The Disadvantages of Critical Thinking: Don’t Overthink It

Sometimes, critical thinking can lead us to spend too much time and energy on analyzing every detail and possibility of a situation, which can cause stress. Overthinking can also prevent us from taking action or trusting our intuition when it is appropriate. And also make us focus on the flaws, risks, and weaknesses of an idea or a solution, rather than on its strengths, benefits, and opportunities. This can lead to a pessimistic or cynical attitude that can affect our motivation and creativity. Emphasizing the negative can also make us overlook or dismiss positive feedback. It's our duty to identify them and take actions.

what are the limitations of critical thinking

Sanju Pradeepa

Disadvantages of critical thinking

We’ve all had moments when we spent more time thinking than acting. And that’s usually because we got caught up in the process of critical thinking. It’s not necessarily a bad thing to indulge in. After all, it makes us analyze our decisions, weigh the pros and cons, and come out with a conclusion that is backed by facts and data.

But what if there’s a downside to critical thinking? To be clear, this isn’t an attempt to convince you to just go with your gut feeling all the time. Instead, this article is intended to provide perspective on how excessive overthinking can hinder your progress instead of helping you make an informed decision.

We’ll cover why using critical thinking too much can lead to poor decision-making, how it affects your stress levels, and when it matters most. So don’t overthink it. Let’s dive in and explore the disadvantages of critical thinking together.

Table of Contents

What is critical thinking.

Critical thinking is a term you’ve probably heard bandied about, but what does it actually mean? In short, it’s a way of examining information and forming opinions or judgments based on the evidence at hand.

It’s the ability to take an analytical approach to a problem. This means that critical thinking involves analyzing information in order to form an opinion and then continuing to assess the data in order to challenge and modify that opinion.

At its best, critical thinking can lead to more informed decisions and more effective problem-solving. But there are also some disadvantages to this method of thinking. Read on for more information.

Let’s know more about Critical Thinking – 7 Types of Critical Thinking: A Guide to Analyzing Problems

Disadvantages of Critical Thinking, When You Have Too Much

We all value the power of critical thinking; it’s an invaluable skill to have in any field. But like anything, too much of a good thing can be a problem.

When we overthink things and become overly critical, the consequences can be significant. Often, it can prevent us from making decisions in a timely manner, if at all. It can also lead to missed opportunities, as we become paralyzed by our analysis and fail to seize the moment.

Furthermore, analysis paralysis can lead to high levels of stress and anxiety as we struggle to make up our minds on a given subject or action. We might even fail to recognize the real risks at hand when focusing too much on minor details and missing out on what matters most for successful outcomes.

The takeaway here is that being critical is valuable but remember to balance it with intuition and trust your instincts before you get too deep into overthinking things.

1. Difficulty in Decision-Making

Disadvantages of Critical Thinking-Difficulty in Decision-Making

One of the biggest disadvantages of critical thinking is that it can be difficult to make decisions. Because critical thinkers are constantly analyzing and evaluating data to draw conclusions, this can be a time-consuming process.

Even after all the facts and evidence have been gathered, it can take a long time to weigh the pros and cons of each option before making the best decision possible. This means that in some cases, a critical thinker will not be able to make a decision quickly or easily.

On top of that, if there is not enough data or information available about a particular decision, it can be even harder for a critical thinker to come up with a solid solution in an efficient manner. This can cause even more delays in decision-making and may lead to frustration as well as inadequate solutions.

2. You might be overthinking every situation.

Disadvantages of Critical Thinking- You might be overthinking every situation

When you engage in critical thinking, you may find yourself overthinking every situation and making an issue out of things that don’t need your attention. Going back to our earlier example, if you were to critically analyze the situation of your friend sleeping at your house, you might start to worry about the extra resources it may consume or about how it may affect your relationship. While this could be true, it might also be a bit excessive. In certain situations, it’s better to accept certain things and not overthink them.

This is one of the most common disadvantages of critical thinking: overthinking can lead to analysis paralysis, where one is so focused on analyzing a situation that one becomes unable to make any decisions at all. This can lead to frustration and decreased productivity as no progress is made. Additionally, engaging in too much critical thinking can lead to stress and burnout , which are both counterproductive in any situation.

Therefore, while it’s important to engage in critical thinking when necessary and appropriate, it’s also important not to overdo it. Otherwise, the outcomes you’re hoping for will never be achieved.

3. Unavoidable biases and prejudices

Disadvantages of Critical Thinking-Unavoidable biases and prejudices

You may think that critical thinking is the answer to everything, but it has its disadvantages too. Most notably, it’s impossible to completely remove our biases and prejudices when looking at the facts. We all have a unique way of looking at things , and these biases may affect how we interpret evidence.

Confirmation Bias – One of the most common biases is called “ confirmation bias,”  where people seek out evidence that supports what they already believe or look for fault in evidence that contradicts it. This often leads to people discrediting any evidence they don’t agree with.

Overconfidence – Another common bias is overconfidence, which can lead us to make more decisions than necessary or, worse yet, poor decisions based on what we think we know.

These biases can affect how people interpret evidence and make decisions, regardless of how logical and reasoned those decisions might seem. That’s why we need to be aware of our own prior beliefs , values, and experiences to prevent our biases from affecting our judgment when using critical thinking skills.

4. Disruption of Imagination and Creativity

Disadvantages of Critical Thinking-Disruption of Imagination and Creativity

As great as it may sound, critical thinking can have its downsides, particularly in the area of imagination and creativity. The process of critical thinking often encourages a strict focus on facts and evidence, which can lead to tunnel vision and the inability to think outside the box.

When we focus too much on analysis and facts, we can become stifled in our creative pursuits. This means that instead of creating something new or being able to think of novel solutions to problems, we are confined by existing thought patterns that don’t allow for exploration or experimentation outside of what is already known.

Limiting Ourselves – Critical thinking is great when it comes to evaluating or assessing existing information or situations, but when it comes to innovating, critical thinking can be limiting. After all, if we are stuck looking at the same evidence from different perspectives, how much further can we go? We need to be open to new ideas and experiences if we want to move forward in our creative pursuits.

Training our brain for critical thinking – An over-reliance on critical thinking skills means that our brains get trained over time to do less imaginative things because our brains become accustomed to relying on a certain pattern of thinking. This means that our brains become so accustomed to certain types of analysis that there is little room left for coming up with unique solutions or uncovering innovative ideas.

It’s true; critical thinking has its advantages. But relying too heavily on this form of thinking could mean that you’re missing out on opportunities for growth and creativity.

5. Lack of Emotional Engagement

Disadvantages of Critical Thinking-Lack of Emotional Engagement

Another possible disadvantage of critical thinking is a lack of emotional engagement. The process of critical thinking involves looking at a problem objectively, dispassionately analyzing the facts, and logically concluding. This can be helpful, but it can also lead to a disconnect with the emotional aspect of the problem or issue at hand.

At times, emotional engagement is essential for tackling certain problems. For example, certain social issues might require individuals to tap into their emotions and empathy to come up with solutions that can bring about positive change without harming anyone or anything.

Moreover, emotional understanding is important for developing solutions that take into account different perspectives and experiences. This can help create solutions that are more inclusive and equitable for everyone involved.

Ultimately, critical thinking should not be used as an exclusive method for problem solving or decision-making; it should be used in conjunction with emotional understanding and empathy. This balance between intellectual analysis and emotional engagement can help to ensure solutions that are highly effective and satisfying for everyone involved.

6. Potential for stress and anxiety

Disadvantages of Critical Thinking-Potential for stress and anxiety

As discussed previously, critical thinking can be a great skill to have. However, it does come with disadvantages. For instance, people who engage in critical thinking can experience significant stress and anxiety as a result of constantly evaluating complex ideas and situations.

This is especially true for those who are very good at it, as they may feel pressure to always think critically and make the “right” decision. Additionally, when you’re constantly taking a hard look at problems from all angles, it can be easier to become overwhelmed. It can be difficult to decide which way to go when you have so many options available.

The constant search for evidence – People who think critically often spend a lot of time searching for evidence or trying to find the correct interpretation of facts. While this might lead to effective problem-solving and decision-making, it can also be exhausting psychologically. When you’re constantly sifting through evidence looking for the right answer, it can be hard not to become overwhelmed or discouraged if you don’t find what you’re looking for right away.

The struggle between intuition and logic – It’s also common for critical thinkers to struggle with integrating intuition into their thought processes since they tend to rely heavily on logic and evidence-based reasoning. While this type of thinking is valuable in certain scenarios, relying solely on logic can lead to overlooking potential solutions that may be based more on emotion or instinct than on facts. This can make it difficult for critical thinkers to make decisions without feeling like they’ve overlooked something important.

7. Critical thinking can be time-consuming.

Disadvantages of Critical Thinking-Critical thinking can be time-consuming

You know that critical thinking is important, but have you ever considered the time it takes to think critically? Well, thinking critically can be a time-consuming endeavor .

You might not think twice about making a quick decision based on intuition or reverting to old habits, but truly making a thoughtful, well-informed decision requires more effort. It’s easy to underestimate the amount of time it can take to dig into the facts and look at an issue from all angles, but that’s what critical thinking is all about.

To ensure that you get the best possible outcome, there are several steps in critical thinking:

  • Identify and analyze the problem.
  • Research and gather data from reliable sources.
  • Generate alternative solutions and evaluate them logically.
  • Choose the most suitable option.
  • Implement your chosen option, then evaluate its effectiveness and impact.
  • Adjust your plan as needed.

This type of process uses up more of our precious time, but it is worth it when you come out with an informed, well-reasoned solution that you can confidently stand behind. That’s why so many organizations prioritize this way of thinking when faced with tough decisions.

8. Critical thinking can lead to uncertainty.

Disadvantages of Critical Thinking-Critical thinking can lead to uncertainty

One of the major disadvantages of critical thinking is that it often leads to uncertainty. When you’re looking at a problem or issue from all angles and considering all the available evidence, it can be difficult to come to a definitive solution. It can be hard to know exactly what steps to take as there may be multiple potential solutions.

This can lead to indecision and doubt, which can slow down progress on any project you’re working on. Furthermore, if there are many possible solutions available, it can take time and effort to evaluate each one fully before coming to a decision.

Another downside of critical thinking is that it requires a lot of mental energy and effort. Balancing this with other aspects of work or life can be tricky, as focusing too much on one area at the expense of others is not desirable. It’s important to remember that there are limits to how much critical thinking you should do in any given situation.

While there are certain disadvantages to critical thinking, it is certainly a skill worth having. It can enable you to see past false claims and identify logical fallacies, form your own well-reasoned opinions, and spot when others might be attempting to manipulate or deceive you.

That said, it’s important to remember that critical thinking doesn’t necessarily lead to the “right” answer. It’s important to keep an open mind and be willing to have your beliefs challenged. When used responsibly, critical thinking can be an invaluable asset to anyone. 

  • The Advantages & Disadvantages of Critical Thinking by MICAH MCDUNNIGAN published in CLASSROOM (https://classroom.synonym.com/)
  • Is Critical Thinking Overrated?  Disadvantages Of Critical Thinking published in EGGCELLENT Work (https://eggcellentwork.com/)

Call to Action

If you want to learn more about this types of topic and discover some tips and tricks to boost your brain power, click the link below and subscribe to our newsletter. You will also get access to exclusive content and offers that will help you achieve your goals and become smarter every day.

Believe in mind Newsletter

Let’s boost your self-growth with Believe in Mind.

Interested in self-reflection tips, learning hacks, and knowing ways to calm down your mind? We offer you the best content which you have been looking for.

Follow Me on

You May Like Also

Leave a Comment Cancel reply

Save my name, email, and website in this browser for the next time I comment.

The Advantages & Disadvantages of Critical Thinking

Micah mcdunnigan.

It's good to start teaching critical thinking skills from a young age.

Critical thinking is, at heart, questioning what you are told instead of taking it at face value. It is evaluating information in a rational framework where facts and reason line up to support or fail to support assertions. Critical thinking skills are highly sought, and have a number of benefits in life. However, with the upsides comes certain downsides.

Explore this article

  • Academic Success
  • Professional Success
  • Disadvantages

1 Academic Success

Memorizing what your teacher tells you and regurgitating it verbatim will only get you so far in school. Memorizing exactly what the teacher told you gives you access to a number of discrete facts you can call on for exams. This will serve you well on questions that ask for such verbatim recitation of information, but the best grades and future success will go to students who can ask questions about those facts, draw connections between them, formulate their own thoughts on the matter, and articulate them.

2 Professional Success

Critical thinking skills will make you more effective in whatever field you choose to go into. The ability to look at your professional field and make connections to identify opportunities no one else has seen yet will give you an edge. This is the way new and innovative products come about. If you are always just following the crowd, you'll never stand out. In a competitive business world, you're in professional trouble if you can't stand on your own or make valuable contributions to your employer.

Critical thinking skills can help you get along with a wider range of people. This is because if you can step back and evaluate a situation from a perspective other than your own, you can better understand why different people do what they do. This helps you avoid the social conflict that results from two narrow-minded perspectives butting heads with one another. It can expand your social circle, and lead to more harmonious interactions with everyone around you.

4 Disadvantages

The downside of critical thinking skills is that they can lead you into new and frightening territory. You might find yourself questioning the values, even the religion, by which you were raised. There is a certain existential comfort in someone else telling you how the world works, then blindly clinging to those tenets. The price of this simple comfort is forgoing a deeper understanding of how the world works, and all the opportunities this deeper thinking provides. While you can use your thinking skills to find new tenets that make sense, a modified version of those original tenets, or a new understanding of those original tenets, you might feel lost as you move between points A and B.

  • 1 McGraw Hill: Introduction to Critical Thinking

About the Author

Micah McDunnigan has been writing on politics and technology since 2007. He has written technology pieces and political op-eds for a variety of student organizations and blogs. McDunnigan earned a Bachelor of Arts in international relations from the University of California, Davis.

Related Articles

Critical Thinking in the Decision-Making Processes

Critical Thinking in the Decision-Making Processes

How Can a College Experience Help With Achieving Future Goals?

How Can a College Experience Help With Achieving Future...

How to Improve Adult Reading Comprehension

How to Improve Adult Reading Comprehension

Seven Key Features of Critical Thinking

Seven Key Features of Critical Thinking

Trusting Others After Being Disappointed

Trusting Others After Being Disappointed

What Does It Mean When You Have a High Intuition?

What Does It Mean When You Have a High Intuition?

Differences Between Analytical & Critical Thinking

Differences Between Analytical & Critical Thinking

What Are the Differences Between Bias & Fallacy?

What Are the Differences Between Bias & Fallacy?

How to Move on After a Long Term Relationship Without Closure

How to Move on After a Long Term Relationship Without...

What Are Ethical Ramifications?

What Are Ethical Ramifications?

The Importance of College After High School Graduation

The Importance of College After High School Graduation

How to Practice the Serenity Prayer

How to Practice the Serenity Prayer

Signs of Intelligence

Signs of Intelligence

Types of Argument Syles

Types of Argument Syles

How to Get Over Being Dumped From a Long-Term Relationship

How to Get Over Being Dumped From a Long-Term Relationship

What to Do When a Friend Tells You She's Not Your Friend Anymore

What to Do When a Friend Tells You She's Not Your Friend...

How to Write a Philosophy Thesis

How to Write a Philosophy Thesis

How to Control Anger If Someone Hurls Insults at Me

How to Control Anger If Someone Hurls Insults at Me

How to Increase Your Critical Thinking Skills

How to Increase Your Critical Thinking Skills

How to Make People Want to Follow You on Tumblr

How to Make People Want to Follow You on Tumblr

Regardless of how old we are, we never stop learning. Classroom is the educational resource for people of all ages. Whether you’re studying times tables or applying to college, Classroom has the answers.

  • Accessibility
  • Terms of Use
  • Privacy Policy
  • Copyright Policy
  • Manage Preferences

© 2020 Leaf Group Ltd. / Leaf Group Media, All Rights Reserved. Based on the Word Net lexical database for the English Language. See disclaimer .

EducationalWave

Pros and Cons of Critical Thinking

analyzing critical thinking skills

Critical thinking offers numerous benefits, including improved decision-making , enhanced problem-solving capabilities , and the ability to evaluate information objectively . It enables individuals to view issues from multiple perspectives , fostering well-reasoned judgments and innovative solutions. However, challenges exist, such as the risk of overthinking, which can hinder enjoyment of humor and casual conversations. Additionally, critical thinkers may struggle with social interactions due to their preference for intellectual discussions and self-reliance. Balancing critical thinking with openness and flexibility is essential to navigate these challenges effectively. Continue to explore to uncover more insights surrounding this essential skill.

Table of Contents

  • Objective Analysis : Critical thinking enables objective analysis and evaluation of information, leading to well-reasoned judgments.
  • Enhanced Decision-Making : It enhances decision-making and problem-solving by scrutinizing facts and weighing options thoroughly.
  • Exploration of Perspectives : Encourages exploration of various perspectives, helping to question assumptions and consider alternatives.
  • Social Challenges : May lead to limited social interactions and difficulty in finding suitable conversational partners due to preference for intellectual discussions.
  • Overthinking Risks : Can cause overthinking, diminishing the ability to enjoy humor and potentially leading to a disconnect in social interactions.

Understanding Critical Thinking

Critical thinking involves the objective analysis and evaluation of information to form a well-reasoned judgment . At its core, critical thinking is the ability to scrutinize facts , question underlying assumptions, and explore various perspectives before arriving at a conclusion. This process is integral in making informed decisions , as it requires individuals to weigh options thoroughly and assess potential consequences.

In educational settings, critical thinking is paramount for students to develop the skills necessary to tackle complex problems . It enables them to move beyond rote memorization and engage in deeper understanding and analysis.

In the business world, professionals utilize critical thinking to navigate uncertainties, drive innovation , and implement effective strategies. By considering diverse viewpoints and challenging the status quo, they can identify the most viable solutions.

Proficient critical thinkers are characterized by their curiosity and research skills, enabling them to gather and analyze relevant data thoroughly. They also exhibit pattern recognition abilities , which allow them to discern trends and relationships within the information.

Open-mindedness is another essential trait, as it fosters an environment where diverse perspectives are valued and integrated into decision-making processes. Ultimately, critical thinking equips individuals with the capability to make well-reasoned and judicious decisions.

Benefits in Everyday Life

utilizing ai for efficiency

Critical thinking greatly enhances everyday life by improving decision-making and problem-solving abilities.

This cognitive approach allows individuals to assess situations more thoroughly and arrive at well-informed conclusions.

Consequently, it equips people with the skills necessary to navigate and overcome various challenges effectively.

Improved Decision Making

The practice of critical thinking enhances decision-making by thoroughly evaluating all relevant factors and potential outcomes. By employing this approach, individuals are better equipped to make well-informed decisions.

One of the primary advantages of critical thinking is its ability to help solve complex problems by dissecting them into manageable components and examining each part rigorously. This meticulous analysis enables a more thorough understanding of the situation at hand, thereby facilitating improved decision-making.

In everyday life, critical thinking reduces the likelihood of making impulsive decisions , as it encourages a rational and systematic evaluation of available options. By weighing the pros and cons of different choices, individuals can arrive at decisions that are more likely to yield favorable results.

This process of logical reasoning and evidence-based judgment is instrumental in achieving better outcomes in various aspects of life, from personal relationships to professional endeavors.

Moreover, the ability to critically assess information empowers individuals to navigate complex situations effectively. By fostering a habit of questioning assumptions and considering alternative perspectives , critical thinking ensures that decisions are grounded in reality and are adaptable to changing circumstances.

This strategic approach to decision-making ultimately leads to more successful and satisfying life experiences.

Enhanced Problem Solving

Analyzing situations from various perspectives greatly enhances problem-solving skills in everyday life. Critical thinking empowers individuals to dissect issues thoroughly , leading to the identification of root causes and the development of innovative solutions. By evaluating problems from multiple angles, critical thinkers are well-equipped to devise strategies that are both creative and effective.

One significant benefit of critical thinking is its contribution to making well-informed decisions . In everyday scenarios, from personal dilemmas to professional challenges, the ability to assess information objectively is invaluable. Critical thinkers excel at filtering out biases and irrelevant data, focusing instead on the core elements that influence outcomes. This rigorous approach ensures that the decisions made are based on solid evidence and logical reasoning .

Moreover, the application of critical thinking in problem-solving fosters resilience and adaptability. When faced with obstacles, critical thinkers are more likely to analyze the situation thoroughly, consider various potential solutions, and implement the most effective course of action. This methodical approach not only enhances their capacity to address challenges efficiently but also contributes to continuous learning and improvement.

Professional Advantages

Critical thinking greatly enhances decision-making processes , allowing professionals to evaluate options thoroughly and choose the most effective course of action.

This skill also improves problem-solving abilities , enabling individuals to address challenges methodically and efficiently.

Moreover, critical thinkers excel in strategic planning, as they can anticipate potential outcomes and develop detailed plans to achieve organizational goals.

Enhanced Decision Making

How does critical thinking serve as a cornerstone for enhanced decision-making in professional environments?

Critical thinking enhances decision-making by enabling individuals to make well-informed choices grounded in evidence, logic, and thorough analysis. This process involves weighing various options, analyzing potential consequences, and minimizing risks, making it essential in professional settings.

When professionals engage in critical thinking, they elevate their ability to navigate complex situations efficiently and effectively.

Critical thinking contributes to enhanced decision-making through:

  • Evidence-Based Decisions : By relying on credible data and logical reasoning, professionals can make decisions that are not only well-informed but also more likely to yield positive outcomes.
  • Risk Minimization : Weighing the pros and cons of different choices allows for the identification and mitigation of potential risks, ensuring more robust and sustainable decisions.
  • Strategic Solutions : Applying critical analysis helps in formulating strategic solutions that align with organizational goals and drive innovation.

Employers highly value employees who possess strong critical thinking skills, as these individuals are adept at making decisions that boost productivity and lead to improved outcomes in the workplace.

Therefore, critical thinking remains an essential tool for professional success and innovation.

Improved Problem Solving

Utilizing critical thinking greatly enhances problem-solving capabilities in professional environments. Critical thinking empowers individuals to systematically analyze complex challenges, leading to more effective problem-solving skills.

By evaluating issues from multiple perspectives , professionals can identify root causes rather than just symptoms, enabling the development of innovative and sustainable solutions .

In workplaces that increasingly encounter multifaceted problems , the ability to think critically is invaluable. Professionals who excel in critical thinking are adept at dissecting intricate issues, which positions them as indispensable assets in their teams.

Their refined problem-solving skills not only facilitate the resolution of current challenges but also contribute to the anticipation and mitigation of potential future issues.

Moreover, the ability to think critically is linked to career advancement . Individuals who demonstrate strong problem-solving skills are often entrusted with greater responsibilities and leadership roles , as they are seen as capable of addressing complex challenges effectively.

Employers place a high value on employees with robust critical thinking skills, recognizing their significant contributions to overcoming business obstacles and driving organizational success .

Strategic Planning Skills

In the domain of strategic planning, individuals who possess strong critical thinking skills are able to effectively analyze, evaluate, and synthesize information to make well-informed decisions. These skills are indispensable for professionals aiming to excel in strategic roles, as they allow for a thorough examination of data and circumstances, enabling the anticipation of potential outcomes.

Critical thinking in strategic planning involves several key advantages:

  • Trend Identification: Professionals can identify trends and patterns, providing a clearer understanding of market dynamics.
  • Opportunity Recognition: The ability to evaluate information helps in discovering new opportunities that may not be immediately apparent.
  • Innovative Solutions: Analyzing and synthesizing information leads to creative and competitive solutions that can set a business apart.

Incorporating critical thinking into strategic planning not only enhances decision-making skills but also fosters an environment where innovative and effective strategies are developed. This proficiency is highly valued across industries, as it directly contributes to a company's success and competitive edge.

Social Interaction Challenges

navigating social dynamics tricky

Critical thinkers often encounter social interaction challenges due to their preference for intellectual discussions over casual conversations . This inclination towards deep, meaningful exchanges can make finding conversation partners who share similar interests challenging. Many individuals may not possess the same enthusiasm for intellectual exchanges, resulting in limited social interactions for critical thinkers .

The unique interests and focus on critical thinking frequently lead to a form of social isolation from peers whose conversational preferences differ . This divergence can create a barrier to forming and maintaining social connections. The self-reliance that critical thinkers develop in engaging with complex ideas often means they might not actively seek out others for such discussions, further limiting their opportunities for intellectual exchanges.

Finding suitable conversation partners who are equally passionate about deep discussions is another significant hurdle. This challenge in aligning their unique interests with those of their peers can perpetuate feelings of isolation and reduce the frequency of meaningful social interactions.

Consequently, critical thinkers may find themselves maneuvering through a social landscape that is less accommodating to their intellectual pursuits, making the cultivation of fulfilling relationships more challenging.

Potential Overthinking Issues

potential overthinking concerns

Overthinking, a common trait among critical thinkers, can greatly diminish their ability to enjoy humor and jokes. This propensity to analyze everything meticulously often leads to a diminished enjoyment of humor, as the spontaneity and simplicity that make jokes amusing get lost in the scrutiny.

When one dissects humor excessively, the natural reaction of laughter is replaced by a mechanical evaluation of its components , leading to an altered perception of the joke's essence.

Constantly scrutinizing humor creates a disconnect in social interactions . Critical thinkers may struggle to resonate with their peers' humor after dissecting it, making it challenging to participate in light-hearted conversations. This disconnect can further lead to social isolation , as humor is a significant bonding mechanism in many social groups.

Analyzing jokes excessively can result in finding them less funny.

Struggle to resonate with peers' humor after dissecting jokes, critical thinkers often find it hard to connect.

Constant scrutiny alters one's perception of jokes compared to others.

Such overthinking can place critical thinkers at odds with the lighter side of human interaction, highlighting a notable downside to a generally beneficial trait.

Balancing Critical Thinking

analyzing with a purpose

Achieving a balance between skepticism and openness is essential for honing effective critical thinking skills . Finding this equilibrium allows individuals to critically analyze information without dismissing new and potentially valuable perspectives. This nuanced approach is particularly vital when making decisions based on complex data and multifaceted scenarios .

Critical thinking involves questioning underlying assumptions and rigorously evaluating evidence. However, these necessary tools must be balanced with a receptiveness to alternative viewpoints . Without this balance, individuals risk becoming overly skeptical, which can stifle innovation and limit the scope of analysis. Conversely, excessive openness may lead to uncritical acceptance of flawed or misleading information.

Striking this balance is key to mastering critical thinking skills. It enables individuals to evaluate information judiciously while remaining adaptable to new insights and evolving situations. This well-rounded approach equips decision-makers to navigate complex issues effectively, ensuring that their conclusions are well-founded and all-encompassing.

Frequently Asked Questions

Are pros and cons critical thinking?.

The pros and cons of critical thinking involve bias identification, emotional detachment, logical consistency, and creative problem solving. These elements collectively contribute to a balanced, objective analysis, leading to well-informed decision-making and enhanced problem-solving skills.

What Are the Negative Effects of Critical Thinking?

The negative effects of critical thinking include decision fatigue, analysis paralysis, and overthinking consequences, which can lead to emotional detachment. These outcomes can impair effective decision-making and reduce overall enjoyment in social interactions.

What Are the 5 Benefits of Critical Thinking?

The five benefits of critical thinking include enhanced problem solving, improved communication, unbiased decisions, better creativity, and innovative solutions. These advantages collectively contribute to more effective decision-making and the identification of reliable information.

What Are the Weaknesses of Critical Thinking?

Critical thinking weaknesses include bias reinforcement, decision paralysis, and overthinking pitfalls. Additionally, it may lead to emotional detachment, impacting relationships and social interactions negatively by prioritizing analytical rigor over empathy and spontaneity.

