millstone
  • Theodore Mirvis
  • Maria Moats
  • Erika Moore
  • Morton Pierce
  • Philip Richter
  • Elina Tetelbaum
  • Marc Trevino
  • Steven J. Williams
  • Daniel Wolf

HLS Faculty & Senior Fellows

  • Lucian Bebchuk
  • Robert Clark
  • John Coates
  • Stephen M. Davis
  • Allen Ferrell
  • Jesse Fried
  • Oliver Hart
  • Howell Jackson
  • Kobi Kastiel
  • Reinier Kraakman
  • Mark Ramseyer
  • Robert Sitkoff
  • Holger Spamann
  • Leo E. Strine, Jr.
  • Guhan Subramanian
  • Roberto Tallarita

IMAGES

  1. Research Hypothesis: Definition, Types, Examples and Quick Tips

    how to make hypothesis in a case study

  2. How to Write a Hypothesis

    how to make hypothesis in a case study

  3. How to Write a Strong Hypothesis in 6 Simple Steps

    how to make hypothesis in a case study

  4. Best Example of How to Write a Hypothesis 2024

    how to make hypothesis in a case study

  5. How to write a hypothesis

    how to make hypothesis in a case study

  6. Research Hypothesis Examples / Hypothesis example

    how to make hypothesis in a case study

COMMENTS

  1. How to Write a Strong Hypothesis

    Developing a hypothesis (with example) Step 1. Ask a question. Writing a hypothesis begins with a research question that you want to answer. The question should be focused, specific, and researchable within the constraints of your project. Example: Research question.

  2. How to Write a Strong Hypothesis

    Step 4: Refine your hypothesis. You need to make sure your hypothesis is specific and testable. There are various ways of phrasing a hypothesis, but all the terms you use should have clear definitions, and the hypothesis should contain: The relevant variables. The specific group being studied.

  3. What is the Correct Way to Write a Hypothesis? Expert Tips and Example

    Identifying the Research Question. The first step in formulating a strong hypothesis is to identify the main research question. This involves recognizing a pattern or phenomenon that piques your interest and then asking a specific question that your hypothesis will aim to answer. This step is crucial as it sets the direction for your targeted ...

  4. How to Write a Strong Hypothesis in 6 Simple Steps

    Learn how to make your hypothesis strong step-by-step here. Learning how to write a hypothesis comes down to knowledge and strategy. So where do you start? Learn how to make your hypothesis strong step-by-step here. ... This will come in the form of case studies and academic journals, as well as your own experiments and observations.

  5. Formulating Hypotheses for Different Study Designs

    Formulating Hypotheses for Different Study Designs. Generating a testable working hypothesis is the first step towards conducting original research. Such research may prove or disprove the proposed hypothesis. Case reports, case series, online surveys and other observational studies, clinical trials, and narrative reviews help to generate ...

  6. What is a Research Hypothesis: How to Write it, Types, and Examples

    It seeks to explore and understand a particular aspect of the research subject. In contrast, a research hypothesis is a specific statement or prediction that suggests an expected relationship between variables. It is formulated based on existing knowledge or theories and guides the research design and data analysis. 7.

  7. Research Hypothesis: Definition, Types, Examples and Quick Tips

    3. Simple hypothesis. A simple hypothesis is a statement made to reflect the relation between exactly two variables. One independent and one dependent. Consider the example, "Smoking is a prominent cause of lung cancer." The dependent variable, lung cancer, is dependent on the independent variable, smoking. 4.

  8. How to Write a Hypothesis in 6 Steps, With Examples

    It's essentially an educated guess—based on observations—of what the results of your experiment or research will be. Some hypothesis examples include: If I water plants daily they will grow faster. Adults can more accurately guess the temperature than children can. Butterflies prefer white flowers to orange ones.

  9. How to Write a Research Hypothesis

    A good research hypothesis is a clear statement of the relationship between a dependent variable(s) and independent variable(s) relevant to the study that can be disproven. Research hypothesis checklist. Once you've written a possible hypothesis, make sure it checks the following boxes: It must be testable: You need a means to prove your ...

  10. What is a Research Hypothesis and How to Write a Hypothesis

    The steps to write a research hypothesis are: 1. Stating the problem: Ensure that the hypothesis defines the research problem. 2. Writing a hypothesis as an 'if-then' statement: Include the action and the expected outcome of your study by following a 'if-then' structure.

  11. What is and How to Write a Good Hypothesis in Research?

    An effective hypothesis in research is clearly and concisely written, and any terms or definitions clarified and defined. Specific language must also be used to avoid any generalities or assumptions. Use the following points as a checklist to evaluate the effectiveness of your research hypothesis: Predicts the relationship and outcome.