Maintaining this equilibrium guarantees that critical thinking remains a valuable tool across various aspects of life, offering significant benefits such as enhanced decision-making in daily life, improved professional performance, and more informed social interactions.

However, challenges such as social friction and potential overthinking must be managed. Balancing critical thinking with emotional considerations and practical constraints is essential for maximizing its advantages while mitigating drawbacks.

This equilibrium emphasizes the importance of critical thinking in maximizing its benefits while minimizing its potential pitfalls .

Related Posts:

  • Pros and Cons of Casual Employment
  • Pros and Cons of Banning Books
  • 20 Pros and Cons of Being a Lawyer

Related posts:

  • 20 Pros and Cons of Generac Generators
  • Pros and Cons of Stove Under Window
  • Pros and Cons of Push Ups

Educational Wave Team

Logo

Advantages and Disadvantages of Critical Thinking In Education

Looking for advantages and disadvantages of Critical Thinking In Education?

We have collected some solid points that will help you understand the pros and cons of Critical Thinking In Education in detail.

But first, let’s understand the topic:

What is Critical Thinking In Education?

What are the advantages and disadvantages of critical thinking in education.

The following are the advantages and disadvantages of Critical Thinking In Education:

AdvantagesDisadvantages
Enhances problem-solving skillsCan hinder quick decision-making
Promotes independent thinkingMay lead to overthinking
Encourages open-mindednessRequires extensive time and resources
Improves decision-making abilityCan cause analysis paralysis
Fosters effective communicationMight discourage creative spontaneity

Advantages and disadvantages of Critical Thinking In Education

Advantages of Critical Thinking In Education

Disadvantages of critical thinking in education.

You can view other “advantages and disadvantages of…” posts by clicking here .

If you have a related query, feel free to let us know in the comments below.

Also, kindly share the information with your friends who you think might be interested in reading it.

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

SEP home page

  • Table of Contents
  • Random Entry
  • Chronological
  • Editorial Information
  • About the SEP
  • Editorial Board
  • How to Cite the SEP
  • Special Characters
  • Advanced Tools
  • Support the SEP
  • PDFs for SEP Friends
  • Make a Donation
  • SEPIA for Libraries
  • Entry Contents

Bibliography

Academic tools.

  • Friends PDF Preview
  • Author and Citation Info
  • Back to Top

Critical Thinking

Critical thinking is a widely accepted educational goal. Its definition is contested, but the competing definitions can be understood as differing conceptions of the same basic concept: careful thinking directed to a goal. Conceptions differ with respect to the scope of such thinking, the type of goal, the criteria and norms for thinking carefully, and the thinking components on which they focus. Its adoption as an educational goal has been recommended on the basis of respect for students’ autonomy and preparing students for success in life and for democratic citizenship. “Critical thinkers” have the dispositions and abilities that lead them to think critically when appropriate. The abilities can be identified directly; the dispositions indirectly, by considering what factors contribute to or impede exercise of the abilities. Standardized tests have been developed to assess the degree to which a person possesses such dispositions and abilities. Educational intervention has been shown experimentally to improve them, particularly when it includes dialogue, anchored instruction, and mentoring. Controversies have arisen over the generalizability of critical thinking across domains, over alleged bias in critical thinking theories and instruction, and over the relationship of critical thinking to other types of thinking.

2.1 Dewey’s Three Main Examples

2.2 dewey’s other examples, 2.3 further examples, 2.4 non-examples, 3. the definition of critical thinking, 4. its value, 5. the process of thinking critically, 6. components of the process, 7. contributory dispositions and abilities, 8.1 initiating dispositions, 8.2 internal dispositions, 9. critical thinking abilities, 10. required knowledge, 11. educational methods, 12.1 the generalizability of critical thinking, 12.2 bias in critical thinking theory and pedagogy, 12.3 relationship of critical thinking to other types of thinking, other internet resources, related entries.

Use of the term ‘critical thinking’ to describe an educational goal goes back to the American philosopher John Dewey (1910), who more commonly called it ‘reflective thinking’. He defined it as

active, persistent and careful consideration of any belief or supposed form of knowledge in the light of the grounds that support it, and the further conclusions to which it tends. (Dewey 1910: 6; 1933: 9)

and identified a habit of such consideration with a scientific attitude of mind. His lengthy quotations of Francis Bacon, John Locke, and John Stuart Mill indicate that he was not the first person to propose development of a scientific attitude of mind as an educational goal.

In the 1930s, many of the schools that participated in the Eight-Year Study of the Progressive Education Association (Aikin 1942) adopted critical thinking as an educational goal, for whose achievement the study’s Evaluation Staff developed tests (Smith, Tyler, & Evaluation Staff 1942). Glaser (1941) showed experimentally that it was possible to improve the critical thinking of high school students. Bloom’s influential taxonomy of cognitive educational objectives (Bloom et al. 1956) incorporated critical thinking abilities. Ennis (1962) proposed 12 aspects of critical thinking as a basis for research on the teaching and evaluation of critical thinking ability.

Since 1980, an annual international conference in California on critical thinking and educational reform has attracted tens of thousands of educators from all levels of education and from many parts of the world. Also since 1980, the state university system in California has required all undergraduate students to take a critical thinking course. Since 1983, the Association for Informal Logic and Critical Thinking has sponsored sessions in conjunction with the divisional meetings of the American Philosophical Association (APA). In 1987, the APA’s Committee on Pre-College Philosophy commissioned a consensus statement on critical thinking for purposes of educational assessment and instruction (Facione 1990a). Researchers have developed standardized tests of critical thinking abilities and dispositions; for details, see the Supplement on Assessment . Educational jurisdictions around the world now include critical thinking in guidelines for curriculum and assessment.

For details on this history, see the Supplement on History .

2. Examples and Non-Examples

Before considering the definition of critical thinking, it will be helpful to have in mind some examples of critical thinking, as well as some examples of kinds of thinking that would apparently not count as critical thinking.

Dewey (1910: 68–71; 1933: 91–94) takes as paradigms of reflective thinking three class papers of students in which they describe their thinking. The examples range from the everyday to the scientific.

Transit : “The other day, when I was down town on 16th Street, a clock caught my eye. I saw that the hands pointed to 12:20. This suggested that I had an engagement at 124th Street, at one o’clock. I reasoned that as it had taken me an hour to come down on a surface car, I should probably be twenty minutes late if I returned the same way. I might save twenty minutes by a subway express. But was there a station near? If not, I might lose more than twenty minutes in looking for one. Then I thought of the elevated, and I saw there was such a line within two blocks. But where was the station? If it were several blocks above or below the street I was on, I should lose time instead of gaining it. My mind went back to the subway express as quicker than the elevated; furthermore, I remembered that it went nearer than the elevated to the part of 124th Street I wished to reach, so that time would be saved at the end of the journey. I concluded in favor of the subway, and reached my destination by one o’clock.” (Dewey 1910: 68–69; 1933: 91–92)

Ferryboat : “Projecting nearly horizontally from the upper deck of the ferryboat on which I daily cross the river is a long white pole, having a gilded ball at its tip. It suggested a flagpole when I first saw it; its color, shape, and gilded ball agreed with this idea, and these reasons seemed to justify me in this belief. But soon difficulties presented themselves. The pole was nearly horizontal, an unusual position for a flagpole; in the next place, there was no pulley, ring, or cord by which to attach a flag; finally, there were elsewhere on the boat two vertical staffs from which flags were occasionally flown. It seemed probable that the pole was not there for flag-flying.

“I then tried to imagine all possible purposes of the pole, and to consider for which of these it was best suited: (a) Possibly it was an ornament. But as all the ferryboats and even the tugboats carried poles, this hypothesis was rejected. (b) Possibly it was the terminal of a wireless telegraph. But the same considerations made this improbable. Besides, the more natural place for such a terminal would be the highest part of the boat, on top of the pilot house. (c) Its purpose might be to point out the direction in which the boat is moving.

“In support of this conclusion, I discovered that the pole was lower than the pilot house, so that the steersman could easily see it. Moreover, the tip was enough higher than the base, so that, from the pilot’s position, it must appear to project far out in front of the boat. Moreover, the pilot being near the front of the boat, he would need some such guide as to its direction. Tugboats would also need poles for such a purpose. This hypothesis was so much more probable than the others that I accepted it. I formed the conclusion that the pole was set up for the purpose of showing the pilot the direction in which the boat pointed, to enable him to steer correctly.” (Dewey 1910: 69–70; 1933: 92–93)

Bubbles : “In washing tumblers in hot soapsuds and placing them mouth downward on a plate, bubbles appeared on the outside of the mouth of the tumblers and then went inside. Why? The presence of bubbles suggests air, which I note must come from inside the tumbler. I see that the soapy water on the plate prevents escape of the air save as it may be caught in bubbles. But why should air leave the tumbler? There was no substance entering to force it out. It must have expanded. It expands by increase of heat, or by decrease of pressure, or both. Could the air have become heated after the tumbler was taken from the hot suds? Clearly not the air that was already entangled in the water. If heated air was the cause, cold air must have entered in transferring the tumblers from the suds to the plate. I test to see if this supposition is true by taking several more tumblers out. Some I shake so as to make sure of entrapping cold air in them. Some I take out holding mouth downward in order to prevent cold air from entering. Bubbles appear on the outside of every one of the former and on none of the latter. I must be right in my inference. Air from the outside must have been expanded by the heat of the tumbler, which explains the appearance of the bubbles on the outside. But why do they then go inside? Cold contracts. The tumbler cooled and also the air inside it. Tension was removed, and hence bubbles appeared inside. To be sure of this, I test by placing a cup of ice on the tumbler while the bubbles are still forming outside. They soon reverse” (Dewey 1910: 70–71; 1933: 93–94).

Dewey (1910, 1933) sprinkles his book with other examples of critical thinking. We will refer to the following.

Weather : A man on a walk notices that it has suddenly become cool, thinks that it is probably going to rain, looks up and sees a dark cloud obscuring the sun, and quickens his steps (1910: 6–10; 1933: 9–13).

Disorder : A man finds his rooms on his return to them in disorder with his belongings thrown about, thinks at first of burglary as an explanation, then thinks of mischievous children as being an alternative explanation, then looks to see whether valuables are missing, and discovers that they are (1910: 82–83; 1933: 166–168).

Typhoid : A physician diagnosing a patient whose conspicuous symptoms suggest typhoid avoids drawing a conclusion until more data are gathered by questioning the patient and by making tests (1910: 85–86; 1933: 170).

Blur : A moving blur catches our eye in the distance, we ask ourselves whether it is a cloud of whirling dust or a tree moving its branches or a man signaling to us, we think of other traits that should be found on each of those possibilities, and we look and see if those traits are found (1910: 102, 108; 1933: 121, 133).

Suction pump : In thinking about the suction pump, the scientist first notes that it will draw water only to a maximum height of 33 feet at sea level and to a lesser maximum height at higher elevations, selects for attention the differing atmospheric pressure at these elevations, sets up experiments in which the air is removed from a vessel containing water (when suction no longer works) and in which the weight of air at various levels is calculated, compares the results of reasoning about the height to which a given weight of air will allow a suction pump to raise water with the observed maximum height at different elevations, and finally assimilates the suction pump to such apparently different phenomena as the siphon and the rising of a balloon (1910: 150–153; 1933: 195–198).

Diamond : A passenger in a car driving in a diamond lane reserved for vehicles with at least one passenger notices that the diamond marks on the pavement are far apart in some places and close together in others. Why? The driver suggests that the reason may be that the diamond marks are not needed where there is a solid double line separating the diamond lane from the adjoining lane, but are needed when there is a dotted single line permitting crossing into the diamond lane. Further observation confirms that the diamonds are close together when a dotted line separates the diamond lane from its neighbour, but otherwise far apart.

Rash : A woman suddenly develops a very itchy red rash on her throat and upper chest. She recently noticed a mark on the back of her right hand, but was not sure whether the mark was a rash or a scrape. She lies down in bed and thinks about what might be causing the rash and what to do about it. About two weeks before, she began taking blood pressure medication that contained a sulfa drug, and the pharmacist had warned her, in view of a previous allergic reaction to a medication containing a sulfa drug, to be on the alert for an allergic reaction; however, she had been taking the medication for two weeks with no such effect. The day before, she began using a new cream on her neck and upper chest; against the new cream as the cause was mark on the back of her hand, which had not been exposed to the cream. She began taking probiotics about a month before. She also recently started new eye drops, but she supposed that manufacturers of eye drops would be careful not to include allergy-causing components in the medication. The rash might be a heat rash, since she recently was sweating profusely from her upper body. Since she is about to go away on a short vacation, where she would not have access to her usual physician, she decides to keep taking the probiotics and using the new eye drops but to discontinue the blood pressure medication and to switch back to the old cream for her neck and upper chest. She forms a plan to consult her regular physician on her return about the blood pressure medication.

Candidate : Although Dewey included no examples of thinking directed at appraising the arguments of others, such thinking has come to be considered a kind of critical thinking. We find an example of such thinking in the performance task on the Collegiate Learning Assessment (CLA+), which its sponsoring organization describes as

a performance-based assessment that provides a measure of an institution’s contribution to the development of critical-thinking and written communication skills of its students. (Council for Aid to Education 2017)

A sample task posted on its website requires the test-taker to write a report for public distribution evaluating a fictional candidate’s policy proposals and their supporting arguments, using supplied background documents, with a recommendation on whether to endorse the candidate.

Immediate acceptance of an idea that suggests itself as a solution to a problem (e.g., a possible explanation of an event or phenomenon, an action that seems likely to produce a desired result) is “uncritical thinking, the minimum of reflection” (Dewey 1910: 13). On-going suspension of judgment in the light of doubt about a possible solution is not critical thinking (Dewey 1910: 108). Critique driven by a dogmatically held political or religious ideology is not critical thinking; thus Paulo Freire (1968 [1970]) is using the term (e.g., at 1970: 71, 81, 100, 146) in a more politically freighted sense that includes not only reflection but also revolutionary action against oppression. Derivation of a conclusion from given data using an algorithm is not critical thinking.

What is critical thinking? There are many definitions. Ennis (2016) lists 14 philosophically oriented scholarly definitions and three dictionary definitions. Following Rawls (1971), who distinguished his conception of justice from a utilitarian conception but regarded them as rival conceptions of the same concept, Ennis maintains that the 17 definitions are different conceptions of the same concept. Rawls articulated the shared concept of justice as

a characteristic set of principles for assigning basic rights and duties and for determining… the proper distribution of the benefits and burdens of social cooperation. (Rawls 1971: 5)

Bailin et al. (1999b) claim that, if one considers what sorts of thinking an educator would take not to be critical thinking and what sorts to be critical thinking, one can conclude that educators typically understand critical thinking to have at least three features.

  • It is done for the purpose of making up one’s mind about what to believe or do.
  • The person engaging in the thinking is trying to fulfill standards of adequacy and accuracy appropriate to the thinking.
  • The thinking fulfills the relevant standards to some threshold level.

One could sum up the core concept that involves these three features by saying that critical thinking is careful goal-directed thinking. This core concept seems to apply to all the examples of critical thinking described in the previous section. As for the non-examples, their exclusion depends on construing careful thinking as excluding jumping immediately to conclusions, suspending judgment no matter how strong the evidence, reasoning from an unquestioned ideological or religious perspective, and routinely using an algorithm to answer a question.

If the core of critical thinking is careful goal-directed thinking, conceptions of it can vary according to its presumed scope, its presumed goal, one’s criteria and threshold for being careful, and the thinking component on which one focuses. As to its scope, some conceptions (e.g., Dewey 1910, 1933) restrict it to constructive thinking on the basis of one’s own observations and experiments, others (e.g., Ennis 1962; Fisher & Scriven 1997; Johnson 1992) to appraisal of the products of such thinking. Ennis (1991) and Bailin et al. (1999b) take it to cover both construction and appraisal. As to its goal, some conceptions restrict it to forming a judgment (Dewey 1910, 1933; Lipman 1987; Facione 1990a). Others allow for actions as well as beliefs as the end point of a process of critical thinking (Ennis 1991; Bailin et al. 1999b). As to the criteria and threshold for being careful, definitions vary in the term used to indicate that critical thinking satisfies certain norms: “intellectually disciplined” (Scriven & Paul 1987), “reasonable” (Ennis 1991), “skillful” (Lipman 1987), “skilled” (Fisher & Scriven 1997), “careful” (Bailin & Battersby 2009). Some definitions specify these norms, referring variously to “consideration of any belief or supposed form of knowledge in the light of the grounds that support it and the further conclusions to which it tends” (Dewey 1910, 1933); “the methods of logical inquiry and reasoning” (Glaser 1941); “conceptualizing, applying, analyzing, synthesizing, and/or evaluating information gathered from, or generated by, observation, experience, reflection, reasoning, or communication” (Scriven & Paul 1987); the requirement that “it is sensitive to context, relies on criteria, and is self-correcting” (Lipman 1987); “evidential, conceptual, methodological, criteriological, or contextual considerations” (Facione 1990a); and “plus-minus considerations of the product in terms of appropriate standards (or criteria)” (Johnson 1992). Stanovich and Stanovich (2010) propose to ground the concept of critical thinking in the concept of rationality, which they understand as combining epistemic rationality (fitting one’s beliefs to the world) and instrumental rationality (optimizing goal fulfillment); a critical thinker, in their view, is someone with “a propensity to override suboptimal responses from the autonomous mind” (2010: 227). These variant specifications of norms for critical thinking are not necessarily incompatible with one another, and in any case presuppose the core notion of thinking carefully. As to the thinking component singled out, some definitions focus on suspension of judgment during the thinking (Dewey 1910; McPeck 1981), others on inquiry while judgment is suspended (Bailin & Battersby 2009, 2021), others on the resulting judgment (Facione 1990a), and still others on responsiveness to reasons (Siegel 1988). Kuhn (2019) takes critical thinking to be more a dialogic practice of advancing and responding to arguments than an individual ability.

In educational contexts, a definition of critical thinking is a “programmatic definition” (Scheffler 1960: 19). It expresses a practical program for achieving an educational goal. For this purpose, a one-sentence formulaic definition is much less useful than articulation of a critical thinking process, with criteria and standards for the kinds of thinking that the process may involve. The real educational goal is recognition, adoption and implementation by students of those criteria and standards. That adoption and implementation in turn consists in acquiring the knowledge, abilities and dispositions of a critical thinker.

Conceptions of critical thinking generally do not include moral integrity as part of the concept. Dewey, for example, took critical thinking to be the ultimate intellectual goal of education, but distinguished it from the development of social cooperation among school children, which he took to be the central moral goal. Ennis (1996, 2011) added to his previous list of critical thinking dispositions a group of dispositions to care about the dignity and worth of every person, which he described as a “correlative” (1996) disposition without which critical thinking would be less valuable and perhaps harmful. An educational program that aimed at developing critical thinking but not the correlative disposition to care about the dignity and worth of every person, he asserted, “would be deficient and perhaps dangerous” (Ennis 1996: 172).

Dewey thought that education for reflective thinking would be of value to both the individual and society; recognition in educational practice of the kinship to the scientific attitude of children’s native curiosity, fertile imagination and love of experimental inquiry “would make for individual happiness and the reduction of social waste” (Dewey 1910: iii). Schools participating in the Eight-Year Study took development of the habit of reflective thinking and skill in solving problems as a means to leading young people to understand, appreciate and live the democratic way of life characteristic of the United States (Aikin 1942: 17–18, 81). Harvey Siegel (1988: 55–61) has offered four considerations in support of adopting critical thinking as an educational ideal. (1) Respect for persons requires that schools and teachers honour students’ demands for reasons and explanations, deal with students honestly, and recognize the need to confront students’ independent judgment; these requirements concern the manner in which teachers treat students. (2) Education has the task of preparing children to be successful adults, a task that requires development of their self-sufficiency. (3) Education should initiate children into the rational traditions in such fields as history, science and mathematics. (4) Education should prepare children to become democratic citizens, which requires reasoned procedures and critical talents and attitudes. To supplement these considerations, Siegel (1988: 62–90) responds to two objections: the ideology objection that adoption of any educational ideal requires a prior ideological commitment and the indoctrination objection that cultivation of critical thinking cannot escape being a form of indoctrination.

Despite the diversity of our 11 examples, one can recognize a common pattern. Dewey analyzed it as consisting of five phases:

  • suggestions , in which the mind leaps forward to a possible solution;
  • an intellectualization of the difficulty or perplexity into a problem to be solved, a question for which the answer must be sought;
  • the use of one suggestion after another as a leading idea, or hypothesis , to initiate and guide observation and other operations in collection of factual material;
  • the mental elaboration of the idea or supposition as an idea or supposition ( reasoning , in the sense on which reasoning is a part, not the whole, of inference); and
  • testing the hypothesis by overt or imaginative action. (Dewey 1933: 106–107; italics in original)

The process of reflective thinking consisting of these phases would be preceded by a perplexed, troubled or confused situation and followed by a cleared-up, unified, resolved situation (Dewey 1933: 106). The term ‘phases’ replaced the term ‘steps’ (Dewey 1910: 72), thus removing the earlier suggestion of an invariant sequence. Variants of the above analysis appeared in (Dewey 1916: 177) and (Dewey 1938: 101–119).

The variant formulations indicate the difficulty of giving a single logical analysis of such a varied process. The process of critical thinking may have a spiral pattern, with the problem being redefined in the light of obstacles to solving it as originally formulated. For example, the person in Transit might have concluded that getting to the appointment at the scheduled time was impossible and have reformulated the problem as that of rescheduling the appointment for a mutually convenient time. Further, defining a problem does not always follow after or lead immediately to an idea of a suggested solution. Nor should it do so, as Dewey himself recognized in describing the physician in Typhoid as avoiding any strong preference for this or that conclusion before getting further information (Dewey 1910: 85; 1933: 170). People with a hypothesis in mind, even one to which they have a very weak commitment, have a so-called “confirmation bias” (Nickerson 1998): they are likely to pay attention to evidence that confirms the hypothesis and to ignore evidence that counts against it or for some competing hypothesis. Detectives, intelligence agencies, and investigators of airplane accidents are well advised to gather relevant evidence systematically and to postpone even tentative adoption of an explanatory hypothesis until the collected evidence rules out with the appropriate degree of certainty all but one explanation. Dewey’s analysis of the critical thinking process can be faulted as well for requiring acceptance or rejection of a possible solution to a defined problem, with no allowance for deciding in the light of the available evidence to suspend judgment. Further, given the great variety of kinds of problems for which reflection is appropriate, there is likely to be variation in its component events. Perhaps the best way to conceptualize the critical thinking process is as a checklist whose component events can occur in a variety of orders, selectively, and more than once. These component events might include (1) noticing a difficulty, (2) defining the problem, (3) dividing the problem into manageable sub-problems, (4) formulating a variety of possible solutions to the problem or sub-problem, (5) determining what evidence is relevant to deciding among possible solutions to the problem or sub-problem, (6) devising a plan of systematic observation or experiment that will uncover the relevant evidence, (7) carrying out the plan of systematic observation or experimentation, (8) noting the results of the systematic observation or experiment, (9) gathering relevant testimony and information from others, (10) judging the credibility of testimony and information gathered from others, (11) drawing conclusions from gathered evidence and accepted testimony, and (12) accepting a solution that the evidence adequately supports (cf. Hitchcock 2017: 485).

Checklist conceptions of the process of critical thinking are open to the objection that they are too mechanical and procedural to fit the multi-dimensional and emotionally charged issues for which critical thinking is urgently needed (Paul 1984). For such issues, a more dialectical process is advocated, in which competing relevant world views are identified, their implications explored, and some sort of creative synthesis attempted.

If one considers the critical thinking process illustrated by the 11 examples, one can identify distinct kinds of mental acts and mental states that form part of it. To distinguish, label and briefly characterize these components is a useful preliminary to identifying abilities, skills, dispositions, attitudes, habits and the like that contribute causally to thinking critically. Identifying such abilities and habits is in turn a useful preliminary to setting educational goals. Setting the goals is in its turn a useful preliminary to designing strategies for helping learners to achieve the goals and to designing ways of measuring the extent to which learners have done so. Such measures provide both feedback to learners on their achievement and a basis for experimental research on the effectiveness of various strategies for educating people to think critically. Let us begin, then, by distinguishing the kinds of mental acts and mental events that can occur in a critical thinking process.

  • Observing : One notices something in one’s immediate environment (sudden cooling of temperature in Weather , bubbles forming outside a glass and then going inside in Bubbles , a moving blur in the distance in Blur , a rash in Rash ). Or one notes the results of an experiment or systematic observation (valuables missing in Disorder , no suction without air pressure in Suction pump )
  • Feeling : One feels puzzled or uncertain about something (how to get to an appointment on time in Transit , why the diamonds vary in spacing in Diamond ). One wants to resolve this perplexity. One feels satisfaction once one has worked out an answer (to take the subway express in Transit , diamonds closer when needed as a warning in Diamond ).
  • Wondering : One formulates a question to be addressed (why bubbles form outside a tumbler taken from hot water in Bubbles , how suction pumps work in Suction pump , what caused the rash in Rash ).
  • Imagining : One thinks of possible answers (bus or subway or elevated in Transit , flagpole or ornament or wireless communication aid or direction indicator in Ferryboat , allergic reaction or heat rash in Rash ).
  • Inferring : One works out what would be the case if a possible answer were assumed (valuables missing if there has been a burglary in Disorder , earlier start to the rash if it is an allergic reaction to a sulfa drug in Rash ). Or one draws a conclusion once sufficient relevant evidence is gathered (take the subway in Transit , burglary in Disorder , discontinue blood pressure medication and new cream in Rash ).
  • Knowledge : One uses stored knowledge of the subject-matter to generate possible answers or to infer what would be expected on the assumption of a particular answer (knowledge of a city’s public transit system in Transit , of the requirements for a flagpole in Ferryboat , of Boyle’s law in Bubbles , of allergic reactions in Rash ).
  • Experimenting : One designs and carries out an experiment or a systematic observation to find out whether the results deduced from a possible answer will occur (looking at the location of the flagpole in relation to the pilot’s position in Ferryboat , putting an ice cube on top of a tumbler taken from hot water in Bubbles , measuring the height to which a suction pump will draw water at different elevations in Suction pump , noticing the spacing of diamonds when movement to or from a diamond lane is allowed in Diamond ).
  • Consulting : One finds a source of information, gets the information from the source, and makes a judgment on whether to accept it. None of our 11 examples include searching for sources of information. In this respect they are unrepresentative, since most people nowadays have almost instant access to information relevant to answering any question, including many of those illustrated by the examples. However, Candidate includes the activities of extracting information from sources and evaluating its credibility.
  • Identifying and analyzing arguments : One notices an argument and works out its structure and content as a preliminary to evaluating its strength. This activity is central to Candidate . It is an important part of a critical thinking process in which one surveys arguments for various positions on an issue.
  • Judging : One makes a judgment on the basis of accumulated evidence and reasoning, such as the judgment in Ferryboat that the purpose of the pole is to provide direction to the pilot.
  • Deciding : One makes a decision on what to do or on what policy to adopt, as in the decision in Transit to take the subway.

By definition, a person who does something voluntarily is both willing and able to do that thing at that time. Both the willingness and the ability contribute causally to the person’s action, in the sense that the voluntary action would not occur if either (or both) of these were lacking. For example, suppose that one is standing with one’s arms at one’s sides and one voluntarily lifts one’s right arm to an extended horizontal position. One would not do so if one were unable to lift one’s arm, if for example one’s right side was paralyzed as the result of a stroke. Nor would one do so if one were unwilling to lift one’s arm, if for example one were participating in a street demonstration at which a white supremacist was urging the crowd to lift their right arm in a Nazi salute and one were unwilling to express support in this way for the racist Nazi ideology. The same analysis applies to a voluntary mental process of thinking critically. It requires both willingness and ability to think critically, including willingness and ability to perform each of the mental acts that compose the process and to coordinate those acts in a sequence that is directed at resolving the initiating perplexity.

Consider willingness first. We can identify causal contributors to willingness to think critically by considering factors that would cause a person who was able to think critically about an issue nevertheless not to do so (Hamby 2014). For each factor, the opposite condition thus contributes causally to willingness to think critically on a particular occasion. For example, people who habitually jump to conclusions without considering alternatives will not think critically about issues that arise, even if they have the required abilities. The contrary condition of willingness to suspend judgment is thus a causal contributor to thinking critically.

Now consider ability. In contrast to the ability to move one’s arm, which can be completely absent because a stroke has left the arm paralyzed, the ability to think critically is a developed ability, whose absence is not a complete absence of ability to think but absence of ability to think well. We can identify the ability to think well directly, in terms of the norms and standards for good thinking. In general, to be able do well the thinking activities that can be components of a critical thinking process, one needs to know the concepts and principles that characterize their good performance, to recognize in particular cases that the concepts and principles apply, and to apply them. The knowledge, recognition and application may be procedural rather than declarative. It may be domain-specific rather than widely applicable, and in either case may need subject-matter knowledge, sometimes of a deep kind.

Reflections of the sort illustrated by the previous two paragraphs have led scholars to identify the knowledge, abilities and dispositions of a “critical thinker”, i.e., someone who thinks critically whenever it is appropriate to do so. We turn now to these three types of causal contributors to thinking critically. We start with dispositions, since arguably these are the most powerful contributors to being a critical thinker, can be fostered at an early stage of a child’s development, and are susceptible to general improvement (Glaser 1941: 175)

8. Critical Thinking Dispositions

Educational researchers use the term ‘dispositions’ broadly for the habits of mind and attitudes that contribute causally to being a critical thinker. Some writers (e.g., Paul & Elder 2006; Hamby 2014; Bailin & Battersby 2016a) propose to use the term ‘virtues’ for this dimension of a critical thinker. The virtues in question, although they are virtues of character, concern the person’s ways of thinking rather than the person’s ways of behaving towards others. They are not moral virtues but intellectual virtues, of the sort articulated by Zagzebski (1996) and discussed by Turri, Alfano, and Greco (2017).

On a realistic conception, thinking dispositions or intellectual virtues are real properties of thinkers. They are general tendencies, propensities, or inclinations to think in particular ways in particular circumstances, and can be genuinely explanatory (Siegel 1999). Sceptics argue that there is no evidence for a specific mental basis for the habits of mind that contribute to thinking critically, and that it is pedagogically misleading to posit such a basis (Bailin et al. 1999a). Whatever their status, critical thinking dispositions need motivation for their initial formation in a child—motivation that may be external or internal. As children develop, the force of habit will gradually become important in sustaining the disposition (Nieto & Valenzuela 2012). Mere force of habit, however, is unlikely to sustain critical thinking dispositions. Critical thinkers must value and enjoy using their knowledge and abilities to think things through for themselves. They must be committed to, and lovers of, inquiry.

A person may have a critical thinking disposition with respect to only some kinds of issues. For example, one could be open-minded about scientific issues but not about religious issues. Similarly, one could be confident in one’s ability to reason about the theological implications of the existence of evil in the world but not in one’s ability to reason about the best design for a guided ballistic missile.

Facione (1990a: 25) divides “affective dispositions” of critical thinking into approaches to life and living in general and approaches to specific issues, questions or problems. Adapting this distinction, one can usefully divide critical thinking dispositions into initiating dispositions (those that contribute causally to starting to think critically about an issue) and internal dispositions (those that contribute causally to doing a good job of thinking critically once one has started). The two categories are not mutually exclusive. For example, open-mindedness, in the sense of willingness to consider alternative points of view to one’s own, is both an initiating and an internal disposition.

Using the strategy of considering factors that would block people with the ability to think critically from doing so, we can identify as initiating dispositions for thinking critically attentiveness, a habit of inquiry, self-confidence, courage, open-mindedness, willingness to suspend judgment, trust in reason, wanting evidence for one’s beliefs, and seeking the truth. We consider briefly what each of these dispositions amounts to, in each case citing sources that acknowledge them.

  • Attentiveness : One will not think critically if one fails to recognize an issue that needs to be thought through. For example, the pedestrian in Weather would not have looked up if he had not noticed that the air was suddenly cooler. To be a critical thinker, then, one needs to be habitually attentive to one’s surroundings, noticing not only what one senses but also sources of perplexity in messages received and in one’s own beliefs and attitudes (Facione 1990a: 25; Facione, Facione, & Giancarlo 2001).
  • Habit of inquiry : Inquiry is effortful, and one needs an internal push to engage in it. For example, the student in Bubbles could easily have stopped at idle wondering about the cause of the bubbles rather than reasoning to a hypothesis, then designing and executing an experiment to test it. Thus willingness to think critically needs mental energy and initiative. What can supply that energy? Love of inquiry, or perhaps just a habit of inquiry. Hamby (2015) has argued that willingness to inquire is the central critical thinking virtue, one that encompasses all the others. It is recognized as a critical thinking disposition by Dewey (1910: 29; 1933: 35), Glaser (1941: 5), Ennis (1987: 12; 1991: 8), Facione (1990a: 25), Bailin et al. (1999b: 294), Halpern (1998: 452), and Facione, Facione, & Giancarlo (2001).
  • Self-confidence : Lack of confidence in one’s abilities can block critical thinking. For example, if the woman in Rash lacked confidence in her ability to figure things out for herself, she might just have assumed that the rash on her chest was the allergic reaction to her medication against which the pharmacist had warned her. Thus willingness to think critically requires confidence in one’s ability to inquire (Facione 1990a: 25; Facione, Facione, & Giancarlo 2001).
  • Courage : Fear of thinking for oneself can stop one from doing it. Thus willingness to think critically requires intellectual courage (Paul & Elder 2006: 16).
  • Open-mindedness : A dogmatic attitude will impede thinking critically. For example, a person who adheres rigidly to a “pro-choice” position on the issue of the legal status of induced abortion is likely to be unwilling to consider seriously the issue of when in its development an unborn child acquires a moral right to life. Thus willingness to think critically requires open-mindedness, in the sense of a willingness to examine questions to which one already accepts an answer but which further evidence or reasoning might cause one to answer differently (Dewey 1933; Facione 1990a; Ennis 1991; Bailin et al. 1999b; Halpern 1998, Facione, Facione, & Giancarlo 2001). Paul (1981) emphasizes open-mindedness about alternative world-views, and recommends a dialectical approach to integrating such views as central to what he calls “strong sense” critical thinking. In three studies, Haran, Ritov, & Mellers (2013) found that actively open-minded thinking, including “the tendency to weigh new evidence against a favored belief, to spend sufficient time on a problem before giving up, and to consider carefully the opinions of others in forming one’s own”, led study participants to acquire information and thus to make accurate estimations.
  • Willingness to suspend judgment : Premature closure on an initial solution will block critical thinking. Thus willingness to think critically requires a willingness to suspend judgment while alternatives are explored (Facione 1990a; Ennis 1991; Halpern 1998).
  • Trust in reason : Since distrust in the processes of reasoned inquiry will dissuade one from engaging in it, trust in them is an initiating critical thinking disposition (Facione 1990a, 25; Bailin et al. 1999b: 294; Facione, Facione, & Giancarlo 2001; Paul & Elder 2006). In reaction to an allegedly exclusive emphasis on reason in critical thinking theory and pedagogy, Thayer-Bacon (2000) argues that intuition, imagination, and emotion have important roles to play in an adequate conception of critical thinking that she calls “constructive thinking”. From her point of view, critical thinking requires trust not only in reason but also in intuition, imagination, and emotion.
  • Seeking the truth : If one does not care about the truth but is content to stick with one’s initial bias on an issue, then one will not think critically about it. Seeking the truth is thus an initiating critical thinking disposition (Bailin et al. 1999b: 294; Facione, Facione, & Giancarlo 2001). A disposition to seek the truth is implicit in more specific critical thinking dispositions, such as trying to be well-informed, considering seriously points of view other than one’s own, looking for alternatives, suspending judgment when the evidence is insufficient, and adopting a position when the evidence supporting it is sufficient.

Some of the initiating dispositions, such as open-mindedness and willingness to suspend judgment, are also internal critical thinking dispositions, in the sense of mental habits or attitudes that contribute causally to doing a good job of critical thinking once one starts the process. But there are many other internal critical thinking dispositions. Some of them are parasitic on one’s conception of good thinking. For example, it is constitutive of good thinking about an issue to formulate the issue clearly and to maintain focus on it. For this purpose, one needs not only the corresponding ability but also the corresponding disposition. Ennis (1991: 8) describes it as the disposition “to determine and maintain focus on the conclusion or question”, Facione (1990a: 25) as “clarity in stating the question or concern”. Other internal dispositions are motivators to continue or adjust the critical thinking process, such as willingness to persist in a complex task and willingness to abandon nonproductive strategies in an attempt to self-correct (Halpern 1998: 452). For a list of identified internal critical thinking dispositions, see the Supplement on Internal Critical Thinking Dispositions .

Some theorists postulate skills, i.e., acquired abilities, as operative in critical thinking. It is not obvious, however, that a good mental act is the exercise of a generic acquired skill. Inferring an expected time of arrival, as in Transit , has some generic components but also uses non-generic subject-matter knowledge. Bailin et al. (1999a) argue against viewing critical thinking skills as generic and discrete, on the ground that skilled performance at a critical thinking task cannot be separated from knowledge of concepts and from domain-specific principles of good thinking. Talk of skills, they concede, is unproblematic if it means merely that a person with critical thinking skills is capable of intelligent performance.

Despite such scepticism, theorists of critical thinking have listed as general contributors to critical thinking what they variously call abilities (Glaser 1941; Ennis 1962, 1991), skills (Facione 1990a; Halpern 1998) or competencies (Fisher & Scriven 1997). Amalgamating these lists would produce a confusing and chaotic cornucopia of more than 50 possible educational objectives, with only partial overlap among them. It makes sense instead to try to understand the reasons for the multiplicity and diversity, and to make a selection according to one’s own reasons for singling out abilities to be developed in a critical thinking curriculum. Two reasons for diversity among lists of critical thinking abilities are the underlying conception of critical thinking and the envisaged educational level. Appraisal-only conceptions, for example, involve a different suite of abilities than constructive-only conceptions. Some lists, such as those in (Glaser 1941), are put forward as educational objectives for secondary school students, whereas others are proposed as objectives for college students (e.g., Facione 1990a).

The abilities described in the remaining paragraphs of this section emerge from reflection on the general abilities needed to do well the thinking activities identified in section 6 as components of the critical thinking process described in section 5 . The derivation of each collection of abilities is accompanied by citation of sources that list such abilities and of standardized tests that claim to test them.

Observational abilities : Careful and accurate observation sometimes requires specialist expertise and practice, as in the case of observing birds and observing accident scenes. However, there are general abilities of noticing what one’s senses are picking up from one’s environment and of being able to articulate clearly and accurately to oneself and others what one has observed. It helps in exercising them to be able to recognize and take into account factors that make one’s observation less trustworthy, such as prior framing of the situation, inadequate time, deficient senses, poor observation conditions, and the like. It helps as well to be skilled at taking steps to make one’s observation more trustworthy, such as moving closer to get a better look, measuring something three times and taking the average, and checking what one thinks one is observing with someone else who is in a good position to observe it. It also helps to be skilled at recognizing respects in which one’s report of one’s observation involves inference rather than direct observation, so that one can then consider whether the inference is justified. These abilities come into play as well when one thinks about whether and with what degree of confidence to accept an observation report, for example in the study of history or in a criminal investigation or in assessing news reports. Observational abilities show up in some lists of critical thinking abilities (Ennis 1962: 90; Facione 1990a: 16; Ennis 1991: 9). There are items testing a person’s ability to judge the credibility of observation reports in the Cornell Critical Thinking Tests, Levels X and Z (Ennis & Millman 1971; Ennis, Millman, & Tomko 1985, 2005). Norris and King (1983, 1985, 1990a, 1990b) is a test of ability to appraise observation reports.

Emotional abilities : The emotions that drive a critical thinking process are perplexity or puzzlement, a wish to resolve it, and satisfaction at achieving the desired resolution. Children experience these emotions at an early age, without being trained to do so. Education that takes critical thinking as a goal needs only to channel these emotions and to make sure not to stifle them. Collaborative critical thinking benefits from ability to recognize one’s own and others’ emotional commitments and reactions.

Questioning abilities : A critical thinking process needs transformation of an inchoate sense of perplexity into a clear question. Formulating a question well requires not building in questionable assumptions, not prejudging the issue, and using language that in context is unambiguous and precise enough (Ennis 1962: 97; 1991: 9).

Imaginative abilities : Thinking directed at finding the correct causal explanation of a general phenomenon or particular event requires an ability to imagine possible explanations. Thinking about what policy or plan of action to adopt requires generation of options and consideration of possible consequences of each option. Domain knowledge is required for such creative activity, but a general ability to imagine alternatives is helpful and can be nurtured so as to become easier, quicker, more extensive, and deeper (Dewey 1910: 34–39; 1933: 40–47). Facione (1990a) and Halpern (1998) include the ability to imagine alternatives as a critical thinking ability.

Inferential abilities : The ability to draw conclusions from given information, and to recognize with what degree of certainty one’s own or others’ conclusions follow, is universally recognized as a general critical thinking ability. All 11 examples in section 2 of this article include inferences, some from hypotheses or options (as in Transit , Ferryboat and Disorder ), others from something observed (as in Weather and Rash ). None of these inferences is formally valid. Rather, they are licensed by general, sometimes qualified substantive rules of inference (Toulmin 1958) that rest on domain knowledge—that a bus trip takes about the same time in each direction, that the terminal of a wireless telegraph would be located on the highest possible place, that sudden cooling is often followed by rain, that an allergic reaction to a sulfa drug generally shows up soon after one starts taking it. It is a matter of controversy to what extent the specialized ability to deduce conclusions from premisses using formal rules of inference is needed for critical thinking. Dewey (1933) locates logical forms in setting out the products of reflection rather than in the process of reflection. Ennis (1981a), on the other hand, maintains that a liberally-educated person should have the following abilities: to translate natural-language statements into statements using the standard logical operators, to use appropriately the language of necessary and sufficient conditions, to deal with argument forms and arguments containing symbols, to determine whether in virtue of an argument’s form its conclusion follows necessarily from its premisses, to reason with logically complex propositions, and to apply the rules and procedures of deductive logic. Inferential abilities are recognized as critical thinking abilities by Glaser (1941: 6), Facione (1990a: 9), Ennis (1991: 9), Fisher & Scriven (1997: 99, 111), and Halpern (1998: 452). Items testing inferential abilities constitute two of the five subtests of the Watson Glaser Critical Thinking Appraisal (Watson & Glaser 1980a, 1980b, 1994), two of the four sections in the Cornell Critical Thinking Test Level X (Ennis & Millman 1971; Ennis, Millman, & Tomko 1985, 2005), three of the seven sections in the Cornell Critical Thinking Test Level Z (Ennis & Millman 1971; Ennis, Millman, & Tomko 1985, 2005), 11 of the 34 items on Forms A and B of the California Critical Thinking Skills Test (Facione 1990b, 1992), and a high but variable proportion of the 25 selected-response questions in the Collegiate Learning Assessment (Council for Aid to Education 2017).

Experimenting abilities : Knowing how to design and execute an experiment is important not just in scientific research but also in everyday life, as in Rash . Dewey devoted a whole chapter of his How We Think (1910: 145–156; 1933: 190–202) to the superiority of experimentation over observation in advancing knowledge. Experimenting abilities come into play at one remove in appraising reports of scientific studies. Skill in designing and executing experiments includes the acknowledged abilities to appraise evidence (Glaser 1941: 6), to carry out experiments and to apply appropriate statistical inference techniques (Facione 1990a: 9), to judge inductions to an explanatory hypothesis (Ennis 1991: 9), and to recognize the need for an adequately large sample size (Halpern 1998). The Cornell Critical Thinking Test Level Z (Ennis & Millman 1971; Ennis, Millman, & Tomko 1985, 2005) includes four items (out of 52) on experimental design. The Collegiate Learning Assessment (Council for Aid to Education 2017) makes room for appraisal of study design in both its performance task and its selected-response questions.

Consulting abilities : Skill at consulting sources of information comes into play when one seeks information to help resolve a problem, as in Candidate . Ability to find and appraise information includes ability to gather and marshal pertinent information (Glaser 1941: 6), to judge whether a statement made by an alleged authority is acceptable (Ennis 1962: 84), to plan a search for desired information (Facione 1990a: 9), and to judge the credibility of a source (Ennis 1991: 9). Ability to judge the credibility of statements is tested by 24 items (out of 76) in the Cornell Critical Thinking Test Level X (Ennis & Millman 1971; Ennis, Millman, & Tomko 1985, 2005) and by four items (out of 52) in the Cornell Critical Thinking Test Level Z (Ennis & Millman 1971; Ennis, Millman, & Tomko 1985, 2005). The College Learning Assessment’s performance task requires evaluation of whether information in documents is credible or unreliable (Council for Aid to Education 2017).

Argument analysis abilities : The ability to identify and analyze arguments contributes to the process of surveying arguments on an issue in order to form one’s own reasoned judgment, as in Candidate . The ability to detect and analyze arguments is recognized as a critical thinking skill by Facione (1990a: 7–8), Ennis (1991: 9) and Halpern (1998). Five items (out of 34) on the California Critical Thinking Skills Test (Facione 1990b, 1992) test skill at argument analysis. The College Learning Assessment (Council for Aid to Education 2017) incorporates argument analysis in its selected-response tests of critical reading and evaluation and of critiquing an argument.

Judging skills and deciding skills : Skill at judging and deciding is skill at recognizing what judgment or decision the available evidence and argument supports, and with what degree of confidence. It is thus a component of the inferential skills already discussed.

Lists and tests of critical thinking abilities often include two more abilities: identifying assumptions and constructing and evaluating definitions.

In addition to dispositions and abilities, critical thinking needs knowledge: of critical thinking concepts, of critical thinking principles, and of the subject-matter of the thinking.

We can derive a short list of concepts whose understanding contributes to critical thinking from the critical thinking abilities described in the preceding section. Observational abilities require an understanding of the difference between observation and inference. Questioning abilities require an understanding of the concepts of ambiguity and vagueness. Inferential abilities require an understanding of the difference between conclusive and defeasible inference (traditionally, between deduction and induction), as well as of the difference between necessary and sufficient conditions. Experimenting abilities require an understanding of the concepts of hypothesis, null hypothesis, assumption and prediction, as well as of the concept of statistical significance and of its difference from importance. They also require an understanding of the difference between an experiment and an observational study, and in particular of the difference between a randomized controlled trial, a prospective correlational study and a retrospective (case-control) study. Argument analysis abilities require an understanding of the concepts of argument, premiss, assumption, conclusion and counter-consideration. Additional critical thinking concepts are proposed by Bailin et al. (1999b: 293), Fisher & Scriven (1997: 105–106), Black (2012), and Blair (2021).

According to Glaser (1941: 25), ability to think critically requires knowledge of the methods of logical inquiry and reasoning. If we review the list of abilities in the preceding section, however, we can see that some of them can be acquired and exercised merely through practice, possibly guided in an educational setting, followed by feedback. Searching intelligently for a causal explanation of some phenomenon or event requires that one consider a full range of possible causal contributors, but it seems more important that one implements this principle in one’s practice than that one is able to articulate it. What is important is “operational knowledge” of the standards and principles of good thinking (Bailin et al. 1999b: 291–293). But the development of such critical thinking abilities as designing an experiment or constructing an operational definition can benefit from learning their underlying theory. Further, explicit knowledge of quirks of human thinking seems useful as a cautionary guide. Human memory is not just fallible about details, as people learn from their own experiences of misremembering, but is so malleable that a detailed, clear and vivid recollection of an event can be a total fabrication (Loftus 2017). People seek or interpret evidence in ways that are partial to their existing beliefs and expectations, often unconscious of their “confirmation bias” (Nickerson 1998). Not only are people subject to this and other cognitive biases (Kahneman 2011), of which they are typically unaware, but it may be counter-productive for one to make oneself aware of them and try consciously to counteract them or to counteract social biases such as racial or sexual stereotypes (Kenyon & Beaulac 2014). It is helpful to be aware of these facts and of the superior effectiveness of blocking the operation of biases—for example, by making an immediate record of one’s observations, refraining from forming a preliminary explanatory hypothesis, blind refereeing, double-blind randomized trials, and blind grading of students’ work. It is also helpful to be aware of the prevalence of “noise” (unwanted unsystematic variability of judgments), of how to detect noise (through a noise audit), and of how to reduce noise: make accuracy the goal, think statistically, break a process of arriving at a judgment into independent tasks, resist premature intuitions, in a group get independent judgments first, favour comparative judgments and scales (Kahneman, Sibony, & Sunstein 2021). It is helpful as well to be aware of the concept of “bounded rationality” in decision-making and of the related distinction between “satisficing” and optimizing (Simon 1956; Gigerenzer 2001).

Critical thinking about an issue requires substantive knowledge of the domain to which the issue belongs. Critical thinking abilities are not a magic elixir that can be applied to any issue whatever by somebody who has no knowledge of the facts relevant to exploring that issue. For example, the student in Bubbles needed to know that gases do not penetrate solid objects like a glass, that air expands when heated, that the volume of an enclosed gas varies directly with its temperature and inversely with its pressure, and that hot objects will spontaneously cool down to the ambient temperature of their surroundings unless kept hot by insulation or a source of heat. Critical thinkers thus need a rich fund of subject-matter knowledge relevant to the variety of situations they encounter. This fact is recognized in the inclusion among critical thinking dispositions of a concern to become and remain generally well informed.

Experimental educational interventions, with control groups, have shown that education can improve critical thinking skills and dispositions, as measured by standardized tests. For information about these tests, see the Supplement on Assessment .

What educational methods are most effective at developing the dispositions, abilities and knowledge of a critical thinker? In a comprehensive meta-analysis of experimental and quasi-experimental studies of strategies for teaching students to think critically, Abrami et al. (2015) found that dialogue, anchored instruction, and mentoring each increased the effectiveness of the educational intervention, and that they were most effective when combined. They also found that in these studies a combination of separate instruction in critical thinking with subject-matter instruction in which students are encouraged to think critically was more effective than either by itself. However, the difference was not statistically significant; that is, it might have arisen by chance.

Most of these studies lack the longitudinal follow-up required to determine whether the observed differential improvements in critical thinking abilities or dispositions continue over time, for example until high school or college graduation. For details on studies of methods of developing critical thinking skills and dispositions, see the Supplement on Educational Methods .

12. Controversies

Scholars have denied the generalizability of critical thinking abilities across subject domains, have alleged bias in critical thinking theory and pedagogy, and have investigated the relationship of critical thinking to other kinds of thinking.

McPeck (1981) attacked the thinking skills movement of the 1970s, including the critical thinking movement. He argued that there are no general thinking skills, since thinking is always thinking about some subject-matter. It is futile, he claimed, for schools and colleges to teach thinking as if it were a separate subject. Rather, teachers should lead their pupils to become autonomous thinkers by teaching school subjects in a way that brings out their cognitive structure and that encourages and rewards discussion and argument. As some of his critics (e.g., Paul 1985; Siegel 1985) pointed out, McPeck’s central argument needs elaboration, since it has obvious counter-examples in writing and speaking, for which (up to a certain level of complexity) there are teachable general abilities even though they are always about some subject-matter. To make his argument convincing, McPeck needs to explain how thinking differs from writing and speaking in a way that does not permit useful abstraction of its components from the subject-matters with which it deals. He has not done so. Nevertheless, his position that the dispositions and abilities of a critical thinker are best developed in the context of subject-matter instruction is shared by many theorists of critical thinking, including Dewey (1910, 1933), Glaser (1941), Passmore (1980), Weinstein (1990), Bailin et al. (1999b), and Willingham (2019).

McPeck’s challenge prompted reflection on the extent to which critical thinking is subject-specific. McPeck argued for a strong subject-specificity thesis, according to which it is a conceptual truth that all critical thinking abilities are specific to a subject. (He did not however extend his subject-specificity thesis to critical thinking dispositions. In particular, he took the disposition to suspend judgment in situations of cognitive dissonance to be a general disposition.) Conceptual subject-specificity is subject to obvious counter-examples, such as the general ability to recognize confusion of necessary and sufficient conditions. A more modest thesis, also endorsed by McPeck, is epistemological subject-specificity, according to which the norms of good thinking vary from one field to another. Epistemological subject-specificity clearly holds to a certain extent; for example, the principles in accordance with which one solves a differential equation are quite different from the principles in accordance with which one determines whether a painting is a genuine Picasso. But the thesis suffers, as Ennis (1989) points out, from vagueness of the concept of a field or subject and from the obvious existence of inter-field principles, however broadly the concept of a field is construed. For example, the principles of hypothetico-deductive reasoning hold for all the varied fields in which such reasoning occurs. A third kind of subject-specificity is empirical subject-specificity, according to which as a matter of empirically observable fact a person with the abilities and dispositions of a critical thinker in one area of investigation will not necessarily have them in another area of investigation.

The thesis of empirical subject-specificity raises the general problem of transfer. If critical thinking abilities and dispositions have to be developed independently in each school subject, how are they of any use in dealing with the problems of everyday life and the political and social issues of contemporary society, most of which do not fit into the framework of a traditional school subject? Proponents of empirical subject-specificity tend to argue that transfer is more likely to occur if there is critical thinking instruction in a variety of domains, with explicit attention to dispositions and abilities that cut across domains. But evidence for this claim is scanty. There is a need for well-designed empirical studies that investigate the conditions that make transfer more likely.

It is common ground in debates about the generality or subject-specificity of critical thinking dispositions and abilities that critical thinking about any topic requires background knowledge about the topic. For example, the most sophisticated understanding of the principles of hypothetico-deductive reasoning is of no help unless accompanied by some knowledge of what might be plausible explanations of some phenomenon under investigation.