  12. How To Write a Strong Research Hypothesis

    Case studies may offer greater depth in understanding a specific phenomenon's cause and effect; research projects may yield results that confirm or refute existing theories on a subject. In addition to these traditional forms of evidence, personal experiences or observations can also help to support a hypothesis.

  13. How to Write a Hypothesis

    1. Develop a Question. When writing a hypothesis, the first thing is to develop a research question that you want to answer in your research. The question that you will formulate should be specific, focused, and researchable within the constraints of your assignment. 2.

  14. Hypothesis: Definition, Examples, and Types

    A hypothesis is a tentative statement about the relationship between two or more variables. It is a specific, testable prediction about what you expect to happen in a study. It is a preliminary answer to your question that helps guide the research process. Consider a study designed to examine the relationship between sleep deprivation and test ...

  15. Case Study Method: A Step-by-Step Guide for Business Researchers

    Although case studies have been discussed extensively in the literature, little has been written about the specific steps one may use to conduct case study research effectively (Gagnon, 2010; Hancock & Algozzine, 2016).Baskarada (2014) also emphasized the need to have a succinct guideline that can be practically followed as it is actually tough to execute a case study well in practice.

  16. What Is a Hypothesis and How Do I Write One? · PrepScholar

    Merriam Webster defines a hypothesis as "an assumption or concession made for the sake of argument.". In other words, a hypothesis is an educated guess. Scientists make a reasonable assumption--or a hypothesis--then design an experiment to test whether it's true or not.

  17. How to Write a Hypothesis: 5 Simple Steps & Examples

    Step 1. Generate a Question Before Writing Your Hypothesis. At the first stage of writing a hypothesis for a research paper you must define a research question that you need to answer. It should be focused on particular problem. Try to make it specific and yet suitable for research within framework of your project.

  18. Case Study Methods and Examples

    The purpose of case study research is twofold: (1) to provide descriptive information and (2) to suggest theoretical relevance. Rich description enables an in-depth or sharpened understanding of the case. It is unique given one characteristic: case studies draw from more than one data source. Case studies are inherently multimodal or mixed ...

  19. Case Study

    Case studies can help lawyers, policymakers, and ethical professionals to develop critical thinking skills, analyze complex cases, and make informed decisions. Purpose of Case Study. The purpose of a case study is to provide a detailed analysis of a specific phenomenon, issue, or problem in its real-life context. A case study is a qualitative ...

  20. Writing a Case Study

    In-depth analysis of a case can be based on the hypothesis that the case study will reveal trends or issues that have not been exposed in prior research or will reveal new and important implications for practice. For example, anecdotal evidence may suggest drug use among homeless veterans is related to their patterns of travel throughout the ...

  21. What I learned at McKinsey: How to be hypothesis-driven

    McKinsey consultants follow three steps in this cycle: Form a hypothesis about the problem and determine the data needed to test the hypothesis. Gather and analyze the necessary data, comparing ...

  22. How to Use a Hypothesis to Crush Your Case Interviews

    A hypothesis helps you develop your ultimate recommendation. Throughout the case, your hypothesis is basically a work in progress version of your recommendation. Once you have gathered enough information to support your hypothesis with data and evidence, your hypothesis becomes your recommendation at the end of the case.

  23. What Is A Hypothesis?

    Hypothesis Definition. In the context of a consulting interview, a hypothesis definition is "a testable statement that needs further data for verification". In other words, the meaning of a hypothesis is that it's an educated guess that you think could be the answer to your client's problem. A hypothesis is therefore not always true.

  24. Title page setup

    The student title page includes the paper title, author names (the byline), author affiliation, course number and name for which the paper is being submitted, instructor name, assignment due date, and page number, as shown in this example.

  25. Correcting misconceptions

    To further complicate matters, science textbooks frequently misuse the term in a slightly different way. They may ask students to make a hypothesis about the outcome of an experiment (e.g., table salt will dissolve in water more quickly than rock salt will). This is simply a prediction or a guess (even if a well-informed one) about the outcome ...

  26. Embracing Gen AI at Work

    Summary. Today artificial intelligence can be harnessed by nearly anyone, using commands in everyday language instead of code. Soon it will transform more than 40% of all work activity, according ...

  27. Performance Management Decision-Making Model: Case Study on Foreign

    Foreign language learning courses can be regarded as a service operation system, and a complete foreign language learning course performance evaluation model can help improve the effectiveness of student learning. The performance evaluation matrix (PEM) is an excellent tool for evaluation and resource management decision making, and the administrator uses the satisfaction and the importance ...

  28. Shopify and the Problem of Shareholder "Approval" at Multi-Class Companies

    Case Study: Shopify Inc. Two years ago, Shopify controversially implemented a "founder share" that gave CEO Tobi Lutke 40% voting rights indefinitely, even if his actual economic stake in the company goes down as low as ~2%. A majority of the company's shares were voted against this arrangement - but because not all of the company's ...