Critics have objected to bias in the theory, pedagogy and practice of critical thinking. Commentators (e.g., Alston 1995; Ennis 1998) have noted that anyone who takes a position has a bias in the neutral sense of being inclined in one direction rather than others. The critics, however, are objecting to bias in the pejorative sense of an unjustified favoring of certain ways of knowing over others, frequently alleging that the unjustly favoured ways are those of a dominant sex or culture (Bailin 1995). These ways favour:

  • reinforcement of egocentric and sociocentric biases over dialectical engagement with opposing world-views (Paul 1981, 1984; Warren 1998)
  • distancing from the object of inquiry over closeness to it (Martin 1992; Thayer-Bacon 1992)
  • indifference to the situation of others over care for them (Martin 1992)
  • orientation to thought over orientation to action (Martin 1992)
  • being reasonable over caring to understand people’s ideas (Thayer-Bacon 1993)
  • being neutral and objective over being embodied and situated (Thayer-Bacon 1995a)
  • doubting over believing (Thayer-Bacon 1995b)
  • reason over emotion, imagination and intuition (Thayer-Bacon 2000)
  • solitary thinking over collaborative thinking (Thayer-Bacon 2000)
  • written and spoken assignments over other forms of expression (Alston 2001)
  • attention to written and spoken communications over attention to human problems (Alston 2001)
  • winning debates in the public sphere over making and understanding meaning (Alston 2001)

A common thread in this smorgasbord of accusations is dissatisfaction with focusing on the logical analysis and evaluation of reasoning and arguments. While these authors acknowledge that such analysis and evaluation is part of critical thinking and should be part of its conceptualization and pedagogy, they insist that it is only a part. Paul (1981), for example, bemoans the tendency of atomistic teaching of methods of analyzing and evaluating arguments to turn students into more able sophists, adept at finding fault with positions and arguments with which they disagree but even more entrenched in the egocentric and sociocentric biases with which they began. Martin (1992) and Thayer-Bacon (1992) cite with approval the self-reported intimacy with their subject-matter of leading researchers in biology and medicine, an intimacy that conflicts with the distancing allegedly recommended in standard conceptions and pedagogy of critical thinking. Thayer-Bacon (2000) contrasts the embodied and socially embedded learning of her elementary school students in a Montessori school, who used their imagination, intuition and emotions as well as their reason, with conceptions of critical thinking as

thinking that is used to critique arguments, offer justifications, and make judgments about what are the good reasons, or the right answers. (Thayer-Bacon 2000: 127–128)

Alston (2001) reports that her students in a women’s studies class were able to see the flaws in the Cinderella myth that pervades much romantic fiction but in their own romantic relationships still acted as if all failures were the woman’s fault and still accepted the notions of love at first sight and living happily ever after. Students, she writes, should

be able to connect their intellectual critique to a more affective, somatic, and ethical account of making risky choices that have sexist, racist, classist, familial, sexual, or other consequences for themselves and those both near and far… critical thinking that reads arguments, texts, or practices merely on the surface without connections to feeling/desiring/doing or action lacks an ethical depth that should infuse the difference between mere cognitive activity and something we want to call critical thinking. (Alston 2001: 34)

Some critics portray such biases as unfair to women. Thayer-Bacon (1992), for example, has charged modern critical thinking theory with being sexist, on the ground that it separates the self from the object and causes one to lose touch with one’s inner voice, and thus stigmatizes women, who (she asserts) link self to object and listen to their inner voice. Her charge does not imply that women as a group are on average less able than men to analyze and evaluate arguments. Facione (1990c) found no difference by sex in performance on his California Critical Thinking Skills Test. Kuhn (1991: 280–281) found no difference by sex in either the disposition or the competence to engage in argumentative thinking.

The critics propose a variety of remedies for the biases that they allege. In general, they do not propose to eliminate or downplay critical thinking as an educational goal. Rather, they propose to conceptualize critical thinking differently and to change its pedagogy accordingly. Their pedagogical proposals arise logically from their objections. They can be summarized as follows:

  • Focus on argument networks with dialectical exchanges reflecting contesting points of view rather than on atomic arguments, so as to develop “strong sense” critical thinking that transcends egocentric and sociocentric biases (Paul 1981, 1984).
  • Foster closeness to the subject-matter and feeling connected to others in order to inform a humane democracy (Martin 1992).
  • Develop “constructive thinking” as a social activity in a community of physically embodied and socially embedded inquirers with personal voices who value not only reason but also imagination, intuition and emotion (Thayer-Bacon 2000).
  • In developing critical thinking in school subjects, treat as important neither skills nor dispositions but opening worlds of meaning (Alston 2001).
  • Attend to the development of critical thinking dispositions as well as skills, and adopt the “critical pedagogy” practised and advocated by Freire (1968 [1970]) and hooks (1994) (Dalgleish, Girard, & Davies 2017).

A common thread in these proposals is treatment of critical thinking as a social, interactive, personally engaged activity like that of a quilting bee or a barn-raising (Thayer-Bacon 2000) rather than as an individual, solitary, distanced activity symbolized by Rodin’s The Thinker . One can get a vivid description of education with the former type of goal from the writings of bell hooks (1994, 2010). Critical thinking for her is open-minded dialectical exchange across opposing standpoints and from multiple perspectives, a conception similar to Paul’s “strong sense” critical thinking (Paul 1981). She abandons the structure of domination in the traditional classroom. In an introductory course on black women writers, for example, she assigns students to write an autobiographical paragraph about an early racial memory, then to read it aloud as the others listen, thus affirming the uniqueness and value of each voice and creating a communal awareness of the diversity of the group’s experiences (hooks 1994: 84). Her “engaged pedagogy” is thus similar to the “freedom under guidance” implemented in John Dewey’s Laboratory School of Chicago in the late 1890s and early 1900s. It incorporates the dialogue, anchored instruction, and mentoring that Abrami (2015) found to be most effective in improving critical thinking skills and dispositions.

What is the relationship of critical thinking to problem solving, decision-making, higher-order thinking, creative thinking, and other recognized types of thinking? One’s answer to this question obviously depends on how one defines the terms used in the question. If critical thinking is conceived broadly to cover any careful thinking about any topic for any purpose, then problem solving and decision making will be kinds of critical thinking, if they are done carefully. Historically, ‘critical thinking’ and ‘problem solving’ were two names for the same thing. If critical thinking is conceived more narrowly as consisting solely of appraisal of intellectual products, then it will be disjoint with problem solving and decision making, which are constructive.

Bloom’s taxonomy of educational objectives used the phrase “intellectual abilities and skills” for what had been labeled “critical thinking” by some, “reflective thinking” by Dewey and others, and “problem solving” by still others (Bloom et al. 1956: 38). Thus, the so-called “higher-order thinking skills” at the taxonomy’s top levels of analysis, synthesis and evaluation are just critical thinking skills, although they do not come with general criteria for their assessment (Ennis 1981b). The revised version of Bloom’s taxonomy (Anderson et al. 2001) likewise treats critical thinking as cutting across those types of cognitive process that involve more than remembering (Anderson et al. 2001: 269–270). For details, see the Supplement on History .

As to creative thinking, it overlaps with critical thinking (Bailin 1987, 1988). Thinking about the explanation of some phenomenon or event, as in Ferryboat , requires creative imagination in constructing plausible explanatory hypotheses. Likewise, thinking about a policy question, as in Candidate , requires creativity in coming up with options. Conversely, creativity in any field needs to be balanced by critical appraisal of the draft painting or novel or mathematical theory.

  • Abrami, Philip C., Robert M. Bernard, Eugene Borokhovski, David I. Waddington, C. Anne Wade, and Tonje Person, 2015, “Strategies for Teaching Students to Think Critically: A Meta-analysis”, Review of Educational Research , 85(2): 275–314. doi:10.3102/0034654314551063
  • Aikin, Wilford M., 1942, The Story of the Eight-year Study, with Conclusions and Recommendations , Volume I of Adventure in American Education , New York and London: Harper & Brothers. [ Aikin 1942 available online ]
  • Alston, Kal, 1995, “Begging the Question: Is Critical Thinking Biased?”, Educational Theory , 45(2): 225–233. doi:10.1111/j.1741-5446.1995.00225.x
  • –––, 2001, “Re/Thinking Critical Thinking: The Seductions of Everyday Life”, Studies in Philosophy and Education , 20(1): 27–40. doi:10.1023/A:1005247128053
  • American Educational Research Association, 2014, Standards for Educational and Psychological Testing / American Educational Research Association, American Psychological Association, National Council on Measurement in Education , Washington, DC: American Educational Research Association.
  • Anderson, Lorin W., David R. Krathwohl, Peter W. Airiasian, Kathleen A. Cruikshank, Richard E. Mayer, Paul R. Pintrich, James Raths, and Merlin C. Wittrock, 2001, A Taxonomy for Learning, Teaching and Assessing: A Revision of Bloom’s Taxonomy of Educational Objectives , New York: Longman, complete edition.
  • Bailin, Sharon, 1987, “Critical and Creative Thinking”, Informal Logic , 9(1): 23–30. [ Bailin 1987 available online ]
  • –––, 1988, Achieving Extraordinary Ends: An Essay on Creativity , Dordrecht: Kluwer. doi:10.1007/978-94-009-2780-3
  • –––, 1995, “Is Critical Thinking Biased? Clarifications and Implications”, Educational Theory , 45(2): 191–197. doi:10.1111/j.1741-5446.1995.00191.x
  • Bailin, Sharon and Mark Battersby, 2009, “Inquiry: A Dialectical Approach to Teaching Critical Thinking”, in Juho Ritola (ed.), Argument Cultures: Proceedings of OSSA 09 , CD-ROM (pp. 1–10), Windsor, ON: OSSA. [ Bailin & Battersby 2009 available online ]
  • –––, 2016a, “Fostering the Virtues of Inquiry”, Topoi , 35(2): 367–374. doi:10.1007/s11245-015-9307-6
  • –––, 2016b, Reason in the Balance: An Inquiry Approach to Critical Thinking , Indianapolis: Hackett, 2nd edition.
  • –––, 2021, “Inquiry: Teaching for Reasoned Judgment”, in Daniel Fasko, Jr. and Frank Fair (eds.), Critical Thinking and Reasoning: Theory, Development, Instruction, and Assessment , Leiden: Brill, pp. 31–46. doi: 10.1163/9789004444591_003
  • Bailin, Sharon, Roland Case, Jerrold R. Coombs, and Leroi B. Daniels, 1999a, “Common Misconceptions of Critical Thinking”, Journal of Curriculum Studies , 31(3): 269–283. doi:10.1080/002202799183124
  • –––, 1999b, “Conceptualizing Critical Thinking”, Journal of Curriculum Studies , 31(3): 285–302. doi:10.1080/002202799183133
  • Blair, J. Anthony, 2021, Studies in Critical Thinking , Windsor, ON: Windsor Studies in Argumentation, 2nd edition. [Available online at https://windsor.scholarsportal.info/omp/index.php/wsia/catalog/book/106]
  • Berman, Alan M., Seth J. Schwartz, William M. Kurtines, and Steven L. Berman, 2001, “The Process of Exploration in Identity Formation: The Role of Style and Competence”, Journal of Adolescence , 24(4): 513–528. doi:10.1006/jado.2001.0386
  • Black, Beth (ed.), 2012, An A to Z of Critical Thinking , London: Continuum International Publishing Group.
  • Bloom, Benjamin Samuel, Max D. Engelhart, Edward J. Furst, Walter H. Hill, and David R. Krathwohl, 1956, Taxonomy of Educational Objectives. Handbook I: Cognitive Domain , New York: David McKay.
  • Boardman, Frank, Nancy M. Cavender, and Howard Kahane, 2018, Logic and Contemporary Rhetoric: The Use of Reason in Everyday Life , Boston: Cengage, 13th edition.
  • Browne, M. Neil and Stuart M. Keeley, 2018, Asking the Right Questions: A Guide to Critical Thinking , Hoboken, NJ: Pearson, 12th edition.
  • Center for Assessment & Improvement of Learning, 2017, Critical Thinking Assessment Test , Cookeville, TN: Tennessee Technological University.
  • Cleghorn, Paul. 2021. “Critical Thinking in the Elementary School: Practical Guidance for Building a Culture of Thinking”, in Daniel Fasko, Jr. and Frank Fair (eds.), Critical Thinking and Reasoning: Theory, Development, Instruction, and Assessmen t, Leiden: Brill, pp. 150–167. doi: 10.1163/9789004444591_010
  • Cohen, Jacob, 1988, Statistical Power Analysis for the Behavioral Sciences , Hillsdale, NJ: Lawrence Erlbaum Associates, 2nd edition.
  • College Board, 1983, Academic Preparation for College. What Students Need to Know and Be Able to Do , New York: College Entrance Examination Board, ERIC document ED232517.
  • Commission on the Relation of School and College of the Progressive Education Association, 1943, Thirty Schools Tell Their Story , Volume V of Adventure in American Education , New York and London: Harper & Brothers.
  • Council for Aid to Education, 2017, CLA+ Student Guide . Available at http://cae.org/images/uploads/pdf/CLA_Student_Guide_Institution.pdf ; last accessed 2022 07 16.
  • Dalgleish, Adam, Patrick Girard, and Maree Davies, 2017, “Critical Thinking, Bias and Feminist Philosophy: Building a Better Framework through Collaboration”, Informal Logic , 37(4): 351–369. [ Dalgleish et al. available online ]
  • Dewey, John, 1910, How We Think , Boston: D.C. Heath. [ Dewey 1910 available online ]
  • –––, 1916, Democracy and Education: An Introduction to the Philosophy of Education , New York: Macmillan.
  • –––, 1933, How We Think: A Restatement of the Relation of Reflective Thinking to the Educative Process , Lexington, MA: D.C. Heath.
  • –––, 1936, “The Theory of the Chicago Experiment”, Appendix II of Mayhew & Edwards 1936: 463–477.
  • –––, 1938, Logic: The Theory of Inquiry , New York: Henry Holt and Company.
  • Dominguez, Caroline (coord.), 2018a, A European Collection of the Critical Thinking Skills and Dispositions Needed in Different Professional Fields for the 21st Century , Vila Real, Portugal: UTAD. Available at http://bit.ly/CRITHINKEDUO1 ; last accessed 2022 07 16.
  • ––– (coord.), 2018b, A European Review on Critical Thinking Educational Practices in Higher Education Institutions , Vila Real: UTAD. Available at http://bit.ly/CRITHINKEDUO2 ; last accessed 2022 07 16.
  • ––– (coord.), 2018c, The CRITHINKEDU European Course on Critical Thinking Education for University Teachers: From Conception to Delivery , Vila Real: UTAD. Available at http:/bit.ly/CRITHINKEDU03; last accessed 2022 07 16.
  • Dominguez Caroline and Rita Payan-Carreira (eds.), 2019, Promoting Critical Thinking in European Higher Education Institutions: Towards an Educational Protocol , Vila Real: UTAD. Available at http:/bit.ly/CRITHINKEDU04; last accessed 2022 07 16.
  • Ennis, Robert H., 1958, “An Appraisal of the Watson-Glaser Critical Thinking Appraisal”, The Journal of Educational Research , 52(4): 155–158. doi:10.1080/00220671.1958.10882558
  • –––, 1962, “A Concept of Critical Thinking: A Proposed Basis for Research on the Teaching and Evaluation of Critical Thinking Ability”, Harvard Educational Review , 32(1): 81–111.
  • –––, 1981a, “A Conception of Deductive Logical Competence”, Teaching Philosophy , 4(3/4): 337–385. doi:10.5840/teachphil198143/429
  • –––, 1981b, “Eight Fallacies in Bloom’s Taxonomy”, in C. J. B. Macmillan (ed.), Philosophy of Education 1980: Proceedings of the Thirty-seventh Annual Meeting of the Philosophy of Education Society , Bloomington, IL: Philosophy of Education Society, pp. 269–273.
  • –––, 1984, “Problems in Testing Informal Logic, Critical Thinking, Reasoning Ability”, Informal Logic , 6(1): 3–9. [ Ennis 1984 available online ]
  • –––, 1987, “A Taxonomy of Critical Thinking Dispositions and Abilities”, in Joan Boykoff Baron and Robert J. Sternberg (eds.), Teaching Thinking Skills: Theory and Practice , New York: W. H. Freeman, pp. 9–26.
  • –––, 1989, “Critical Thinking and Subject Specificity: Clarification and Needed Research”, Educational Researcher , 18(3): 4–10. doi:10.3102/0013189X018003004
  • –––, 1991, “Critical Thinking: A Streamlined Conception”, Teaching Philosophy , 14(1): 5–24. doi:10.5840/teachphil19911412
  • –––, 1996, “Critical Thinking Dispositions: Their Nature and Assessability”, Informal Logic , 18(2–3): 165–182. [ Ennis 1996 available online ]
  • –––, 1998, “Is Critical Thinking Culturally Biased?”, Teaching Philosophy , 21(1): 15–33. doi:10.5840/teachphil19982113
  • –––, 2011, “Critical Thinking: Reflection and Perspective Part I”, Inquiry: Critical Thinking across the Disciplines , 26(1): 4–18. doi:10.5840/inquiryctnews20112613
  • –––, 2013, “Critical Thinking across the Curriculum: The Wisdom CTAC Program”, Inquiry: Critical Thinking across the Disciplines , 28(2): 25–45. doi:10.5840/inquiryct20132828
  • –––, 2016, “Definition: A Three-Dimensional Analysis with Bearing on Key Concepts”, in Patrick Bondy and Laura Benacquista (eds.), Argumentation, Objectivity, and Bias: Proceedings of the 11th International Conference of the Ontario Society for the Study of Argumentation (OSSA), 18–21 May 2016 , Windsor, ON: OSSA, pp. 1–19. Available at http://scholar.uwindsor.ca/ossaarchive/OSSA11/papersandcommentaries/105 ; last accessed 2022 07 16.
  • –––, 2018, “Critical Thinking Across the Curriculum: A Vision”, Topoi , 37(1): 165–184. doi:10.1007/s11245-016-9401-4
  • Ennis, Robert H., and Jason Millman, 1971, Manual for Cornell Critical Thinking Test, Level X, and Cornell Critical Thinking Test, Level Z , Urbana, IL: Critical Thinking Project, University of Illinois.
  • Ennis, Robert H., Jason Millman, and Thomas Norbert Tomko, 1985, Cornell Critical Thinking Tests Level X & Level Z: Manual , Pacific Grove, CA: Midwest Publication, 3rd edition.
  • –––, 2005, Cornell Critical Thinking Tests Level X & Level Z: Manual , Seaside, CA: Critical Thinking Company, 5th edition.
  • Ennis, Robert H. and Eric Weir, 1985, The Ennis-Weir Critical Thinking Essay Test: Test, Manual, Criteria, Scoring Sheet: An Instrument for Teaching and Testing , Pacific Grove, CA: Midwest Publications.
  • Facione, Peter A., 1990a, Critical Thinking: A Statement of Expert Consensus for Purposes of Educational Assessment and Instruction , Research Findings and Recommendations Prepared for the Committee on Pre-College Philosophy of the American Philosophical Association, ERIC Document ED315423.
  • –––, 1990b, California Critical Thinking Skills Test, CCTST – Form A , Millbrae, CA: The California Academic Press.
  • –––, 1990c, The California Critical Thinking Skills Test--College Level. Technical Report #3. Gender, Ethnicity, Major, CT Self-Esteem, and the CCTST , ERIC Document ED326584.
  • –––, 1992, California Critical Thinking Skills Test: CCTST – Form B, Millbrae, CA: The California Academic Press.
  • –––, 2000, “The Disposition Toward Critical Thinking: Its Character, Measurement, and Relationship to Critical Thinking Skill”, Informal Logic , 20(1): 61–84. [ Facione 2000 available online ]
  • Facione, Peter A. and Noreen C. Facione, 1992, CCTDI: A Disposition Inventory , Millbrae, CA: The California Academic Press.
  • Facione, Peter A., Noreen C. Facione, and Carol Ann F. Giancarlo, 2001, California Critical Thinking Disposition Inventory: CCTDI: Inventory Manual , Millbrae, CA: The California Academic Press.
  • Facione, Peter A., Carol A. Sánchez, and Noreen C. Facione, 1994, Are College Students Disposed to Think? , Millbrae, CA: The California Academic Press. ERIC Document ED368311.
  • Fisher, Alec, and Michael Scriven, 1997, Critical Thinking: Its Definition and Assessment , Norwich: Centre for Research in Critical Thinking, University of East Anglia.
  • Freire, Paulo, 1968 [1970], Pedagogia do Oprimido . Translated as Pedagogy of the Oppressed , Myra Bergman Ramos (trans.), New York: Continuum, 1970.
  • Gigerenzer, Gerd, 2001, “The Adaptive Toolbox”, in Gerd Gigerenzer and Reinhard Selten (eds.), Bounded Rationality: The Adaptive Toolbox , Cambridge, MA: MIT Press, pp. 37–50.
  • Glaser, Edward Maynard, 1941, An Experiment in the Development of Critical Thinking , New York: Bureau of Publications, Teachers College, Columbia University.
  • Groarke, Leo A. and Christopher W. Tindale, 2012, Good Reasoning Matters! A Constructive Approach to Critical Thinking , Don Mills, ON: Oxford University Press, 5th edition.
  • Halpern, Diane F., 1998, “Teaching Critical Thinking for Transfer Across Domains: Disposition, Skills, Structure Training, and Metacognitive Monitoring”, American Psychologist , 53(4): 449–455. doi:10.1037/0003-066X.53.4.449
  • –––, 2016, Manual: Halpern Critical Thinking Assessment , Mödling, Austria: Schuhfried. Available at https://pdfcoffee.com/hcta-test-manual-pdf-free.html; last accessed 2022 07 16.
  • Hamby, Benjamin, 2014, The Virtues of Critical Thinkers , Doctoral dissertation, Philosophy, McMaster University. [ Hamby 2014 available online ]
  • –––, 2015, “Willingness to Inquire: The Cardinal Critical Thinking Virtue”, in Martin Davies and Ronald Barnett (eds.), The Palgrave Handbook of Critical Thinking in Higher Education , New York: Palgrave Macmillan, pp. 77–87.
  • Haran, Uriel, Ilana Ritov, and Barbara A. Mellers, 2013, “The Role of Actively Open-minded Thinking in Information Acquisition, Accuracy, and Calibration”, Judgment and Decision Making , 8(3): 188–201.
  • Hatcher, Donald and Kevin Possin, 2021, “Commentary: Thinking Critically about Critical Thinking Assessment”, in Daniel Fasko, Jr. and Frank Fair (eds.), Critical Thinking and Reasoning: Theory, Development, Instruction, and Assessment , Leiden: Brill, pp. 298–322. doi: 10.1163/9789004444591_017
  • Haynes, Ada, Elizabeth Lisic, Kevin Harris, Katie Leming, Kyle Shanks, and Barry Stein, 2015, “Using the Critical Thinking Assessment Test (CAT) as a Model for Designing Within-Course Assessments: Changing How Faculty Assess Student Learning”, Inquiry: Critical Thinking Across the Disciplines , 30(3): 38–48. doi:10.5840/inquiryct201530316
  • Haynes, Ada and Barry Stein, 2021, “Observations from a Long-Term Effort to Assess and Improve Critical Thinking”, in Daniel Fasko, Jr. and Frank Fair (eds.), Critical Thinking and Reasoning: Theory, Development, Instruction, and Assessment , Leiden: Brill, pp. 231–254. doi: 10.1163/9789004444591_014
  • Hiner, Amanda L. 2021. “Equipping Students for Success in College and Beyond: Placing Critical Thinking Instruction at the Heart of a General Education Program”, in Daniel Fasko, Jr. and Frank Fair (eds.), Critical Thinking and Reasoning: Theory, Development, Instruction, and Assessment , Leiden: Brill, pp. 188–208. doi: 10.1163/9789004444591_012
  • Hitchcock, David, 2017, “Critical Thinking as an Educational Ideal”, in his On Reasoning and Argument: Essays in Informal Logic and on Critical Thinking , Dordrecht: Springer, pp. 477–497. doi:10.1007/978-3-319-53562-3_30
  • –––, 2021, “Seven Philosophical Implications of Critical Thinking: Themes, Variations, Implications”, in Daniel Fasko, Jr. and Frank Fair (eds.), Critical Thinking and Reasoning: Theory, Development, Instruction, and Assessment , Leiden: Brill, pp. 9–30. doi: 10.1163/9789004444591_002
  • hooks, bell, 1994, Teaching to Transgress: Education as the Practice of Freedom , New York and London: Routledge.
  • –––, 2010, Teaching Critical Thinking: Practical Wisdom , New York and London: Routledge.
  • Johnson, Ralph H., 1992, “The Problem of Defining Critical Thinking”, in Stephen P, Norris (ed.), The Generalizability of Critical Thinking , New York: Teachers College Press, pp. 38–53.
  • Kahane, Howard, 1971, Logic and Contemporary Rhetoric: The Use of Reason in Everyday Life , Belmont, CA: Wadsworth.
  • Kahneman, Daniel, 2011, Thinking, Fast and Slow , New York: Farrar, Straus and Giroux.
  • Kahneman, Daniel, Olivier Sibony, & Cass R. Sunstein, 2021, Noise: A Flaw in Human Judgment , New York: Little, Brown Spark.
  • Kenyon, Tim, and Guillaume Beaulac, 2014, “Critical Thinking Education and Debasing”, Informal Logic , 34(4): 341–363. [ Kenyon & Beaulac 2014 available online ]
  • Krathwohl, David R., Benjamin S. Bloom, and Bertram B. Masia, 1964, Taxonomy of Educational Objectives, Handbook II: Affective Domain , New York: David McKay.
  • Kuhn, Deanna, 1991, The Skills of Argument , New York: Cambridge University Press. doi:10.1017/CBO9780511571350
  • –––, 2019, “Critical Thinking as Discourse”, Human Development, 62 (3): 146–164. doi:10.1159/000500171
  • Lipman, Matthew, 1987, “Critical Thinking–What Can It Be?”, Analytic Teaching , 8(1): 5–12. [ Lipman 1987 available online ]
  • –––, 2003, Thinking in Education , Cambridge: Cambridge University Press, 2nd edition.
  • Loftus, Elizabeth F., 2017, “Eavesdropping on Memory”, Annual Review of Psychology , 68: 1–18. doi:10.1146/annurev-psych-010416-044138
  • Makaiau, Amber Strong, 2021, “The Good Thinker’s Tool Kit: How to Engage Critical Thinking and Reasoning in Secondary Education”, in Daniel Fasko, Jr. and Frank Fair (eds.), Critical Thinking and Reasoning: Theory, Development, Instruction, and Assessment , Leiden: Brill, pp. 168–187. doi: 10.1163/9789004444591_011
  • Martin, Jane Roland, 1992, “Critical Thinking for a Humane World”, in Stephen P. Norris (ed.), The Generalizability of Critical Thinking , New York: Teachers College Press, pp. 163–180.
  • Mayhew, Katherine Camp, and Anna Camp Edwards, 1936, The Dewey School: The Laboratory School of the University of Chicago, 1896–1903 , New York: Appleton-Century. [ Mayhew & Edwards 1936 available online ]
  • McPeck, John E., 1981, Critical Thinking and Education , New York: St. Martin’s Press.
  • Moore, Brooke Noel and Richard Parker, 2020, Critical Thinking , New York: McGraw-Hill, 13th edition.
  • Nickerson, Raymond S., 1998, “Confirmation Bias: A Ubiquitous Phenomenon in Many Guises”, Review of General Psychology , 2(2): 175–220. doi:10.1037/1089-2680.2.2.175
  • Nieto, Ana Maria, and Jorge Valenzuela, 2012, “A Study of the Internal Structure of Critical Thinking Dispositions”, Inquiry: Critical Thinking across the Disciplines , 27(1): 31–38. doi:10.5840/inquiryct20122713
  • Norris, Stephen P., 1985, “Controlling for Background Beliefs When Developing Multiple-choice Critical Thinking Tests”, Educational Measurement: Issues and Practice , 7(3): 5–11. doi:10.1111/j.1745-3992.1988.tb00437.x
  • Norris, Stephen P. and Robert H. Ennis, 1989, Evaluating Critical Thinking (The Practitioners’ Guide to Teaching Thinking Series), Pacific Grove, CA: Midwest Publications.
  • Norris, Stephen P. and Ruth Elizabeth King, 1983, Test on Appraising Observations , St. John’s, NL: Institute for Educational Research and Development, Memorial University of Newfoundland.
  • –––, 1984, The Design of a Critical Thinking Test on Appraising Observations , St. John’s, NL: Institute for Educational Research and Development, Memorial University of Newfoundland. ERIC Document ED260083.
  • –––, 1985, Test on Appraising Observations: Manual , St. John’s, NL: Institute for Educational Research and Development, Memorial University of Newfoundland.
  • –––, 1990a, Test on Appraising Observations , St. John’s, NL: Institute for Educational Research and Development, Memorial University of Newfoundland, 2nd edition.
  • –––, 1990b, Test on Appraising Observations: Manual , St. John’s, NL: Institute for Educational Research and Development, Memorial University of Newfoundland, 2nd edition.
  • OCR [Oxford, Cambridge and RSA Examinations], 2011, AS/A Level GCE: Critical Thinking – H052, H452 , Cambridge: OCR. Past papers available at https://pastpapers.co/ocr/?dir=A-Level/Critical-Thinking-H052-H452; last accessed 2022 07 16.
  • Ontario Ministry of Education, 2013, The Ontario Curriculum Grades 9 to 12: Social Sciences and Humanities . Available at http://www.edu.gov.on.ca/eng/curriculum/secondary/ssciences9to122013.pdf ; last accessed 2022 07 16.
  • Passmore, John Arthur, 1980, The Philosophy of Teaching , London: Duckworth.
  • Paul, Richard W., 1981, “Teaching Critical Thinking in the ‘Strong’ Sense: A Focus on Self-Deception, World Views, and a Dialectical Mode of Analysis”, Informal Logic , 4(2): 2–7. [ Paul 1981 available online ]
  • –––, 1984, “Critical Thinking: Fundamental to Education for a Free Society”, Educational Leadership , 42(1): 4–14.
  • –––, 1985, “McPeck’s Mistakes”, Informal Logic , 7(1): 35–43. [ Paul 1985 available online ]
  • Paul, Richard W. and Linda Elder, 2006, The Miniature Guide to Critical Thinking: Concepts and Tools , Dillon Beach, CA: Foundation for Critical Thinking, 4th edition.
  • Payette, Patricia, and Edna Ross, 2016, “Making a Campus-Wide Commitment to Critical Thinking: Insights and Promising Practices Utilizing the Paul-Elder Approach at the University of Louisville”, Inquiry: Critical Thinking Across the Disciplines , 31(1): 98–110. doi:10.5840/inquiryct20163118
  • Possin, Kevin, 2008, “A Field Guide to Critical-Thinking Assessment”, Teaching Philosophy , 31(3): 201–228. doi:10.5840/teachphil200831324
  • –––, 2013a, “Some Problems with the Halpern Critical Thinking Assessment (HCTA) Test”, Inquiry: Critical Thinking across the Disciplines , 28(3): 4–12. doi:10.5840/inquiryct201328313
  • –––, 2013b, “A Serious Flaw in the Collegiate Learning Assessment (CLA) Test”, Informal Logic , 33(3): 390–405. [ Possin 2013b available online ]
  • –––, 2013c, “A Fatal Flaw in the Collegiate Learning Assessment Test”, Assessment Update , 25 (1): 8–12.
  • –––, 2014, “Critique of the Watson-Glaser Critical Thinking Appraisal Test: The More You Know, the Lower Your Score”, Informal Logic , 34(4): 393–416. [ Possin 2014 available online ]
  • –––, 2020, “CAT Scan: A Critical Review of the Critical-Thinking Assessment Test”, Informal Logic , 40 (3): 489–508. [Available online at https://informallogic.ca/index.php/informal_logic/article/view/6243]
  • Rawls, John, 1971, A Theory of Justice , Cambridge, MA: Harvard University Press.
  • Rear, David, 2019, “One Size Fits All? The Limitations of Standardised Assessment in Critical Thinking”, Assessment & Evaluation in Higher Education , 44(5): 664–675. doi: 10.1080/02602938.2018.1526255
  • Rousseau, Jean-Jacques, 1762, Émile , Amsterdam: Jean Néaulme.
  • Scheffler, Israel, 1960, The Language of Education , Springfield, IL: Charles C. Thomas.
  • Scriven, Michael, and Richard W. Paul, 1987, Defining Critical Thinking , Draft statement written for the National Council for Excellence in Critical Thinking Instruction. Available at http://www.criticalthinking.org/pages/defining-critical-thinking/766 ; last accessed 2022 07 16.
  • Sheffield, Clarence Burton Jr., 2018, “Promoting Critical Thinking in Higher Education: My Experiences as the Inaugural Eugene H. Fram Chair in Applied Critical Thinking at Rochester Institute of Technology”, Topoi , 37(1): 155–163. doi:10.1007/s11245-016-9392-1
  • Siegel, Harvey, 1985, “McPeck, Informal Logic and the Nature of Critical Thinking”, in David Nyberg (ed.), Philosophy of Education 1985: Proceedings of the Forty-First Annual Meeting of the Philosophy of Education Society , Normal, IL: Philosophy of Education Society, pp. 61–72.
  • –––, 1988, Educating Reason: Rationality, Critical Thinking, and Education , New York: Routledge.
  • –––, 1999, “What (Good) Are Thinking Dispositions?”, Educational Theory , 49(2): 207–221. doi:10.1111/j.1741-5446.1999.00207.x
  • Simon, Herbert A., 1956, “Rational Choice and the Structure of the Environment”, Psychological Review , 63(2): 129–138. doi: 10.1037/h0042769
  • Simpson, Elizabeth, 1966–67, “The Classification of Educational Objectives: Psychomotor Domain”, Illinois Teacher of Home Economics , 10(4): 110–144, ERIC document ED0103613. [ Simpson 1966–67 available online ]
  • Skolverket, 2018, Curriculum for the Compulsory School, Preschool Class and School-age Educare , Stockholm: Skolverket, revised 2018. Available at https://www.skolverket.se/download/18.31c292d516e7445866a218f/1576654682907/pdf3984.pdf; last accessed 2022 07 15.
  • Smith, B. Othanel, 1953, “The Improvement of Critical Thinking”, Progressive Education , 30(5): 129–134.
  • Smith, Eugene Randolph, Ralph Winfred Tyler, and the Evaluation Staff, 1942, Appraising and Recording Student Progress , Volume III of Adventure in American Education , New York and London: Harper & Brothers.
  • Splitter, Laurance J., 1987, “Educational Reform through Philosophy for Children”, Thinking: The Journal of Philosophy for Children , 7(2): 32–39. doi:10.5840/thinking1987729
  • Stanovich Keith E., and Paula J. Stanovich, 2010, “A Framework for Critical Thinking, Rational Thinking, and Intelligence”, in David D. Preiss and Robert J. Sternberg (eds), Innovations in Educational Psychology: Perspectives on Learning, Teaching and Human Development , New York: Springer Publishing, pp 195–237.
  • Stanovich Keith E., Richard F. West, and Maggie E. Toplak, 2011, “Intelligence and Rationality”, in Robert J. Sternberg and Scott Barry Kaufman (eds.), Cambridge Handbook of Intelligence , Cambridge: Cambridge University Press, 3rd edition, pp. 784–826. doi:10.1017/CBO9780511977244.040
  • Tankersley, Karen, 2005, Literacy Strategies for Grades 4–12: Reinforcing the Threads of Reading , Alexandria, VA: Association for Supervision and Curriculum Development.
  • Thayer-Bacon, Barbara J., 1992, “Is Modern Critical Thinking Theory Sexist?”, Inquiry: Critical Thinking Across the Disciplines , 10(1): 3–7. doi:10.5840/inquiryctnews199210123
  • –––, 1993, “Caring and Its Relationship to Critical Thinking”, Educational Theory , 43(3): 323–340. doi:10.1111/j.1741-5446.1993.00323.x
  • –––, 1995a, “Constructive Thinking: Personal Voice”, Journal of Thought , 30(1): 55–70.
  • –––, 1995b, “Doubting and Believing: Both are Important for Critical Thinking”, Inquiry: Critical Thinking across the Disciplines , 15(2): 59–66. doi:10.5840/inquiryctnews199515226
  • –––, 2000, Transforming Critical Thinking: Thinking Constructively , New York: Teachers College Press.
  • Toulmin, Stephen Edelston, 1958, The Uses of Argument , Cambridge: Cambridge University Press.
  • Turri, John, Mark Alfano, and John Greco, 2017, “Virtue Epistemology”, in Edward N. Zalta (ed.), The Stanford Encyclopedia of Philosophy (Winter 2017 Edition). URL = < https://plato.stanford.edu/archives/win2017/entries/epistemology-virtue/ >
  • Vincent-Lancrin, Stéphan, Carlos González-Sancho, Mathias Bouckaert, Federico de Luca, Meritxell Fernández-Barrerra, Gwénaël Jacotin, Joaquin Urgel, and Quentin Vidal, 2019, Fostering Students’ Creativity and Critical Thinking: What It Means in School. Educational Research and Innovation , Paris: OECD Publishing.
  • Warren, Karen J. 1988. “Critical Thinking and Feminism”, Informal Logic , 10(1): 31–44. [ Warren 1988 available online ]
  • Watson, Goodwin, and Edward M. Glaser, 1980a, Watson-Glaser Critical Thinking Appraisal, Form A , San Antonio, TX: Psychological Corporation.
  • –––, 1980b, Watson-Glaser Critical Thinking Appraisal: Forms A and B; Manual , San Antonio, TX: Psychological Corporation,
  • –––, 1994, Watson-Glaser Critical Thinking Appraisal, Form B , San Antonio, TX: Psychological Corporation.
  • Weinstein, Mark, 1990, “Towards a Research Agenda for Informal Logic and Critical Thinking”, Informal Logic , 12(3): 121–143. [ Weinstein 1990 available online ]
  • –––, 2013, Logic, Truth and Inquiry , London: College Publications.
  • Willingham, Daniel T., 2019, “How to Teach Critical Thinking”, Education: Future Frontiers , 1: 1–17. [Available online at https://prod65.education.nsw.gov.au/content/dam/main-education/teaching-and-learning/education-for-a-changing-world/media/documents/How-to-teach-critical-thinking-Willingham.pdf.]
  • Zagzebski, Linda Trinkaus, 1996, Virtues of the Mind: An Inquiry into the Nature of Virtue and the Ethical Foundations of Knowledge , Cambridge: Cambridge University Press. doi:10.1017/CBO9781139174763
How to cite this entry . Preview the PDF version of this entry at the Friends of the SEP Society . Look up topics and thinkers related to this entry at the Internet Philosophy Ontology Project (InPhO). Enhanced bibliography for this entry at PhilPapers , with links to its database.
  • Association for Informal Logic and Critical Thinking (AILACT)
  • Critical Thinking Across the European Higher Education Curricula (CRITHINKEDU)
  • Critical Thinking Definition, Instruction, and Assessment: A Rigorous Approach
  • Critical Thinking Research (RAIL)
  • Foundation for Critical Thinking
  • Insight Assessment
  • Partnership for 21st Century Learning (P21)
  • The Critical Thinking Consortium
  • The Nature of Critical Thinking: An Outline of Critical Thinking Dispositions and Abilities , by Robert H. Ennis

abilities | bias, implicit | children, philosophy for | civic education | decision-making capacity | Dewey, John | dispositions | education, philosophy of | epistemology: virtue | logic: informal

Copyright © 2022 by David Hitchcock < hitchckd @ mcmaster . ca >

  • Accessibility

Support SEP

Mirror sites.

View this site from another server:

  • Info about mirror sites

The Stanford Encyclopedia of Philosophy is copyright © 2024 by The Metaphysics Research Lab , Department of Philosophy, Stanford University

Library of Congress Catalog Data: ISSN 1095-5054

loading

  • Accounting & Finance
  • Communication
  • Critical Thinking
  • Marketing & Strategy
  • Starting a Business
  • Team Management
  • Corporate Philosophy
  • Diversity, Equity, & Inclusion
  • Kokorozashi
  • Sustainable Business
  • AI Ventures
  • Machine Learning
  • Alumni Voices
  • Yoshito Hori Blog
  • Unlimited Insights
  • Career Skills

How to Identify and Remove Barriers to Critical Thinking

An illustration of an office worker jumping over a brick wall representing barriers to critical thinking.

Critical Thinking: Structured Reasoning

Even a few simple techniques for logical decision making and persuasion can vastly improve your skills as a leader. Explore how critical thinking can help you evaluate complex business problems, reduce bias, and devise effective solutions.

Critical Thinking: Problem-Solving

Problem-solving is a central business skill, and yet it's the one many people struggle with most. This course will show you how to apply critical thinking techniques to common business examples, avoid misunderstandings, and get at the root of any problem.

Contrary to popular belief, being intelligent or logical does not automatically make you a critical thinker.

People with high IQs are still prone to biases, complacency, overconfidence, and stereotyping that affect the quality of their thoughts and performance at work. But people who scored high in critical thinking —a reflection of sound analytical, problem-solving, and decision-making abilities—report having fewer negative experiences in and out of the office.

Top 5 Barriers to Critical Thinking

To learn how to think critically, you’ll need to identify and understand what prevents people from doing so in the first place. Catching yourself (and others) engaging in these critical thinking no-no’s can help prevent costly mistakes and improve your quality of life.

Here are five of the most common barriers to critical thinking.

Egocentric Thinking

Egoism, or viewing everything in relation to yourself, is a natural human tendency and a common barrier to critical thinking. It often leads to an inability to question one’s own beliefs, sympathize with others, or consider different perspectives.

Egocentricity is an inherent character flaw. Understand that, and you’ll gain the open-minded point of view required to assess situations outside your own lens of understanding.

Groupthink and Social Conditioning

Everyone wants to feel like they belong. It’s a basic survival instinct and psychological mechanism that ensures the survival of our species. Historically, humans banded together to survive in the wild against predators and each other. That desire to “fit in” persists today as groupthink, or the tendency to agree with the majority and suppress independent thoughts and actions.

Groupthink is a serious threat to diversity in that it supports social conditioning, or the idea that we should all adhere to a particular society or culture’s most “acceptable” behavior.

Overcoming groupthink and cultural conditioning requires the courage to break free from the crowd. It’s the only way to question popular thought, culturally embedded values, and belief systems in a detached and objective manner.

Next Article

5 of the Best Books on Critical Thinking and Problem-Solving

 width=

Drone Mentality and Cognitive Fatigue

Turning on “autopilot” and going through the motions can lead to a lack of spatial awareness. This is known as drone mentality, and it’s not only detrimental to you, but those around you, as well.

Studies show that monotony and boredom are bad for mental health . Cognitive fatigue caused by long-term mental activity without appropriate stimulation, like an unchanging daily routine full of repetitive tasks, negatively impairs cognitive functioning and critical thinking .

Although you may be tempted to flip on autopilot when things get monotonous, as a critical thinker you need to challenge yourself to make new connections and find fresh ideas. Adopt different schools of thought. Keep both your learning and teaching methods exciting and innovative, and that will foster an environment of critical thinking.

The Logic Tree: The Ultimate Critical Thinking Framework

 width=

Personal Biases and Preferences

Everyone internalizes certain beliefs, opinions, and attitudes that manifest as personal biases. You may feel that you’re open minded, but these subconscious judgements are more common than most people realize. They can distort your thinking patterns and sway your decision making in the following ways:

  • Confirmation bias: favoring information that reinforces your existing viewpoints and beliefs
  • Anchoring bias: being overly influenced by the first piece of information you come across
  • False consensus effect: believing that most people share your perspective
  • Normalcy bias: assuming that things will stay the same despite significant changes to the status quo

The critical thinking process requires being aware of personal biases that affect your ability to rationally analyze a situation and make sound decisions.

Allostatic Overload

Research shows that persistent stress causes a phenomenon known as allostatic overload . It’s serious business, affecting your attention span, memory, mood, and even physical health.

When under pressure, your brain is forced to channel energy into the section responsible for processing necessary information at the expense of taking a rest. That’s why people experience memory lapses in fight-or-flight situations. Prolonged stress also reduces activity in the prefrontal cortex, the part of the brain that handles executive tasks.

Avoiding cognitive impairments under pressure begins by remaining as calm and objective as possible. If you’re feeling overwhelmed, take a deep breath and slow your thoughts. Assume the role of a third-party observer. Analyze and evaluate what can be controlled instead of what can’t.

Train Your Mind Using the 9 Intellectual Standards

The bad news is that barriers to critical thinking can really sneak up on you and be difficult to overcome. But the good news is that anyone can learn to think critically with practice.

Unlike raw intelligence, which is largely determined by genetics , critical thinking can be mastered using nine teachable standards of thought:

  • Clarity: Is the information or task at hand easy to understand and free from obscurities?
  • Precision: Is it specific and detailed?
  • Accuracy: Is it correct, free from errors and distortions?
  • Relevance: Is it directly related to the matter at hand?
  • Depth: Does it consider all other variables, contexts, and situations?
  • Breadth: Is it comprehensive, and does it encompass other perspectives?
  • Logical: Does it contradict itself?
  • Significance: Is it important in the first place?
  • Fairness: Is it free from bias, deception, and self-interest?

When evaluating any task, situation, or piece of information, consider these intellectual standards to hone your critical thinking skills in a structured, practiced way. Keep it up, and eventually critical thinking will become second nature.

Related Articles

The foreign entrepreneur’s guide to securing a japan investor visa.

 width=

The Trap of Tiara Syndrome: How to Advocate for Yourself

 width=

360 Marketing: Where Traditional and Digital Meet

 width=

Get monthly Insights

Sign up for our newsletter! Privacy Policy

GLOBIS Insights

  • Submission Guidelines
  • Our Contributors

Accountability

  • Privacy Policy

GLOBIS Group

  • GLOBIS Corporation
  • GLOBIS University
  • GLOBIS Capital Partners
  • GLOBIS Asia Pacific
  • GLOBIS Asia Campus
  • GLOBIS China
  • GLOBIS Europe
  • GLOBIS Thailand
  • G1 Institute
  • Ibaraki Robots Sports Entertainment
  • KIBOW Foundation

© GLOBIS All Rights Reserved

10 Barriers to Critical Thinking & Tips to Overcome Them

students overcoming barriers to critical thinking

Critical thinking is an essential life skill, especially in an age where deceptions like “my truth” and “your truth” run rampant. 

It allows us to think our way through issues and arrive at effective solutions, and it is a skill that deserves the dedication it takes to hone it.

In some cases, there are invisible barriers to critical thinking that must first be broken down before progress can be made. 

Because it is so vitally important for our teens to develop such skills—to think for themselves in a world pressuring them to tow the line—I think it’s worth addressing potential obstacles in their way. 

Here are 10 common barriers to critical thinking that may reveal themselves as you seek to teach this vital skill. 

1. Lack of Practice

Considering what causes a lack of critical thinking , the word “practice” comes to mind. 

The phrase “practice makes progress” rings true when developing critical thinking skills .

Critical thinking may be discussed at length and encouraged theoretically, but is it expressed in the assignments or exercises our teens do on a daily basis?

Sadly, many assignments simply ask for regurgitated facts from a textbook that require little to no real thinking. 

If we want to see our students thrive in the realm of critical thinking, we need to provide them with opportunities to practice and apply what they’ve learned in real-life situations.

2. Perceived Inability to Teach It

The idea that you’re not capable of teaching such a thing may just become a self-fulfilling prophecy. 

If you believe you can’t teach critical thinking, you may not even try. If you do try, you may be plagued by self-doubt that shakes your confidence. 

If you’ve ever thought …

“Why is critical thinking so difficult?”

You’re not alone.

It can be hard to plainly identify what critical thinking is and how to teach it. That’s one of the main reasons we created Philosophy Adventure —to provide an intriguing way to teach critical thinking effectively.

20 Questions: Exercises in Critical Thinking

Get a Question-Based Critical Thinking Exercise—Free!

Introduce critical thinking gently & easily with thought-provoking exercises.

3. Normalcy Bias

Normalcy bias is a subconscious response that falsely assures things will remain the same as they always were. 

Every type of bias works against critical thinking as it uses emotion to make decisions rather than rational thought rooted in truth.

This bias encourages our minds to ignore danger and new information in favor of maintaining the safety and security of our “regular” lives. 

For example, normalcy bias leads us to believe that freedom will always be free despite growing threats to quench it. 

Frankly, it’s a dangerous barrier to critical thinking with the potential for lasting consequences.

4. Group-Think

The group-think effect is a phenomenon where individuals conform to the beliefs of others in order to avoid appearing different. 

It can lead to mass conformity in which society grows blind to flaws in opinion-based reasoning. 

Why think for yourself when someone else can do it for you? It’s a sobering thought—and a major obstacle to critical thinking—but I fear it’s one that is sweeping the world.

This is an especially tough barrier for teenagers who are often desperate to be accepted and liked by their peers. 

Rather than relying on critical thinking to decipher between right and wrong, they may cave to peer pressure because “everyone else is doing it.”

This barrier is yet another poignant example of why it’s so important to help our children develop critical thinking skills.  

5. Distorted View of Truth

We’re also susceptible to having a distorted view of what is fact and what isn’t. If we’re not careful, our view of truth can be distorted by misleading opinions.

what are the limitations of critical thinking

Passionate people with deeply held beliefs are often willing to loudly defend them. 

Such passion and charisma can seduce teens and adults alike who may not fully know what they believe— or why they believe it . 

Of all the psychological obstacles to critical thinking, fear is a weighty one. 

I humbly suggest that it is the fear of failure or the fear of change that is most likely to act as a hindrance to critical thinking. 

Sometimes, when we look at an issue from every angle, we find that the only right reaction is to change. 

Likewise, if we fear failure, we’re likely to not act or try at all. 

And when it comes to trying to discern the truth in order to act upon it, not doing so can be far worse than the perceived failure itself. 

7. Viewing Everything Through the Lens of “Self”

Some people call it “egocentric thinking.” Whatever the name, it is the tendency to think about the world only as it relates to us. 

This self-centered thinking is natural, but there’s great value in training our minds to be able to view issues from another’s point of view. When problem-solving, it’s important to consider other perspectives.

This is particularly true when dealing with people who may be affected by our actions.

8. Past Experiences

Past experiences, relationships, even trauma can change us in a number of ways. 

What happened in the past surrounding any given thing most certainly influences how we think and feel about that thing in the future. 

But it’s important to recognize past experiences for what they are—a single moment (or period) of time.

They should not define our thoughts, nor should they dictate our actions as we seek to answer life’s questions objectively.  

Undoubtedly, it can be difficult to put such things in perspective so, and it calls for self-control, but it’s important to train our teens to try.  

Relying exclusively on the past to make decisions today can lead to negative outcomes as it relies on information that may not be true. 

9. Assumptions

Assumptions dampen our ability to learn. Though often flawed, assumptions quench our desire  to ask questions because we think we already know the answers. 

What a sad state to be stuck in because the truth is …

We don’t know what we don’t know.

How can we learn what we don’t know if we never root out the truth in a given matter?

Similarly, some people assume that because they don’t understand something, then it must be impossible to learn. 

That’s simply not true. We have an innate ability to learn new things, and critical thinking helps us do just that—with integrity.  

10. Time Constraints

There’s so much to learn in school that it can be hard to find the time to invest in critical thinking discussion and activities . 

This skill can often be moved to the side while teens learn about world history and how to write a proper essay—both of which are no doubt important. 

But I would argue that critical thinking gives students the foundation to not only better digest the material learned but to excel in it. 

How to Overcome Common Barriers to Critical Thinking 

We’ve established that critical thinking is an essential part of becoming a discerning adult, unmoved by news biases or passionate, emotional language. 

That being said, how do we break through the barriers that hinder critical thinking and move forward to teach such a significant skill?

You can help your students better develop their critical thinking skills by encouraging thoughtful questions and debate. 

When consuming news from around the world, inspire them to challenge their initial emotional reactions to the information presented. Teach them how to seek impartial data and use that to form an educated opinion. 

Providing real-world examples and connections between topics is a great way to encourage teens to think more deeply about a subject. 

Rather than presenting multiple choice answers or fill-in-the-blanks, ask them to talk through the question out loud based on the information they’ve been given.  

You can also try a fun exercise with these critical thinking questions for kids .

The ability to clearly vocalize beliefs and express thoughts is a priceless skill, and one that we have weaved into every lesson of Philosophy Adventure :

what are the limitations of critical thinking

will your children recognize truth?

Critical thinking is a learned skill that requires practice (and breaking down barriers when they arise). 

However, the ability to identify logical fallacies in arguments and recognize deception is well worth investing in. 

Recognizing potential barriers that are obstructing that end goal is a solid first step. 

About The Author

' src=

Stacy Farrell

Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, generate accurate citations for free.

  • Knowledge Base
  • Working with sources
  • What Is Critical Thinking? | Definition & Examples

What Is Critical Thinking? | Definition & Examples

Published on May 30, 2022 by Eoghan Ryan . Revised on May 31, 2023.

Critical thinking is the ability to effectively analyze information and form a judgment .

To think critically, you must be aware of your own biases and assumptions when encountering information, and apply consistent standards when evaluating sources .

Critical thinking skills help you to:

  • Identify credible sources
  • Evaluate and respond to arguments
  • Assess alternative viewpoints
  • Test hypotheses against relevant criteria

Table of contents

Why is critical thinking important, critical thinking examples, how to think critically, other interesting articles, frequently asked questions about critical thinking.

Critical thinking is important for making judgments about sources of information and forming your own arguments. It emphasizes a rational, objective, and self-aware approach that can help you to identify credible sources and strengthen your conclusions.

Critical thinking is important in all disciplines and throughout all stages of the research process . The types of evidence used in the sciences and in the humanities may differ, but critical thinking skills are relevant to both.

In academic writing , critical thinking can help you to determine whether a source:

  • Is free from research bias
  • Provides evidence to support its research findings
  • Considers alternative viewpoints

Outside of academia, critical thinking goes hand in hand with information literacy to help you form opinions rationally and engage independently and critically with popular media.

Scribbr Citation Checker New

The AI-powered Citation Checker helps you avoid common mistakes such as:

  • Missing commas and periods
  • Incorrect usage of “et al.”
  • Ampersands (&) in narrative citations
  • Missing reference entries

what are the limitations of critical thinking

Critical thinking can help you to identify reliable sources of information that you can cite in your research paper . It can also guide your own research methods and inform your own arguments.

Outside of academia, critical thinking can help you to be aware of both your own and others’ biases and assumptions.

Academic examples

However, when you compare the findings of the study with other current research, you determine that the results seem improbable. You analyze the paper again, consulting the sources it cites.

You notice that the research was funded by the pharmaceutical company that created the treatment. Because of this, you view its results skeptically and determine that more independent research is necessary to confirm or refute them. Example: Poor critical thinking in an academic context You’re researching a paper on the impact wireless technology has had on developing countries that previously did not have large-scale communications infrastructure. You read an article that seems to confirm your hypothesis: the impact is mainly positive. Rather than evaluating the research methodology, you accept the findings uncritically.

Nonacademic examples

However, you decide to compare this review article with consumer reviews on a different site. You find that these reviews are not as positive. Some customers have had problems installing the alarm, and some have noted that it activates for no apparent reason.

You revisit the original review article. You notice that the words “sponsored content” appear in small print under the article title. Based on this, you conclude that the review is advertising and is therefore not an unbiased source. Example: Poor critical thinking in a nonacademic context You support a candidate in an upcoming election. You visit an online news site affiliated with their political party and read an article that criticizes their opponent. The article claims that the opponent is inexperienced in politics. You accept this without evidence, because it fits your preconceptions about the opponent.

There is no single way to think critically. How you engage with information will depend on the type of source you’re using and the information you need.

However, you can engage with sources in a systematic and critical way by asking certain questions when you encounter information. Like the CRAAP test , these questions focus on the currency , relevance , authority , accuracy , and purpose of a source of information.

When encountering information, ask:

  • Who is the author? Are they an expert in their field?
  • What do they say? Is their argument clear? Can you summarize it?
  • When did they say this? Is the source current?
  • Where is the information published? Is it an academic article? Is it peer-reviewed ?
  • Why did the author publish it? What is their motivation?
  • How do they make their argument? Is it backed up by evidence? Does it rely on opinion, speculation, or appeals to emotion ? Do they address alternative arguments?

Critical thinking also involves being aware of your own biases, not only those of others. When you make an argument or draw your own conclusions, you can ask similar questions about your own writing:

  • Am I only considering evidence that supports my preconceptions?
  • Is my argument expressed clearly and backed up with credible sources?
  • Would I be convinced by this argument coming from someone else?

If you want to know more about ChatGPT, AI tools , citation , and plagiarism , make sure to check out some of our other articles with explanations and examples.

  • ChatGPT vs human editor
  • ChatGPT citations
  • Is ChatGPT trustworthy?
  • Using ChatGPT for your studies
  • What is ChatGPT?
  • Chicago style
  • Paraphrasing

 Plagiarism

  • Types of plagiarism
  • Self-plagiarism
  • Avoiding plagiarism
  • Academic integrity
  • Consequences of plagiarism
  • Common knowledge

Critical thinking refers to the ability to evaluate information and to be aware of biases or assumptions, including your own.

Like information literacy , it involves evaluating arguments, identifying and solving problems in an objective and systematic way, and clearly communicating your ideas.

Critical thinking skills include the ability to:

You can assess information and arguments critically by asking certain questions about the source. You can use the CRAAP test , focusing on the currency , relevance , authority , accuracy , and purpose of a source of information.

Ask questions such as:

  • Who is the author? Are they an expert?
  • How do they make their argument? Is it backed up by evidence?

A credible source should pass the CRAAP test  and follow these guidelines:

  • The information should be up to date and current.
  • The author and publication should be a trusted authority on the subject you are researching.
  • The sources the author cited should be easy to find, clear, and unbiased.
  • For a web source, the URL and layout should signify that it is trustworthy.

Information literacy refers to a broad range of skills, including the ability to find, evaluate, and use sources of information effectively.

Being information literate means that you:

  • Know how to find credible sources
  • Use relevant sources to inform your research
  • Understand what constitutes plagiarism
  • Know how to cite your sources correctly

Confirmation bias is the tendency to search, interpret, and recall information in a way that aligns with our pre-existing values, opinions, or beliefs. It refers to the ability to recollect information best when it amplifies what we already believe. Relatedly, we tend to forget information that contradicts our opinions.

Although selective recall is a component of confirmation bias, it should not be confused with recall bias.

On the other hand, recall bias refers to the differences in the ability between study participants to recall past events when self-reporting is used. This difference in accuracy or completeness of recollection is not related to beliefs or opinions. Rather, recall bias relates to other factors, such as the length of the recall period, age, and the characteristics of the disease under investigation.

Cite this Scribbr article

If you want to cite this source, you can copy and paste the citation or click the “Cite this Scribbr article” button to automatically add the citation to our free Citation Generator.

Ryan, E. (2023, May 31). What Is Critical Thinking? | Definition & Examples. Scribbr. Retrieved August 26, 2024, from https://www.scribbr.com/working-with-sources/critical-thinking/

Is this article helpful?

Eoghan Ryan

Eoghan Ryan

Other students also liked, student guide: information literacy | meaning & examples, what are credible sources & how to spot them | examples, applying the craap test & evaluating sources, get unlimited documents corrected.

✔ Free APA citation check included ✔ Unlimited document corrections ✔ Specialized in correcting academic texts

what are the limitations of critical thinking

  • The Open University
  • Accessibility hub
  • Guest user / Sign out
  • Study with The Open University

My OpenLearn Profile

Personalise your OpenLearn profile, save your favourite content and get recognition for your learning

About this free course

Become an ou student, download this course, share this free course.

Succeeding in postgraduate study

Start this free course now. Just create an account and sign in. Enrol and complete the course for a free statement of participation or digital badge if available.

1 Barriers to critical thinking

First, let’s briefly examine some barriers to critical thinking.

Take another look at the visual summary below on critical and analytical thinking, which was introduced at the end of Session 3. Note the warning sign next to the ‘black pit’ to the lower right of this figure.

A visual summary of critical and analytical thinking

This figure shows a visual summary of critical and analytical thinking. It includes phrases such as ‘objective analysis and evaluation of an issue in order to form a judgement’, ‘abilities’, ‘dispositions’ and ‘questioning’.

We have provided you with a larger version of this image in PDF format [ Tip: hold Ctrl and click a link to open it in a new tab. ( Hide tip ) ] .

What are the common pitfalls or barriers to thinking critically and analytically? Some of these were highlighted in the visual summary, and include:

  • Misunderstanding . This can arise due to language or cultural differences, a lack of awareness of the ‘processes’ involved, or a misunderstanding that critical thinking means making ‘negative’ comments (as discussed in Sessions 3 and 4).
  • Reluctance to critique the ‘norm’ or experts in a field and consider alternative views (feeling out of your ‘comfort zone’ or fearful of being wrong).
  • Lack of detailed knowledge . Superficial knowledge (not having read deeply enough around the subject).
  • Wanting to know the answers without having to ask questions .

Why do you think being aware of these potential pitfalls is important?

As a critical and reflective thinker, you will need to be aware of the barriers, acknowledge the challenges they may present, and overcome these as best you can. This starts with an understanding of expectations. Some students feel anxious about questioning the work of experts. Critical thinking does not mean that you are challenging someone’s work or telling them that they are wrong, but encourages a deeper understanding, a consideration of alternative views, and engagement in thought, discourse or research that informs your independent judgement. At postgraduate level you will also need to read widely around a subject in order to engage effectively with critical and analytical thinking, and to ask questions: there are no ‘right’ or ‘wrong’ answers, only supported arguments. This is at the heart of postgraduate study.

Critical thinking encourages you to be constructive, by considering the strengths and weaknesses of a claim and differing sides to an argument. It helps you to clarify points, encourages deeper thought, and allows you to determine whether information that you come across is accurate and reliable. This helps you to form your own judgement, and drives research forward.

People can find it difficult to think critically, irrespective of their education or intellectual ability. The key to understanding critical thinking is not only knowing and making sure that you understand the process, but also being able to put this into practice by applying your knowledge.

Critical and reflective thinking are complex and lifelong skills that you continue to develop as part of your personal and professional growth. In your everyday life, you may also come across those who do not exercise critical thinking, and this might impact on decisions that affect you. It is important to recognise this, and to use critical and reflective thinking to ensure that your own view is informed by reasoned judgement, supported by evidence.

Take another look at the visual summary. You will see two aspects to critical thinking: one focusing on the disposition of the person engaged in critical and reflective thinking, and the other concerning their abilities. Let’s focus here on dispositions. At a personal level, barriers to critical thinking can arise through:

  • an over-reliance on feelings or emotions
  • self-centred or societal/cultural-centred thinking (conformism, dogma and peer-pressure)
  • unconscious bias, or selective perception
  • an inability to be receptive to an idea or point of view that differs from your own (close-mindedness)
  • unwarranted assumptions or lack of relevant information
  • fear of being wrong (anxious about being taken out of your ‘comfort zone’)
  • poor communication skills or apathy
  • lack of personal honesty.

Be aware that thinking critically is not simply adhering to a formula. For example, reflect on the following questions:

  • How can you communicate with those who do not actively engage with critical thinking and are unwilling to engage in a meaningful dialogue?
  • How would you react or respond when you experience a lack of critical thinking in the media, amongst your own family members, colleagues at work, or on your course?

Previous

Encyclopedia Britannica

  • History & Society
  • Science & Tech
  • Biographies
  • Animals & Nature
  • Geography & Travel
  • Arts & Culture
  • Games & Quizzes
  • On This Day
  • One Good Fact
  • New Articles
  • Lifestyles & Social Issues
  • Philosophy & Religion
  • Politics, Law & Government
  • World History
  • Health & Medicine
  • Browse Biographies
  • Birds, Reptiles & Other Vertebrates
  • Bugs, Mollusks & Other Invertebrates
  • Environment
  • Fossils & Geologic Time
  • Entertainment & Pop Culture
  • Sports & Recreation
  • Visual Arts
  • Demystified
  • Image Galleries
  • Infographics
  • Top Questions
  • Britannica Kids
  • Saving Earth
  • Space Next 50
  • Student Center
  • What was education like in ancient Athens?
  • How does social class affect education attainment?
  • When did education become compulsory?
  • What are alternative forms of education?
  • Do school vouchers offer students access to better education?

Girl student writing in her notebook in classroom in school.

critical thinking

Our editors will review what you’ve submitted and determine whether to revise the article.

  • Stanford Encyclopedia of Philosophy - Critical Thinking
  • Internet Encyclopedia of Philosophy - Critical Thinking
  • Monash University - Student Academic Success - What is critical thinking?
  • Oklahoma State University Pressbooks - Critical Thinking - Introduction to Critical Thinking
  • University of Louisville - Critical Thinking

Recent News

critical thinking , in educational theory, mode of cognition using deliberative reasoning and impartial scrutiny of information to arrive at a possible solution to a problem. From the perspective of educators, critical thinking encompasses both a set of logical skills that can be taught and a disposition toward reflective open inquiry that can be cultivated . The term critical thinking was coined by American philosopher and educator John Dewey in the book How We Think (1910) and was adopted by the progressive education movement as a core instructional goal that offered a dynamic modern alternative to traditional educational methods such as rote memorization.

Critical thinking is characterized by a broad set of related skills usually including the abilities to

  • break down a problem into its constituent parts to reveal its underlying logic and assumptions
  • recognize and account for one’s own biases in judgment and experience
  • collect and assess relevant evidence from either personal observations and experimentation or by gathering external information
  • adjust and reevaluate one’s own thinking in response to what one has learned
  • form a reasoned assessment in order to propose a solution to a problem or a more accurate understanding of the topic at hand

Socrates

Theorists have noted that such skills are only valuable insofar as a person is inclined to use them. Consequently, they emphasize that certain habits of mind are necessary components of critical thinking. This disposition may include curiosity, open-mindedness, self-awareness, empathy , and persistence.

Although there is a generally accepted set of qualities that are associated with critical thinking, scholarly writing about the term has highlighted disagreements over its exact definition and whether and how it differs from related concepts such as problem solving . In addition, some theorists have insisted that critical thinking be regarded and valued as a process and not as a goal-oriented skill set to be used to solve problems. Critical-thinking theory has also been accused of reflecting patriarchal assumptions about knowledge and ways of knowing that are inherently biased against women.

Dewey, who also used the term reflective thinking , connected critical thinking to a tradition of rational inquiry associated with modern science . From the turn of the 20th century, he and others working in the overlapping fields of psychology , philosophy , and educational theory sought to rigorously apply the scientific method to understand and define the process of thinking. They conceived critical thinking to be related to the scientific method but more open, flexible, and self-correcting; instead of a recipe or a series of steps, critical thinking would be a wider set of skills, patterns, and strategies that allow someone to reason through an intellectual topic, constantly reassessing assumptions and potential explanations in order to arrive at a sound judgment and understanding.

In the progressive education movement in the United States , critical thinking was seen as a crucial component of raising citizens in a democratic society. Instead of imparting a particular series of lessons or teaching only canonical subject matter, theorists thought that teachers should train students in how to think. As critical thinkers, such students would be equipped to be productive and engaged citizens who could cooperate and rationally overcome differences inherent in a pluralistic society.

what are the limitations of critical thinking

Beginning in the 1970s and ’80s, critical thinking as a key outcome of school and university curriculum leapt to the forefront of U.S. education policy. In an atmosphere of renewed Cold War competition and amid reports of declining U.S. test scores, there were growing fears that the quality of education in the United States was falling and that students were unprepared. In response, a concerted effort was made to systematically define curriculum goals and implement standardized testing regimens , and critical-thinking skills were frequently included as a crucially important outcome of a successful education. A notable event in this movement was the release of the 1980 report of the Rockefeller Commission on the Humanities that called for the U.S. Department of Education to include critical thinking on its list of “basic skills.” Three years later the California State University system implemented a policy that required every undergraduate student to complete a course in critical thinking.

Critical thinking continued to be put forward as a central goal of education in the early 21st century. Its ubiquity in the language of education policy and in such guidelines as the Common Core State Standards in the United States generated some criticism that the concept itself was both overused and ill-defined. In addition, an argument was made by teachers, theorists, and others that educators were not being adequately trained to teach critical thinking.

  • Most Popular
  • Discussion & Debate
  • Saved Stories

Our kids are missing out on critical thinking

If we are to navigate the complex challenges of the 21st century, our understanding of and ability to teach critical thinking demands urgent attention

By Associate Professor Martin Davies , University of Melbourne

Associate Professor Martin Davies

Published 28 August 2024

Critical thinking is more essential today than ever. The world faces numerous challenges that warrant urgent critical reflection – from climate change and wealth inequality to ongoing conflicts and resource shortages.

These crises are compounded by a growing crisis of confidence, marked by the spread of 'fake news ' and the erosion of trust in traditional institutions. The  January 6 US Capitol attack , exemplifies this breakdown, as does the deepening political polarisation in its aftermath.

There has been a hardening of views on both sides of the political spectrum since then.

Capitol Hill attacks, 2021

The recent attempted assassination of former President Trump by a lone-wolf activist is not unusual in U.S. history.

However, the extent of political polarisation now seems to be framed by hostility and partisanship, the likes of which have not been seen since the civil rights era – or perhaps even earlier, the civil war of the mid-19th century.

People are increasingly unwilling to accept the status quo or the platitudes that politicians regularly serve up . Along with this, the rise of AI and technologies like ChatGPT has intensified scepticism about what we read, hear or see.

A recent Australasian Society for Computers in Learning in Tertiary Education (ASCILITE) presentation highlighted that, in this tech-dominated world, critical thinking is crucial for academic integrity.

They noted a troubling trend: learners are focusing more on 'How can I get this done?' rather than asking, 'Is this ethical?'.

what are the limitations of critical thinking

Politics & Society

How disinformation is undermining our cities

Social media platforms like Facebook, X, and TikTok allow anyone to share information without filters for accuracy, leading to the widespread issue of “ truth decay ” – the idea that facts and critical analysis now play an ever-diminishing role in public life.

The media, too, has become susceptible to misinformation, often prioritising sensationalism over facts. Rather than serving as guardians of truth, they sometimes propagate falsehoods , making the need for critical thinking all the more urgent.

Paradoxically, while critical thinking is in decline, it is in high demand among an odd assortment of stakeholders – businesses, universities, governments, and venture capitalists.

According to the World Economic Forum's Future of Jobs report (2023-2027), "analytical thinking" – a synonym for ‘critical thinking’ – is the most sought-after skill across various industries worldwide.

Students working together

In a survey of 803 companies employing 11.3 million workers across 27 industry clusters, critical thinking was considered more crucial than technological literacy, AI, talent management, leadership, multilingualism and even cybersecurity.

A 2017 report by the Australian government highlighted that the importance of critical thinking in job ads rose by 158 per cent, surpassing problem-solving, teamwork, communication skills and financial literacy.

It will apparently consume 3.8 billion more work hours by 2030.

Critical thinking certainly appears to be a skill ‘on the rise’ and central to employment in the new economy.

However, despite its importance, we don’t really know what critical thinking is . It is not even clear that critical thinking is principally, and just a “skill .”

Reports, institutions, and funding bodies might well be dedicated to a 'skill on the rise,'  but they might also be quite misinformed about the very thing they purport to foster in the population.

what are the limitations of critical thinking

Tech savvy teaching of critical thinking

In the US, critical thinking has become an industry, with papers written on its application in fields as diverse as engineering and the military . Disturbingly however, many students show no significant improvement in critical thinking abilities after completing a college degree.

A recent OECD study involving 120,000 students from six countries found that one-fifth of students performed at the lowest level in critical thinking, with half performing at the two lowest levels.

A US study noted that 45 per cent of college students showed no significant gains in critical thinking, complex reasoning, or writing skills over their four-year degree.

Since the inception of the modern university in Bologna in 1088, critical thinking has been a desirable – arguably the most desirable– 'graduate attribute'.

Statue of Socrates

But universities' claims that they teach critical thinking have been  under scrutiny for decades . Some employers argue that graduates no longer demonstrate the critical thinking skills they expect .

Some employers want to move away from a reliance on academic qualifications, preferring instead to 'train on the job'. Is declining critical thinking in the academy to blame?

Moreover, faculty members often demonstrate ignorance about the intellectual traits – known as ' dispositions ' – that are essential to critical thinking.

They are also unable to outline the differences between critical thinking and creative thinking, problem-solving or decision-making.

This raises doubts about their ability to teach it effectively .

what are the limitations of critical thinking

Blind faith in Australia’s education ‘system’ is failing our kids

Socrates, through Plato’s dialogues, can perhaps lay claim to being one of the earliest exponents of what we now call 'critical thinking'.

By maintaining his ignorance, Socrates asked probing questions that undermined staunchly held views on subjects like 'truth', 'beauty' or 'justice'.

By questioning and dismantling the assumptions of others, Socrates exemplified critical thinking in its purest form: the re-evaluation of certainties and the testing of claims against stronger arguments.

Today, modern universities continue to emphasise the importance of critical thinking in promotional materials and course descriptions. However, as we have seen, the reality often falls short of the rhetoric.

Critical thinking is not well understood by those who are supposed to be teaching it  and the broader context in which it is situated is not fully grasped by its advocates.

Students in classroom

This situation is unlikely to be resolved soon, but it highlights the need for further research into critical thinking, not only in students but in the wider public.

           A promising – albeit woefully underused – technique is computer-aided argument mapping.  This is a way to explicitly and concisely represent reasoning by building diagrams that map out the logical structure of an argument.

Evidence suggests that it leads to significant gains  on independent critical thinking assessment tests.

The importance of critical thinking has never been greater, yet our understanding of it has never been so limited. This creates a perfect storm – a situation where the need for critical thinking is rising, but our capacity to foster it is in serious question.

It’s a scandalous situation, demanding urgent attention if we are to navigate the complex challenges of the 21st century. 

Associate Professor Martin Davies was co-editor, with Professor Ronald Barnett, of the Palgrave Handbook of Critical Thinking in Higher Education (Palgrave, 2015).

Featured individual

what are the limitations of critical thinking

Associate Professor Martin Davies

Principal Fellow in Higher Education, Melbourne Graduate School of Education, University of Melbourne

Find out more about research in this faculty

Content Card Slider

Subscribe for your weekly email digest.

By subscribing, you agree to our privacy policy.

Acknowledgement of country

We acknowledge Aboriginal and Torres Strait Islander people as the Traditional Owners of the unceded lands on which we work, learn and live. We pay respect to Elders past, present and future, and acknowledge the importance of Indigenous knowledge in the Academy.

Journal logo

Open Praxis

Press Logo

  • Download PDF (English) XML (English)
  • Alt. Display

Research articles

Transformative learning: flipped classroom and its impact on writing skill and critical thinking level.

  • Muhammet Furkan Alpat
  • Emrah Görgülü

The study sought to ascertain if critical thinking instruction delivered via the Flipped Classroom may improve students’ EFL writing skills. In addition to determining if the present instructional model influences students’ views of critical thinking and attitudes toward Flipped Learning integration, another goal is to determine whether students’ attitudes about Flipped Learning integration change. Students at the School of Languages at the upper-intermediate level took part in a reading and writing course to enhance their writing abilities. It was an experimental study with two groups consisting of an experimental group and a control group that each got training from the researcher for six weeks, and each group included 15 students. A variety of qualitative and quantitative data collection tools were used for this study, with the California critical thinking level inventory survey used in the first phase of the study, and critical thinking interviews used in the latter stage of the flipping classroom survey. Analyzing students’ responses to the California Critical Thinking Level Inventory found that the experimental group outperformed the control group, indicating a substantial boost in critical thinking abilities in those who took part in the experiment. The findings of the Flipped Classroom questionnaire show that students have a significant influence on the new teaching model in terms of their opinions regarding it.

  • blended learning
  • flipped classroom
  • critical thinking
  • teachability of critical thinking
  • writing skill
  • instructional model
  • flexible learning
  • flipped writing course
  • flipped learning

Introduction

In contemporary society, critical thinking skills are highly valued, and educational programs are formulated to foster these skills in students ( Domu et al., 2023 ). This is because possessing critical thinking skills equips students to acquire new knowledge and challenge their beliefs ( Anderson & Rivera Vargas, 2020 ). Critical thinking entails thinking at a high level ( Gündoğdu, 2009 ), mastery of one’s thought system ( Paul et al., 1997 ), and logical and rational thinking ( Facione et al., 2000 ). Critical thinking is a learnable skill that can be taught in conjunction with other thinking skills ( Liu, 2023 ). Educators must possess the necessary competencies to teach critical thinking to students, and teaching critical thinking enables students to perceive themselves and their surroundings more effectively ( Bozkurt et.al., 2023 ).

To develop critical thinking skills, enriched educational environments and activities that do not restrict learners’ skill and ability development should be created ( Sharma et al., 2023 ). Since 2005, educational programs in Turkey have been founded on the constructivist philosophy, which considers critical thinking skills a fundamental skill. As a result, there has been a significant increase in studies on critical thinking skills. Typically, studies on teaching critical thinking combine it with communicative skills like writing. Writing is a critical skill in language teaching, as it is one of the productive skills in language learning, and should be emphasized in language classes ( Matsuda & De Pew, 2002 ; Silva & Brice, 2004 ). Students must improve their writing skills to express their thoughts and feelings in written form and learn how to write the language correctly.

Additionally, negative attitudes towards writing are closely associated with writing classes in EFL (English as a Foreign Language) education, leading to demotivated learners. To address this issue, EFL writing teachers should integrate technology into the classroom. Digital natives, who have grown up with digital technology, have almost limitless access to technological devices such as smartphones, laptops, and tablet PCs. Integrating these devices into learning settings can potentially yield better results in terms of language learning and production, and help develop more positive attitudes towards writing.

Teachers are expected to possess critical thinking skills as they play a pivotal role in fostering critical thinking among their students ( Ten Dam & Volman, 2004 ; Kaye & Ragusa, 1998 ; Williams, 2005 ). Therefore, teaching critical thinking should be accorded high priority in language education. To this end, various instructional strategies have been examined. With the advent of technological innovations, the integration of critical thinking skills in teaching has become more seamless. The Flipped Classroom, a pedagogical approach that involves delivering instructional content, often online, outside of the classroom, and transferring activities traditionally accepted as homework into the classroom, has emerged as an effective instructional strategy to inspire critical thinking skills in the classroom ( Cho et al., 2021 ). While many studies have examined the effectiveness of the Flipped Classroom approach in L1 settings, limited research has focused on its potential to develop critical thinking skills among L2 learners. Thus, this study aims to address this research gap by investigating the impact of Flipped Classroom instruction on the critical thinking and L2 writing performance of Turkish EFL learners and their perception of critical thinking and Flipped Classroom integration.

The evolution of blended learning over time signifies that educational instruction will undergo further innovations ( Bozkurt, 2022 ). Graham’s ( 2006 ) research is concerned with four communication metrics in face-to-face and distributed settings. Distributed environments have begun to outperform traditional face-to-face learning environments in terms of time and convenience. Advancements in technology have enabled distributed environments to provide synchronous instruction. The convergence of conventional face-to-face and distributed learning environments has gained increasing traction and is likely to persist in the future.

The historical development of blended learning underscores its growing popularity as a pedagogical strategy that is poised to continuously transform the landscape of educational instruction ( Domu et al., 2023 ). Constructivism, a prominent theoretical framework of learning, posits that individuals build new knowledge by actively engaging with and connecting pre-existing ideas and experiences ( Ali et al., 2019 ). In this vein, blended learning has been shown to support both cognitive and social constructivism, thereby enhancing student engagement and achievement, while providing a flexible and accessible learning environment ( Campillo-Ferrer & Miralles-Martínez, 2021 ).

The investigation of blended learning’s effectiveness in enhancing writing skills is an expanding but restricted field. It was demonstrated that blended learning was 25% more convenient and flexible than traditional teaching in a writing composition course by Wadoups, Hatch, and Butterworth ( 2003 ), comparing traditional and blended learning environments. Ferriman ( 2013 ) tested the effectiveness of blended learning on undergraduate academic essay writing by involving 30 students. However, no statistically significant differences were observed when using an online bulletin board in combination with face-to-face communication for references used, word count, and essay score. However, the study was appropriate for larger classes. According to Arani ( 2012 ), internet tools and blogs which assist with language learning can greatly enhance writing skills. Using a survey of intermediate-level EFL students, Bahce and Taslac’s ( 2009 ) were able to examine the perceptions of students regarding blended writing courses, and they found that these courses offered meaningful writing opportunities, as well as promoted positive attitudes towards the writing process. An English writing class incorporating Facebook and peer assessment achieved positive results, according to Shih ( 2011 ).

The available literature regarding blended learning’s effectiveness in enhancing students’ writing skills is still limited, yet steadily expanding. Notably, Waddoups, Hatch, and Butterwoth ( 2003 ) conducted a comparison between traditional and blended learning environments in a writing composition course, and the findings indicated that blended learning yielded a 25% decrease in instructor time while providing more flexibility and convenience than traditional methods. Similarly, Ferriman ( 2013 ) conducted an experimental study on thirty students to examine the effects of blended learning on academic essay writing, concluding that the use of an online bulletin board in addition to face-to-face communication did not bear a significant statistical impact on essay scores, word count, or the number of references used. Nevertheless, it was deemed suitable for larger class sizes. Meanwhile, Arani ( 2012 ) suggests that internet tools and blog-assisted language learning exercises have immense potential for augmenting writing skills. Bahce and Taslacı ( 2009 ) analyzed intermediate-level EFL students’ perspectives on blended writing classes and reported that they provide meaningful writing opportunities and promote positive viewpoints regarding writing. Lastly, Shih ( 2011 ) conducted research on the integration of Facebook and peer assessment in a college English writing class, ultimately uncovering positive outcomes. In summary, blended learning provides authentic learning experiences, flexibility, and convenience ( Ng. et. al., 2013 ). Studies have demonstrated that blended learning has the potential to enhance writing skills.

Flipped learning is a contemporary educational strategy that redefines the traditional roles of instructors and learners, both inside and outside the classroom, to optimize the utilization of in-class time ( Anderson, 2012 ). Under this pedagogical approach, students are expected to independently and at their own pace view pre-recorded lectures or review notes provided by the instructor, who assumes a facilitator or director role. Students engage in collaborative or individualized dynamic learning activities, with the primary responsibility of the teacher being to guide and offer feedback on students’ progress ( Bergman & Sams, 2012 ). The conventional in-class presentation or lecture becomes an assignment that is accomplished before the class, hence the name Flipped Learning. This model effectively transforms traditional homework into classwork, providing students with immediate feedback and clarification while they apply newly acquired knowledge ( Anderson, 2012 ).

The origins of flipped learning can be traced back to 2007 when chemistry teachers, Jonathon Bergmann and Aaron Sams, pioneered the use of screen-casting to compensate for missed lessons by students ( Bergmann & Sams, 2012 ). They discovered that in the flipped setting, teachers were able to cover more material, student exam scores were the same or higher, and students quickly adapted to the new setting with a positive attitude.

Critical thinking is a cognitive process that traces its roots back to the ancient philosopher Socrates, who famously sought to uncover the truth through questioning. Over the centuries, this concept has evolved with the contributions of esteemed scholars such as Plato, Aristotle, and John Dewey, who defined it as reflective thinking. At its core, critical thinking involves a systematic approach to thought, a willingness to challenge assumptions, empathy, open-mindedness, and the courage to evaluate facts with intellectual integrity. It necessitates the use of intellectual standards to bring structure to thinking, awareness of the components of rational thought, and continuous review and evaluation of the thinking process.

Given its critical importance across all fields of education, the teaching of critical thinking has garnered much attention. However, successful instruction of this fundamental skill can only be realized when educators possess a deep understanding of the concept. Consequently, measuring different dimensions of critical thinking attitudes on various age groups has been central to assessment strategies. To this end, the California Critical Thinking Dispositions Inventory is the most commonly used measurement tool.

The literature on the teachability of critical thinking is diverse and complex. Edward D’angelo, ( 1970 ) and Mehta & Al-Mahrooqi, ( 2014 ) both suggest that critical thinking can be taught, with Mehta emphasizing the importance of continuous practice and application. However, Behar-Horenstein & Niu, ( 2011 ) and Mulnix, ( 2012 ) caution that the effectiveness of teaching methods can vary, and that there is disagreement over what critical thinking actually is. Tilbury et al., ( 2010 ) and Crenshaw et al., ( 2011 ) provide specific strategies for teaching critical thinking in social work and post-secondary education, respectively. Lyle, ( 1958 ) and Case & Wright, ( 1997 ) highlight the need for further research and the challenges of implementing critical thinking in the classroom.

In conclusion, critical thinking is a vital skill that demands a systematic approach, intellectual standards, and critical evaluation of thought processes. Although teaching critical thinking remains a daunting challenge, it is an indispensable aspect of modern education. A variety of measurement tools can assess critical thinking attitudes on different age groups, and recent research supports the effectiveness of supported web environments in promoting critical thinking.

Methodology

Research model.

This study adopted a pretest-posttest quasi-experimental mixed methods design. In this research, both quantitative and qualitative data were collected and analyzed to explore various dimensions of the research topic. The California Critical Thinking Disposition Inventory ( Facione et al., 2000 ), adapted to Turkish by Kökdemir ( 2003 ), PTs’ argumentative essays, and the closed-ended items of the Flipped Classroom Opinion Survey developed by Ekmekci ( 2017 ) were employed as sources of quantitative data. The qualitative data were gathered through semi-structured interview questions. The research questions are listed below;

  • Is there a major change concerning the Turkish EFL learners who take traditional instruction and those who receive critical thinking instruction which is supported with Flipped Classroom about their critical thinking levels?
  • Is there a significant difference between the Turkish EFL learners who receive traditional instruction and those who receive Flipped Classroom-supported critical thinking instruction regarding L2 writing performance levels?
  • Will there be an alteration in the EFL students’ perception of critical thinking at the end of the study?
  • What do the EFL students think about the instruction which is supported with the Flipped Classroom?

Data Collection Tools

The California Critical Thinking Disposition Scale comprises of six sub-dimensions and 51 items that are rated on a 6-point Likert scale ranging from 1 to 6. The rating scale ranges from “totally disagree” to “totally agree.” Each sub-dimension of the scale is scored between 10–29 for low, 30–39 for moderate, 40–49 for high, and 50–60 for excellent scores. Overall, scores between 70–209 are considered low, 210–279 medium, and 280–420 higher ( Facione et al., 2000 ). The Turkish version of the CCTDI-T, translated by Kökdemir ( 2003 ), includes categories such as Truth-Seeking, Open-Mindedness, Analyticity, Systematicity, Self-Confidence, and Inquisitiveness.

After the study, the experimental group participants were given the Flipped Writing Class Attitude Questionnaire, which employed a 5-point Likert-type response format, to gather their views on the effectiveness of Flipped Learning in supporting critical thinking instruction. The questionnaire is composed of 25 items and the response options range from 1 (strongly disagree) to 5 (strongly agree).

To gather qualitative data, focus group interviews were conducted at the start and end of the study. The experimental group participants were asked to provide their descriptions of critical thinking, expound on the traits of a critical thinker, and share their opinions on the teachability of critical thinking. During the post-focus group discussions, participants were provided with information regarding their perceptions of flipped learning-supported instruction before and after the interviews.

At the end of the term, both the experimental and control groups were tasked to produce an argumentative essay on the topic of capital punishment as part of the course requirements. The aim was to investigate whether there existed a noticeable distinction between the writing performance of participants who received conventional learning and those who received critical thinking instruction with the assistance of flipped learning. Dişli’s ( 2012 ) argumentative paragraph rubric was employed for evaluation purposes.

Study Group

The present study was carried out in an English language preparatory program consisting of six upper-intermediate level groups. Random selection was used to choose two classes for the study, resulting in a sample of 30 participants whose ages ranged from 17 to 19 years old. Of these participants, 16 were native speakers of Turkish and none had prior experience studying in English-speaking countries. In terms of educational background, 20 participants graduated from Anatolian high schools (83.0%), 5 from regular high schools (4.8%), and 5 from religious vocational high schools (4.8%). The participants had been studying English for six months, beginning at the Elementary level according to the Common European Framework of Reference (CEFR). The Reading and Writing Course was offered to both the experimental group (N = 15: Female = 7; Male = 8) and the control group (N = 15: Female = 9; Male = 6), with instruction provided by the researcher.

Data Analysis

In the pursuit of comprehensively addressing the research questions at hand, not only quantitative but also qualitative methods were judiciously employed to collect data utilizing the instruments previously mentioned. This approach is referred to as a mixed study design and has been acknowledged by scholars such as Lynch ( 1996 ) to be highly effective in ensuring that data are rigorously validated through triangulation of diverse instruments, thereby resulting in a nuanced and well-rounded understanding of the research problems under consideration.

To this end, the quantitative data obtained from the writing scores and the Flipped Writing Class Attitude Questionnaire were analyzed utilizing the widely accepted SPSS 20 (Statistics Package for Social Sciences) data analysis tool, which enabled the generation of insightful findings that shed light on the efficacy of the Flipped Classroom method for teaching writing.

In addition to the utilization of quantitative methods, the present study also adopted qualitative techniques such as categorization, coding, and interpretation to amass data through the designated instruments. The amalgamation of these methods, as postulated by Lynch ( 1996 ), is referred to as a mixed research design, and affirms that triangulating various data sources is instrumental in attaining a thorough understanding of research problems. The semi-structured interview served as a medium for collecting qualitative data and was duly recorded and transcribed by the researchers. Subsequently, the data gathered from the interviewees’ responses were meticulously categorized by the researchers based on their content.

Research Procedures

The study employed a text-only instructional method in the lectures delivered to the control group. The pedagogical goal was to foster critical thinking and effective communication skills, specifically in the realm of argumentative essay writing. To achieve this objective, the topic of capital punishment was selected, and a corresponding syllabus was designed with the inclusion of pertinent articles. These articles were carefully chosen to stimulate multi-dimensional thinking and to encourage students to articulate their views persuasively. Specifically, the articles explored the diverse attitudes towards capital punishment held by distinct groups, including but not limited to victims’ families, human rights activists, wrongfully convicted individuals’ families, and religious functionaries.

The lesson in question pertained to reading and writing for an upper-intermediate group and spanned a period of six weeks. The reading lessons were deliberately centered around the contentious topic of capital punishment, with the aim of fostering critical thinking skills in students. The writing component of the lessons focused specifically on teaching argumentative essay writing. The use of the capital punishment topic was a strategic choice to provoke critical thinking and to facilitate meaningful learning outcomes in the experimental group. Further details regarding the construction process of the Flipped Learning-Supported critical thinking instruction will be explicated in the subsequent section.

In the context of implementing a flipped learning approach, which involves the use of technology to extend learning beyond the classroom setting, a platform that facilitates communication between students and teachers is imperative. For this study, Google Classroom was deemed an appropriate tool for achieving this purpose, allowing for the uploading of instructional videos, assignment submissions, and feedback delivery. The experimental group was first given an overview of the flipped learning approach and was then introduced to Google Classroom, whereby they were instructed to register using a unique code. All participants utilized their university-issued email addresses, passwords, and group codes to access the platform, where the researcher had uploaded the relevant writing and reading lesson videos for easy accessibility by the experimental group.

The experimental group underwent a six-week period of instruction utilizing the Flipped Learning-Supported Critical Thinking methodology, whereas the control group received a text-only educational approach. Despite this variance, both groups were required to compose an argumentative essay on the topic of capital punishment, with a focus on the writing process. Students were instructed to work collaboratively in the classroom setting and independently beyond class time. The syllabus for the six-week instructional period, based on capital punishment, was specifically designed to teach critical thinking skills and to facilitate the development of an effective argumentative essay.

Limitations

The present study had certain limitations, including a restricted number of participants in both the control and experimental groups, a brief duration, and a lack of a pilot study. The institutional policy mandating smaller class sizes led to a reduced number of participants, which may be perceived as disadvantageous to the study’s overall findings. However, this resulted in greater opportunities for students to engage in discourse during lessons and allowed the researcher to provide more personalized attention, ultimately resulting in more effective lessons. The duration of the study was limited due to the modular system employed by the institution, whereby groups were reconstituted based on students’ module exit exam results. While the present study centered on writing, the Flipped Classroom methodology could be adapted to enhance the efficacy of all language skills, both receptive and productive. Additionally, Flipped Classroom approaches could be extended to teach critical thinking in other fields such as social sciences and natural sciences. Finally, this study serves as a springboard for further research into language teaching, including the acquisition of skills such as interpreting, analyzing, synthesizing, evaluating, and reflecting on information.

Findings and Discussions

The results of the cctdi-t scores.

The study’s outset involved an independent sample t-test to establish equivalence between the experimental and control groups based on their pre-CCTDI-T scores. The results demonstrated no significant differences between the two groups regarding their CCTDI-T overall scores and subscales, including inquisitiveness, analyticity, systematicity, open-mindedness, truth-seeking, and self-confidence. Afterward, a post-test was used to evaluate post-CCTDI-T. Table 1.1 shows the variations in critical thinking dispositon levels between the experimental and control groups.

Differences between the groups (N = 20) in terms of their overall CCTDI-T scores.

SCALEGROUPTESTMSDT-VALUEDFP
CCTDI-Texperimental controlpre221.3316.15–2.4356.017*
post229.0020.88
pre220.0721.86
Post222.4026.61

The findings of the research indicate that the experimental group outperformed the control group, as there was a noticeable enhancement in their critical thinking disposition when compared to the control group. Additionally, the table presented below illustrates the variances between the CCTDI-T sub-scales after the study, with respect to the groups’ critical thinking disposition levels at the conclusion of the investigation.

Findings and Discussion about Flipped Writing Class Attitudes Questionnaire

The experimental group participants were surveyed using a five-factor questionnaire, called the Flipped Writing Class Attitude Questionnaire, to determine their attitudes towards various aspects of flipped learning, including CMS (Course Management System in Google Classroom), video lectures, preparing for exams in a flipped learning environment, and their overall opinions on flipped versus traditional learning. The responses were analyzed using SPSS software through a frequency analysis.

Table 1.2 displays the participants’ perceptions of the efficacy of Google Classroom as a Course Management System. The majority of respondents affirmed that Google Classroom was beneficial for their learning process, with 70% strongly agreeing, 20% agreeing, and only 10% being neutral. Additionally, 60% strongly agreed and 30% agreed that CMS is a crucial part of their learning, with a minority of 10% disagreeing, which could be attributed to temporary internet connectivity issues.

Percentage of students’ attitudes towards course management system (CMS).

STATEMENTSSAAN DSD
24- Course Management System (Google Classroom) is a useful tool for following the course requirements.70,020,010,0 –
25- CMS (Google Classroom) is an important part in my learning.60,030,010,0

sa: strongly agree a: agree n: neutral d: disagree sd: strongly disagree.

Table 1.3 shows that 70% of the participants liked watching video lectures, while 20% were neutral. Additionally, 50% of the experimental group regularly watched the video lectures, and 30% were unsure. Moreover, 90% of the participants found video lectures beneficial. Regarding the quality of the videos, 50% of the students reported that the lectures were not boring, while 20% found them tedious. Varying the content of the videos may alleviate boredom.

Percentage of students’ attitudes towards video lectures.

STATEMENTSSAANDSD
1-I like watching the video lectures.40,030,020,010,0
2-I regularly watch the video lectures.30,020,030,020,0
6-I am able to follow the lesson through videos even if I miss a lesson in the actual class.60,030,010,0
9- Videos uploaded in Google Classroom by the teacher are very useful.40,050,010,0
10- Videos uploaded in Google Classroom are informative enough to understand the features of the argumentative essay.40,040,010,010,0
15-I can watch the videos anywhere, anytime I want by downloading the videos.20,050,020,010,0
21-Videos are too boring to watch.10,020,010,040,010,0

The table above shows the noteworthy frequency analysis of students’ responses to statements related to flipped learning in the research on the effectiveness of using the flipped classroom for learning writing.

Table 1.4 illustrates that 80% of the students reported an improvement in their writing skills through the use of flipped learning, while 20% were uncertain. The positive results can be attributed to increased motivation levels among students, as 80% felt more motivated to write argumentative essays in the flipped writing class. Additionally, 70% of students reported enjoying writing more after watching video lectures. Furthermore, 90% of students found flipped learning effective in improving writing skills, while 80% found the video lectures helpful for practicing writing in class. The majority of students did not recommend the flipped writing class, indicating satisfaction with the model. While some negative attitudes were reported, they can be improved through minor modifications to the flipped writing class. Overall, the majority of students held positive attitudes towards the flipped writing classroom.

Percentage of students’ attitudes towards learning writing through flipped classroom.

STATEMENTSSAANDSD
3-I feel that Flipped Writing Class has improved my writing skill.40,040,020,0
4-I am more motivated to write argumentative essays in the Flipped Writing Class.30,050,010,010,0
5-I believe that Flipped Learning is an effective way of improving writing skill.40,050,010,0
8-Watching the analysis of several sample paragraphs helps me produce more organized paragraphs.40,040,020,0
12-When I watch writing course through videos, I enjoy writing more.30,040,020,010,0
14-Thanks to Flipped Writing Class Model, we have more time to practise writing in class.40,040,010,010,0
16-1 would not recommend the Flipped Writing Class to a friend.10,030,060,0
18-I think that Flipped Learning is a waste of time for improving my writing skill.10,010,030,050,0
19-If were a teacher, I would not prefer a Flipped Writing Class.20,030,050,0

The results of a frequency analysis, which is presented in a table below, were used to statistically study the participants’ attitudes towards both flipped and traditional classes after the research process, given the fundamental importance of their preferences.

According to the data in Table 1.5 , a larger proportion of students (70%) were motivated by videos watched outside of class compared to in-class lectures, while 20% had no preference and 10% disagreed with this statement. This suggests that the flipped writing class was favored by most students over the traditional lecture-based class. To determine students’ preference for traditional classes, three reverse statements were used. The majority of participants (60%) did not favor traditional teacher-led lessons. Results from the other two statements showed that most students found traditional classes less enjoyable and less preferred compared to flipped classes. Overall, the results indicate that the flipped writing class had a significant impact on students’ attitudes towards the new instructional model, as evidenced by the high percentage of students who preferred it.

Percentage of Students’ Attitudes towards Flipped versus Traditional Learning.

STATEMENTSSAANDSD
16-I feel more motivated when I watch the videos rather than listening to the teacher in the class.20,050,020,010,0
17-I would rather watch a traditional teacher-led lesson than a video lecture.10,030,040,020,0
22-Traditional classes are always more enjoyable.10,020,060,010,0
23- Traditional classes are always better than Flipped Classes.30,040,030,0

The Results of the PTs’ Argumentative Essay Scores

Prior to conducting the study, an analysis was conducted to determine if there was a disparity in writing proficiency between the experimental and control groups. To accomplish this, a pre-test was administered to both groups during the initial week of the fall semester. The results were analyzed using an independent samples t-test in SPSS 20 software, a commonly used statistical program in the field of social sciences.

Based on the results of the pre-test as shown in Table 1.6 , where the significance level is at 0.500 (p > 0.05), it can be deduced that there is no significant difference between the experimental and control groups in terms of their writing proficiency. It is important to note that the mean score of the control group is slightly higher than that of the experimental group.

Comparison of the experimental and control groups’ pre-test results.

GROUPNMEANSDTP
experimental1544,026,57–,680,500
control1545,406,61

Table 1.7 reveals that the post-test scores of the experimental and control groups were considerably different (70.02–57.30), indicating that the students in the experimental group had better writing proficiency than those in the traditional writing class. This suggests that the flipped writing class model is an effective approach for enhancing writing skills. It’s worth mentioning that despite the experimental group’s superior performance, the control group’s writing proficiency also showed improvement.

Comparison of the experimental and control groups’ post-test results.

GROUPNMEANSDTP
experimental1570,026,577,01,000
control1557,308,01

Qualitative Data Analyses

Focus group discussions.

In line with prior indications, a series of focus group discussions were carried out, both prior to and subsequent to the investigation, involving a randomly assembled cohort comprising five willing participants who belonged to the experimental group. The primary objective of these sessions was to detect any plausible alterations in the initial perceptions of critical thinking held by the participants, as well as to gauge their responses to the intervention.

a) Definition of Critical Thinking  

One of the key findings from the pre-focus group interviews is that PTs face challenges in providing a clear definition of critical thinking. While the definitions they offer lack clarity, they often mention the essential components of critical thinking. These include being receptive to diverse opinions, demonstrating tolerance for different or opposing views, and maintaining impartiality.

Before the study:

  • Critical thinking is highly important and should be constructive rather than destructive.
  • Being open-minded and respecting others’ viewpoints is crucial for critical thinking.

However, upon analyzing the interviews conducted after the focus groups, it became evident that the PTs were able to articulate a more precise understanding of critical thinking. Whereas their interviews before the focus groups only touched upon different aspects of the concept, they were now able to provide a comprehensive explanation of critical thinking.

After the study:

  • Critical thinking entails objectively evaluating multiple perspectives and subsequently formulating one’s own views.
  • We can refer to it as a process of forming opinions by synthesizing two different ideas to arrive at a third while maintaining an open-minded and well-founded approach.

What Are the Features of an Ideal Critical Thinker?

The PTs conducted pre- and post-group interviews to define the characteristics of an ideal critical thinker. Consistent results were found by emphasizing traits such as objectivity, open-mindedness, tolerance, and lack of prejudice. Quotations from interviews showcased the importance of respect, open-mindedness, and considering facts when forming opinions. Post-group interviews focused on additional qualities needed for a first-time critical thinker, including knowledge, curiosity, and skepticism. They highlighted the significance of having adequate background information to defend or reconsider one’s own stance and to support or challenge others’ claims. Curiosity was deemed crucial for gaining multiple perspectives on a subject, while a curious personality was considered a fundamental condition for critical thinking. Skepticism played a role in both self-questioning and questioning the opinions of others. Critical thinkers were expected to critically assess their own ideas, and questioning existing ideas, both opposing and supportive, was seen as a characteristic of a true critical thinker. Overall, the post interviews emphasized the importance of being well-informed, curious, and willing to question one’s own ideas and the ideas of others to cultivate effective critical thinking skills.

b) Is Critical Thinking Teachable?  

The opinions of PTs on the teachability of critical thinking did not show significant differences before and after group interviews. While most respondents agreed that critical thinking could be taught, a few expressed opposing views. PTs believed that critical thinking emerges when two conditions are met: encouraging critical thinking characteristics in the environment and providing opportunities to use those characteristics. They emphasized the importance of a tolerant environment where individuals can express their ideas and develop respect for others’ views. The timing of teaching critical thinking was considered crucial, with the pre-school and primary school years seen as the most appropriate. However, in the post-group interviews, PTs expressed that critical thinking could also be taught during university years or later in life. Some PTs believed that critical thinking is innate and not teachable, attributing it to hereditary factors. Mental capacity was identified as a determining factor in the level of learnability of critical thinking. Some PTs became more positive about its teachability based on their project experience. The teacher factor was mentioned in post-group interviews, with teachers seen as both obstacles and facilitators to teaching critical thinking. The Flipped Classroom was generally considered a useful learning tool, with benefits including practicality, collaboration, active learning, English proficiency improvement, critical judgment skills, and research skills. However, one participant did not view it as an effective learning tool.

The Relationship between the Flipped Classroom and Critical Thinking

In post-group interviews, all PTs acknowledged that the use of the Flipped Classroom improved their critical thinking. They emphasized that access to multiple resources and different perspectives facilitated more critical thinking. They mentioned that the Flipped Classroom allowed them to review topics from various angles before writing articles, understand different opinions, empathize with different perspectives, become more tolerant, and appreciate diverse stances. PTs highlighted the importance of objectivity in critical thinking and praised the Flipped Classroom as an effective tool for accessing and exploring information from various sources, including external websites.

The Relationship between the Flipped Classroom and L2 Writing Performance

In the post-group interviews, PTs were asked if using the Flipped Classroom improved their L2 (second language) writing performance. All respondents answered positively, highlighting the advantage of accessing course materials, slides, and websites. They mentioned visiting websites listed in Google Classroom and learning how to write discussion articles, as well as reviewing important points specified by the teacher through lesson materials and slides. PTs expressed that the Flipped Classroom significantly contributed to the development of their English writing skills.

Conclusion and Suggestions

This research is aimed at developing a contemporary teaching approach for writing classes in an EFL setting that can facilitate the process of teaching writing and render it more meaningful for students. Simply integrating technology into education is insufficient; there must be a valid reason for preferring technology to traditional education. Thus, it was postulated that technology could promote critical thinking skills among students. To test this hypothesis, the Flipped Classroom approach was combined with critical thinking education in a reading and writing course.

During the Spring semester of the 2018–2019 academic year, upper-intermediate level students in the School of Languages were enrolled in the reading and writing course. The Flipped Classroom approach was employed as a new methodology, with the objective of increasing students’ level of critical thinking. The study was conducted as an experiment, with two groups randomly selected as experimental and control groups, each comprising 15 students. The aim of the course was to teach students the argumentative essay type and present different types of articles to them. The selected topics on the issue of capital punishment were intended to stimulate critical thinking.

Although both experimental and control groups covered the same topics, there were differences in the delivery of instruction. The control group received instruction exclusively in a classroom setting, without the guidance provided by the Flipped Classroom approach through Google Classroom and Google Document. In contrast, the experimental group had already studied the argumentative essay through videos and tasks and had examined it on their own at home. This independent study component allowed students to engage with the material at their own pace, ensuring a deeper understanding of the content. During the study, the control group participants read specific articles on the topic and answered comprehension or discussion questions led by the researcher, while the participants in the experimental group watched the article summary to activate their knowledge, enabling detailed discussion. Through this approach, various discussion activities were conducted to promote critical thinking skills, and students were required to answer not only comprehension questions but also formulate inferences and make decisions.

Both quantitative and qualitative data collection instruments were used in the research, including the California Critical Thinking Level Inventory survey and the Flipped Classroom questionnaire for quantitative data, and interviews for critical thinking and the Flipped Classroom for qualitative data. The analysis of students’ responses to the California Critical Thinking Level Inventory survey revealed that the experimental group outperformed the control group, indicating a significant improvement in the critical thinking skills of the experimental group. The findings of the Flipped Classroom questionnaire suggested that the Flipped Classroom approach had a notable impact on students’ attitudes towards the new instructional model, with a high percentage of students preferring the flipped class.

As inferred from the preceding part, the utilization of the Flipped Classroom approach to teach critical thinking concurrently with a writing course yielded substantial dividends for both instructors and pupils alike. Firstly, the integration of technology into the curriculum must be strategic and purposeful to address specific pedagogical needs effectively. It is incumbent upon educational institutions to establish a comprehensive policy that integrates technological tools into their curricula, for doing so will enable educators to navigate pedagogical challenges with greater facility. The technological infrastructure within the classroom as well as the electronic devices that pupils utilize outside of it must be optimized to maximize their efficacy. Secondly, it is of paramount importance that the Flipped Classroom paradigm empowers students to become more autonomous learners and enriches their class time with more meaningful activities. This autonomy helps foster a sense of responsibility and ownership over their learning process. It is noteworthy, however, that videos, as a learning tool, do not by themselves obviate the need for traditional pedagogy; rather, technology must be integrated into the curriculum with a clear rationale to enhance the quality of instruction. Thirdly, teachers must be conversant with the use of Course Management Systems such as Moodle, Google Classroom, or Canvas and be equipped with the requisite skills to edit and design video lectures. The implementation of Flipped Classroom should strive to elevate the standard of instruction, as most of the learning transpires outside of class. To this end, the curriculum should incorporate activities aligned with the higher-order thinking skills prescribed in Bloom’s Taxonomy, as was exemplified in this study. Lastly, to ensure optimal outcomes, video lessons ought to be pre-recorded, allowing instructors to refine and improve the activities they will use in class. This refinement process is crucial for maintaining high-quality instructional materials that effectively support student learning.

Data Accessibility Statement

The datasets used and/or analyzed during the current study are available from the corresponding author upon reasonable request.

Ethics and Consent

All the data gathered and presented in the study were obtained with the consent and approval of the participants involved. A learning agreement form was obtained that outlines the participants’ duties and responsibilities concerning the course and the use of any resulting data. The participants consented to make all recorded videos, outputs, and comments related to the course publicly accessible in Google Classroom.

Acknowledgements

This study is the summarized version of the MA dissertation titled “The Effect of Flipped Learning-supported Critical Thinking Instruction on the Critical Disposition and L2 Writing Skill”.

Funding Information

A grant for this research was not received from any government, commercial, or not for-profit funding agency.

Competing Interests

The authors have no competing interests to declare.

Author Contributions ( CRediT )

Muhammet Furkan Alpat: Writing—original draft preparation, review and editing; Emrah Görgülü: Supervision, review and editing. All authors have read and agreed to the published version of the manuscript.

Author Notes

This paper was proofread, edited, and refined with the assistance of OpenAI’s GPT-4 (Version as of February 20, 2024), complementing the human editorial process. The human author critically assessed and validated the content to maintain academic rigor. The author also assessed and addressed potential biases inherent in AI-generated content. The final version of the paper is the sole responsibility of the human author (Adopted from: Bozkurt, 2024 ).

Ali, S., Payne, B. H., Williams, R., Park, H. W., & Breazeal, C. (2019). Constructionism, Ethics, and Creativity: Developing Primary and Middle School Artificial Intelligence Education .  

Anderson, D. (2012). The Flipped Classroom for EFL.  

Anderson, T., & Rivera Vargas, P. (2020). A critical look at educational technology from a distance education perspective. Digital Education Review , 37, 208–229. https://doi.org/10.1344/der.2020.37.208-229  

Arani, J. A. (2012). Teaching English Medical Writing in a Blended Setting. International Journal of Emerging Technologies in Learning , 7(4), 34–37. https://doi.org/10.3991/ijet.v7i4.2253  

Bahce, A., & Taslacı, N. (2009). Learners’ Perception of Blended Writing Class: Blog and Face-to Face. Turkish Online Journal of Distance Education , 10(4), 188–202.  

Behar-Horenstein, L. S., & Niu, L. (2011). Teaching Critical Thinking Skills In Higher Education: A Review Of The Literature. Journal of College Teaching & Learning (TLC) , 8(2). https://doi.org/10.19030/tlc.v8i2.3554  

Bergman, J., & Sams, A. (2012). Flip Your Classroom: Reach Every Student in Every Class Every Day . Iste. ASCD.  

Bozkurt, A. (2022). A Retro Perspective on Blended/Hybrid Learning: Systematic Review, Mapping and Visualization of the Scholarly Landscape. Journal of Interactive Media in Education . https://doi.org/10.5334/jime.751  

Bozkurt, A. (2024). GenAI et al.: Cocreation, Authorship, Ownership, Academic Ethics and Integrity in a Time of Generative AI. Open Praxis , 16(1), 1–10. https://doi.org/10.55982/openpraxis.16.1.654  

Bozkurt, A., Gjelsvik, T., Adam, T., Asino, T. I., Atenas, J., Bali, M., … Zawacki-Richter, O. (2023). Openness in Education as a Praxis: From Individual Testimonials to Collective Voices. Open Praxis , 15(2), 76–112. https://doi.org/10.55982/openpraxis.15.2.574  

Campillo-Ferrer, J.-M., & Miralles-Martínez, P. (2021). Effectiveness of the flipped classroom model on students’ self-reported motivation and learning during the COVID-19 pandemic. Humanities and Social Sciences Communications , 8. https://doi.org/10.1057/s41599-021-00860-4  

Case, R., & Wright, I. (1997). Taking Seriously the Teaching of Critical Thinking .  

Cho, H. J., Zhao, K., Lee, C. R., Runshe, D. D., & Krousgrill, C. (2021). Active learning through flipped classroom in mechanical engineering: Improving students’ perception of learning and performance. International Journal of Stem Education , 8. https://doi.org/10.1186/s40594-021-00302-2  

Crenshaw, P., Hale, E., & Harper, S. L. (2011). Producing Intellectual Labor In The Classroom: The Utilization Of A Critical Thinking Model To Help Students Take Command Of Their Thinking. Journal of College Teaching & Learning (TLC) , 8(7), 13. https://doi.org/10.19030/tlc.v8i7.4848  

Disli, O. (2012). Improving Writing Skills through Supplementary Computer-Assisted Activities (Doctoral Dissertation). Gazi University, Graduate School of Educational Sciences. (Available from the Council of Higher Education, National Dissertation Center, Dissertation ID: 317053).  

Domu, I., Pinontoan, K. F., & Mangelep, N. O. (2023). Problem-based learning in the online flipped classroom: Its impact on statistical literacy skills. Journal of Education and E-Learning Research . https://doi.org/10.20448/jeelr.v10i2.4635  

Edward D’angelo. (1970). The Teaching of Critical Thinking through Literature .  

Ekmekci, E. (2017). The Flipped Writing Classroom in Turkish EFL Context: A Comparative Study on a New Model. Turkish Online Journal of Distance Education (Tojde) , 18(2), 151–167. https://doi.org/10.17718/tojde.306566  

Facione, P. A., Facione, N. C., & Giancarlo, C. A. (2000). The Disposition Toward Critical Thinking: Its Character, Measurements, and Relationship to Critical Thinking Skill. Informal Logic , 20, 61–84. https://doi.org/10.22329/il.v20i1.2254  

Ferriman, N. (2013). The Impact of Blended E-Learning on Undergraduate Academic Essay Writing in English (L2). Computers & Education , 60, 243–253. https://doi.org/10.1016/j.compedu.2012.07.008  

Graham, C. R. (2006). Blended Learning Systems Definition, Current Trends, and Future Directions. In C. J. Bonk, & R. Graham (Eds.) (2006). The Handbook of Blended Learning: Global Perspectives, Local Designs . Pfeiffer.  

Gündoğdu, H. (2009). Eleştirel Düşünme ve Eleştirel Düşünme Öğretimine Dair Bazı Yanılgılar. Celal Bayar Üniversitesi Sosyal Bilimler Enstitüsü Dergisi , 7(1), 57–74.  

Kaye, C., & Ragusa, G. (1998). Boal’s Mirror: Reflections for Teacher Education. Retrieved from ERIC database. (ED419787).  

Kökdemir, D. (2003). Belirsizlik Durumunda Karar Verme ve Problem Çözme [Uncertainty in Case Decision Making and Problem Solving] (Unpublished PhD Dissertation). Ankara University, Institute of Social Sciences.  

Liu, W. (2023). Critical Thinking Skills For Chinese Teachers: A Study Of Mathematics Teachers’ Perceptıons. Pupil: International Journal of Teaching, Education and Learning , 7(2), 01–16. https://doi.org/10.20319/pijtel.2023.72.0116  

Lyle, E. (1958). An Exploration in the Teaching of Critical Thinking in General-Psychology. The Journal of Educational Research , 52(4), 129–133. https://doi.org/10.1080/00220671.1958.10882552  

Lynch, B. K. (1996). Language Program Evaluation , Cambridge University Press. https://doi.org/10.1017/S0272263198301059  

Matsuda, P. K., & DePew, K. E. (2002). Early second language writing: An introduction. Journal of Second Language Writing , 11(4), 261–268. https://doi.org/10.1016/S1060-3743(02)00087-5  

Mehta, S. R., & Al-Mahrooqi, R. (2014). Can Thinking be Taught? Linking Critical Thinking and Writing in an EFL Context. RELC Journal , 46(1), 23–36. https://doi.org/10.1177/0033688214555356  

Mulnix, J. W. (2012). Thinking Critically about Critical Thinking. Educational Philosophy and Theory , 44(5), 464–479. https://doi.org/10.1111/j.1469-5812.2010.00673.x  

Ng, K. T., Parahakaran, S., Febro, R. D., Weisheit, E., & Lee, T. L. (2013). Promoting sustainable living in the borderless world through blended learning platforms. Open Praxis , 5, 275–288. https://doi.org/10.5944/openpraxis.5.4.88  

Paul, R. W., Elder, L., & Bartell, T. (1997). California Teacher Preparation for Instruction in Critical Thinking: Research Findings and Policy Recommendations. Retrieved from ERIC database. (ED437379).  

Sharma, L. R., Bhattarai, R., Humagain, A., Subedi, S. P., Thapa, S., & Acharya, H. (2023). Exploring the Underlying Ways of Enhancing Critical Thinking Skills. International Research Journal of MMC , 4(4), 83–96. https://doi.org/10.3126/irjmmc.v4i4.61939  

Shih, R. C. (2011). Can Web 2.0 Technology Assist College Students in Learning English Writing? Integrating Facebook and Peer Assessment with Blended Learning. Australasian Journal of Educational Technology , 27(5), 829–845. https://doi.org/10.14742/ajet.934  

Silva, T., & Brice, C. (2004). Research in Teaching Writing. Annual Review of Applied Linguistics , 24, 70–106. https://doi.org/10.1017/S0267190504000042  

Ten Dam, G., & Volman, M. (2004). Critical Thinking as a Citizenship Competence: Teaching Strategies. Learning and Instruction , 14(4), 359–379. https://doi.org/10.1016/j.learninstruc.2004.01.005  

Tilbury, C., Osmond, J., & Scott, T. (2010). Teaching critical thinking in social work education: A literature review .  

Waddoups, G. L., Hatch, G. L., & Butterwoth, S. (2003). Blended Teaching and Learning in a First-Year Composition Course. The Quarterly Review of Distance Education , 4(3), 271–278.  

Williams, R. L. (2005). Targeting Critical Thinking Within Teacher Education: The Potential Impact on Society. The Teacher Educator , 40(3), 163–187. https://doi.org/10.1080/08878730509555359  

  • Career Advice
  • Job Search & Interview
  • Productivity
  • Public Speaking and Presentation
  • Social & Interpersonal Skills
  • Professional Development
  • Remote Work

Eggcellent Work

Is critical thinking overrated  disadvantages of critical thinking.

An argument for the notion that critical thinking is overrated

Fans of Sheldon Cooper on the syndicated comedy series “The Big Bang Theory” might be inclined to agree with the argument that critical thinking is overrated. Sheldon is the quintessential critical thinker, but is completely lacking in social skills, empathy, and tact.

When it comes to matters of heart and his romance with Amy, he is totally hopeless and hapless at saying or doing anything that requires using normal emotional responses. Sheldon has the ability to painstakingly analyze, develop, and provide evidence for his ideas and theories, but he is completely lacking in social skills, and–in what we will cover in detail below–emotional intelligence.

What are some disadvantages of critical thinking?

Fact gathering, analysis, and the belief that emotion has no place in critical thinking can lead to “analysis paralysis,” when intuition and experience can work faster and better. Rigid critical thinkers frequently:

  • consider both the positive and negative sides of everything
  • are more prone to think negatively than positively—hence, the term “critical”
  • often suffer from depression, OCD, or anxiety when their critical thinking habits don’t produce desired results
  • tend towards perfectionism, when excellence will suffice
  • are hypercritical of themselves and others
  • avoid any decision that has an emotional element whatsoever

Critical thinkers need to develop emotional intelligence

There is a middle ground and a hybrid form of critical thinking where emotions can be factored into critical thinking. Emotional intelligence according to  Psychology Today   is “the ability to identify and manage one’s own emotions, as well as the emotions of others.”

Emotional intelligence includes the “ability to identify and name one’s own emotions” and apply those emotions to clear thinking and problem solving. Emotional intelligence also includes the ability to manage and regulate emotions and  apply them to tasks that include critical thinking  and problem solving.

For people in leadership positions, emotional intelligence is an essential element of problem solving. Having emotional intelligence is likewise an essential ingredient to successfully managing people.

  • The Ultimate Guide To Critical Thinking

Is Critical Thinking A Soft Skill Or Hard Skill?

  • How To Improve Critical Thinking Skills At Work And Make Better Decisions
  • 5 Creative and Critical Thinking Examples In Workplace
  • 25 In-Demand Jobs That Require Critical Thinking and Problem-Solving Skills

Elements of emotional intelligence

Daniel Goldman, Ph.D., the author of the New York Times bestseller  Emotional Intelligence and Social intelligence: The New Science of Human Relationships,   describes the five key elements to emotional intelligence:

1 . Practicing self-awareness : Knowing how you feel and how your emotions and actions can affect those around you. This means having a clear understanding of your weaknesses and strengths.

Self-aware leaders and team members spend a few minutes each day keeping a journal. They are slow to display anger and rarely give in to strong emotions. They know that, no matter what the situation, they can always choose how to react.

2.  Staying in control through self-regulation : This is the ability to avoid stereotyping others, engaging in personal attacks, or making rushed emotional decisions.

Emotionally intelligent people have a solid foundation of values and a code of ethics. They hold themselves accountable and admit and learn from their mistakes. Their stress-relieving practices involve deep-breathing to restore personal calm and often writing down their negative feelings on a sheet of paper, ripping it up, and throwing it away.

3.  Being self-motivated : Emotionally intelligent people are relentlessly dedicated to reaching their goals. They have high personal standards of their own and their group’s quality of work.

Self-motivated people constantly re-examine what they really love about their career. They can always see something positive in any bad situation—if only a lesson learned for future reference.

4.  Walking a mile in the other person’s shoes : Having empathy is another key element of emotional intelligence. This involves a dedication to developing the people on their team, giving constructive feedback, challenging those who are acting unfairly, and always listening to those who ask for help.

Empathetic people take time to look at situations from the perspective of others—even if their opinions and attitudes don’t seem to make good sense. That involves active listening and being sensitive to the feelings and emotions of others.

5.  Having social skills : Social skills—successfully dealing with people with a variety of backgrounds, etc.—are what make a leader and team member great communicators. Their excitement and enthusiasm are infectious, and they set the ideal example for hard work and dedication.

Good social skills include conflict resolution, improving communication skills, and getting into the habit of praising others when the praise is earned.

Employers, however, do not think that critical thinking is overrated

The bottom line is that critical thinking is a necessary skill for almost every job. Employees who can analyze evidence, question and test assumptions and hypotheses and draw conclusions from a variety of data inputs are widely sought after.

According to the  National Association of Colleges and Employers , employers who responded to their survey “rated critical thinking/problem solving as  the most essential competency  among new hires.”

Critical thinking/problem solving was rated 4.62 on a scale of 5. Teamwork/collaboration and professionalism/work ethic ranked just below with scores of 4.56 and 4.46, respectively.

The hybrid combination of critical thinking and emotional intelligence

So, while critical thinking is mainly a rational process, humans can never be 100% rational. To be completely rational would require abandoning our humanity, empathy and ethics.

Part of the process in communicating with others is recognizing that sometimes critical thinking is overrated and can be emotionally challenging. Expressions of emotion must be listened to. They can be evidence of deeper problems and require flexibility and openness to authentic expressions of others.

Your takeaways

  • Dr. Sheldon Cooper, the brilliant, but socially challenged character in  The Big Bang Theory,  is a classic example of how critical thinking can be overrated.
  • There are some disadvantages to critical thinking. They include overthinking, emphasizing the negative, and perfectionism.
  • Critical thinking often includes a rigid avoidance of emotion. However, emotional intelligence can be combined with critical thinking for better communication and problem solving.
  • Elements of emotional intelligence are self-awareness, self-regulation, self-motivation, empathy, and social skills.
  • Nevertheless, employers place a premium on critical thinking skills. Combining critical thinking skills with emotional intelligence is a hybrid solution to problem solving and communication requiring a human touch.
  • 10 Best Books On Critical Thinking And Problem Solving
  • 12 Common Barriers To Critical Thinking (And How To Overcome Them)
  • How To Promote Critical Thinking In The Workplace
  • Critical Thinking vs Problem Solving: What’s the Difference?
  • Brainstorming: Techniques Used To Boost Critical Thinking and Creativity
  • 11 Principles Of Critical Thinking  

' src=

Jenny Palmer

Founder of Eggcellentwork.com. With over 20 years of experience in HR and various roles in corporate world, Jenny shares tips and advice to help professionals advance in their careers. Her blog is a go-to resource for anyone looking to improve their skills, land their dream job, or make a career change.

Further Reading...

is critical thinking a skill

9 Most Sought-After Soft Skills In The Workplace

smart career objectives

Ultimate Guide to Setting SMART Career Objectives (with Examples)

No comments, leave a reply cancel reply.

Save my name, email, and website in this browser for the next time I comment.

Critical Thinking vs Problem Solving: What's the Difference?

25 in-demand jobs that require critical thinking and problem-solving skills  .

Christopher Dwyer Ph.D.

5 Barriers to Critical Thinking

What holds us back from thinking critically in day-to-day situations.

Posted January 18, 2019 | Reviewed by Davia Sills

  • What Is Cognition?
  • Take our Mental Processing Test
  • Find counselling near me

Quite often, discussions of Critical Thinking (CT) revolve around tips for what you or your students should be doing to enhance CT ability. However, it seems that there’s substantially less discussion of what you shouldn’t be doing—that is, barriers to CT.

About a year ago, I posted "5 Tips for Critical Thinking" to this blog, and after thinking about it in terms of what not to do , along with more modern conceptualizations of CT (see Dwyer, 2017), I’ve compiled a list of five major barriers to CT. Of course, these are not the only barriers to CT; rather, they are five that may have the most impact on how one applies CT.

1. Trusting Your Gut

Trust your gut is a piece of advice often thrown around in the context of being in doubt. The concept of using intuitive judgment is actually the last thing you want to be doing if critical thinking is your goal. In the past, intuitive judgment has been described as "the absence of analysis" (Hamm, 1988); and automatic cognitive processing—which generally lacks effort, intention, awareness, or voluntary control—is usually experienced as perceptions or feelings (Kahneman, 2011; Lieberman, 2003).

Given that intuitive judgment operates automatically and cannot be voluntarily "turned off," associated errors and unsupported biases are difficult to prevent, largely because reflective judgment has not been consulted. Even when errors appear obvious in hindsight, they can only be prevented through the careful, self-regulated monitoring and control afforded by reflective judgment. Such errors and flawed reasoning include cognitive biases and logical fallacies .

Going with your gut—experienced as perceptions or feelings—generally leads the thinker to favor perspectives consistent with their own personal biases and experiences or those of their group.

2. Lack of Knowledge

CT skills are key components of what CT is, and in order to conduct it, one must know how to use these skills. Not knowing the skills of CT—analysis, evaluation, and inference (i.e., what they are or how to use them)—is, of course, a major barrier to its application. However, consideration of a lack of knowledge does not end with the knowledge of CT skills.

Let’s say you know what analysis, evaluation, and inference are, as well as how to apply them. The question then becomes: Are you knowledgeable in the topic area you have been asked to apply the CT? If not, intellectual honesty and reflective judgment should be engaged to allow you to consider the nature, limits, and certainty of what knowledge you do have, so that you can evaluate what is required of you to gain the knowledge necessary to make a critically thought-out judgment.

However, the barrier here may not necessarily be a lack of topic knowledge, but perhaps rather believing that you have the requisite knowledge to make a critically thought-out judgment when this is not the case or lacking the willingness to gain additional, relevant topic knowledge.

3. Lack of Willingness

In addition to skills, disposition towards thinking is also key to CT. Disposition towards thinking refers to the extent to which an individual is willing or inclined to perform a given thinking skill, and is essential for understanding how we think and how we can make our thinking better, in both academic settings and everyday circumstances (Norris, 1992; Siegel, 1999; Valenzuela, Nieto, & Saiz, 2011; Dwyer, Hogan & Stewart, 2014).

Dispositions can’t be taught, per se, but they do play a large role in determining whether or not CT will be performed. Simply, it doesn’t matter how skilled one is at analysis, evaluation, and inference—if they’re not willing to think critically, CT is not likely to occur.

4. Misunderstanding of Truth

Truth-seeking is one such disposition towards thinking, which refers to a desire for knowledge; to seek and offer both reasons and objections in an effort to inform and to be well-informed; a willingness to challenge popular beliefs and social norms by asking questions (of oneself and others); to be honest and objective about pursuing the truth, even if the findings do not support one’s self-interest or pre-conceived beliefs or opinions; and to change one’s mind about an idea as a result of the desire for truth (Dwyer, 2017).

what are the limitations of critical thinking

Though this is something for which many of us strive or even just assume we do, the truth is that we all succumb to unwarranted assumptions from time to time: that is, beliefs presumed to be true without adequate justification. For example, we might make a judgment based on an unsubstantiated stereotype or a commonsense/belief statement that has no empirical evidence to justify it. When using CT, it’s important to distinguish facts from beliefs and, also, to dig a little deeper by evaluating "facts" with respect to how much empirical support they have to validate them as fact (see " The Dirtiest Word in Critical Thinking: 'Proof' and its Burden ").

Furthermore, sometimes the truth doesn’t suit people, and so, they might choose to ignore it or try and manipulate knowledge or understanding to accommodate their bias . For example, some people may engage in wishful thinking , in which they believe something is true because they wish it to be; some might engage in relativistic thinking , in which, for them, the truth is subjective or just a matter of opinion.

5. Closed-mindedness

In one of my previous posts, I lay out " 5 Tips for Critical Thinking "—one of which is to play Devil’s Advocate , which refers to the "consideration of alternatives." There’s always more than one way to do or think about something—why not engage such consideration?

The willingness to play Devil’s Advocate implies a sensibility consistent with open-mindedness (i.e., an inclination to be cognitively flexible and avoid rigidity in thinking; to tolerate divergent or conflicting views and treat all viewpoints alike, prior to subsequent analysis and evaluation; to detach from one’s own beliefs and consider, seriously, points of view other than one’s own without bias or self-interest; to be open to feedback by accepting positive feedback, and to not reject criticism or constructive feedback without thoughtful consideration; to amend existing knowledge in light of new ideas and experiences; and to explore such new, alternative, or "unusual" ideas).

At the opposite end of the spectrum, closed-mindedness is a significant barrier to CT. By this stage, you have probably identified the inherent nature of bias in our thinking. The first step of CT is always going to be to evaluate this bias. However, one’s bias may be so strong that it leads them to become closed-minded and renders them unwilling to consider any other perspectives.

Another way in which someone might be closed-minded is through having properly researched and critically thought about a topic and then deciding that this perspective will never change, as if their knowledge will never need to adapt. However, critical thinkers know that knowledge can change and adapt. An example I’ve used in the past is quite relevant here—growing up, I was taught that there were nine planets in our solar system; however, based on further research, our knowledge of planets has been amended to now only consider eight of those as planets.

Being open-minded is a valuable disposition, but so is skepticism (i.e., the inclination to challenge ideas; to withhold judgment before engaging all the evidence or when the evidence and reasons are insufficient; to take a position and be able to change position when the evidence and reasons are sufficient; and to look at findings from various perspectives).

However, one can be both open-minded and skeptical. It is closed-mindedness that is the barrier to CT, so please note that closed-mindedness and skepticism are distinct dispositions.

Dwyer, C.P. (2017). Critical thinking: Conceptual perspectives and practical guidelines. UK: Cambridge University Press.

Dwyer, C.P., Hogan, M.J. & Stewart, I. (2014). An integrated critical thinking framework for the 21st century. Thinking Skills & Creativity, 12, 43-52.

Hamm, R. M. (1988). Clinical intuition and clinical analysis: expertise and the cognitive continuum. In J. Dowie & A. Elstein (Eds.), Professional judgment: A reader in clinical decision making, 78–105. Cambridge: Cambridge University Press.

Kahneman, D. (2011). Thinking fast and slow. Penguin: Great Britain.

Lieberman, M. D. (2003). Reflexive and reflective judgment processes: A social cognitive neuroscience approach. Social Judgments: Implicit and Explicit Processes, 5, 44–67.

Norris, S. P. (Ed.). (1992). The generalizability of critical thinking: Multiple perspectives on an educational ideal. New York: Teachers College Press.

Siegel, H. (1999). What (good) are thinking dispositions? Educational Theory, 49, 2, 207–221.

Valenzuela, J., Nieto, A. M., & Saiz, C. (2011). Critical thinking motivational scale: A contribution to the study of relationship between critical thinking and motivation. Journal of Research in Educational Psychology, 9, 2, 823–848.

Christopher Dwyer Ph.D.

Christopher Dwyer, Ph.D., is a lecturer at the Technological University of the Shannon in Athlone, Ireland.

  • Find a Therapist
  • Find a Treatment Centre
  • Find a Support Group
  • Find Online Therapy
  • Calgary, AB
  • Edmonton, AB
  • Hamilton, ON
  • Montréal, QC
  • Toronto, ON
  • Vancouver, BC
  • Winnipeg, MB
  • Mississauga, ON
  • Oakville, ON
  • Asperger's
  • Bipolar Disorder
  • Chronic Pain
  • Eating Disorders
  • Passive Aggression
  • Personality
  • Goal Setting
  • Positive Psychology
  • Stopping Smoking
  • Low Sexual Desire
  • Relationships
  • Child Development
  • Self Tests NEW
  • Therapy Center
  • Diagnosis Dictionary
  • Types of Therapy

July 2024 magazine cover

Sticking up for yourself is no easy task. But there are concrete skills you can use to hone your assertiveness and advocate for yourself.

  • Emotional Intelligence
  • Gaslighting
  • Affective Forecasting
  • Neuroscience

U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings

Preview improvements coming to the PMC website in October 2024. Learn More or Try it out now .

  • Advanced Search
  • Journal List

Logo of plosone

What influences students’ abilities to critically evaluate scientific investigations?

Ashley b. heim.

1 Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, United States of America

2 Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, NY, United States of America

David Esparza

Michelle k. smith, n. g. holmes, associated data.

All raw data files are available from the Cornell Institute for Social and Economic Research (CISER) data and reproduction archive ( https://archive.ciser.cornell.edu/studies/2881 ).

Critical thinking is the process by which people make decisions about what to trust and what to do. Many undergraduate courses, such as those in biology and physics, include critical thinking as an important learning goal. Assessing critical thinking, however, is non-trivial, with mixed recommendations for how to assess critical thinking as part of instruction. Here we evaluate the efficacy of assessment questions to probe students’ critical thinking skills in the context of biology and physics. We use two research-based standardized critical thinking instruments known as the Biology Lab Inventory of Critical Thinking in Ecology (Eco-BLIC) and Physics Lab Inventory of Critical Thinking (PLIC). These instruments provide experimental scenarios and pose questions asking students to evaluate what to trust and what to do regarding the quality of experimental designs and data. Using more than 3000 student responses from over 20 institutions, we sought to understand what features of the assessment questions elicit student critical thinking. Specifically, we investigated (a) how students critically evaluate aspects of research studies in biology and physics when they are individually evaluating one study at a time versus comparing and contrasting two and (b) whether individual evaluation questions are needed to encourage students to engage in critical thinking when comparing and contrasting. We found that students are more critical when making comparisons between two studies than when evaluating each study individually. Also, compare-and-contrast questions are sufficient for eliciting critical thinking, with students providing similar answers regardless of if the individual evaluation questions are included. This research offers new insight on the types of assessment questions that elicit critical thinking at the introductory undergraduate level; specifically, we recommend instructors incorporate more compare-and-contrast questions related to experimental design in their courses and assessments.

Introduction

Critical thinking and its importance.

Critical thinking, defined here as “the ways in which one uses data and evidence to make decisions about what to trust and what to do” [ 1 ], is a foundational learning goal for almost any undergraduate course and can be integrated in many points in the undergraduate curriculum. Beyond the classroom, critical thinking skills are important so that students are able to effectively evaluate data presented to them in a society where information is so readily accessible [ 2 , 3 ]. Furthermore, critical thinking is consistently ranked as one of the most necessary outcomes of post-secondary education for career advancement by employers [ 4 ]. In the workplace, those with critical thinking skills are more competitive because employers assume they can make evidence-based decisions based on multiple perspectives, keep an open mind, and acknowledge personal limitations [ 5 , 6 ]. Despite the importance of critical thinking skills, there are mixed recommendations on how to elicit and assess critical thinking during and as a result of instruction. In response, here we evaluate the degree to which different critical thinking questions elicit students’ critical thinking skills.

Assessing critical thinking in STEM

Across STEM (i.e., science, technology, engineering, and mathematics) disciplines, several standardized assessments probe critical thinking skills. These assessments focus on aspects of critical thinking and ask students to evaluate experimental methods [ 7 – 11 ], form hypotheses and make predictions [ 12 , 13 ], evaluate data [ 2 , 12 – 14 ], or draw conclusions based on a scenario or figure [ 2 , 12 – 14 ]. Many of these assessments are open-response, so they can be difficult to score, and several are not freely available.

In addition, there is an ongoing debate regarding whether critical thinking is a domain-general or context-specific skill. That is, can someone transfer their critical thinking skills from one domain or context to another (domain-general) or do their critical thinking skills only apply in their domain or context of expertise (context-specific)? Research on the effectiveness of teaching critical thinking has found mixed results, primarily due to a lack of consensus definition of and assessment tools for critical thinking [ 15 , 16 ]. Some argue that critical thinking is domain-general—or what Ennis refers to as the “general approach”—because it is an overlapping skill that people use in various aspects of their lives [ 17 ]. In contrast, others argue that critical thinking must be elicited in a context-specific domain, as prior knowledge is needed to make informed decisions in one’s discipline [ 18 , 19 ]. Current assessments include domain-general components [ 2 , 7 , 8 , 14 , 20 , 21 ], asking students to evaluate, for instance, experiments on the effectiveness of dietary supplements in athletes [ 20 ] and context-specific components, such as to measure students’ abilities to think critically in domains such as neuroscience [ 9 ] and biology [ 10 ].

Others maintain the view that critical thinking is a context-specific skill for the purpose of undergraduate education, but argue that it should be content accessible [ 22 – 24 ], as “thought processes are intertwined with what is being thought about” [ 23 ]. From this viewpoint, the context of the assessment would need to be embedded in a relatively accessible context to assess critical thinking independent of students’ content knowledge. Thus, to effectively elicit critical thinking among students, instructors should use assessments that present students with accessible domain-specific information needed to think deeply about the questions being asked [ 24 , 25 ].

Within the context of STEM, current critical thinking assessments primarily ask students to evaluate a single experimental scenario (e.g., [ 10 , 20 ]), though compare-and-contrast questions about more than one scenario can be a powerful way to elicit critical thinking [ 26 , 27 ]. Generally included in the “Analysis” level of Bloom’s taxonomy [ 28 – 30 ], compare-and-contrast questions encourage students to recognize, distinguish between, and relate features between scenarios and discern relevant patterns or trends, rather than compile lists of important features [ 26 ]. For example, a compare-and-contrast assessment may ask students to compare the hypotheses and research methods used in two different experimental scenarios, instead of having them evaluate the research methods of a single experiment. Alternatively, students may inherently recall and use experimental scenarios based on their prior experiences and knowledge as they evaluate an individual scenario. In addition, evaluating a single experimental scenario individually may act as metacognitive scaffolding [ 31 , 32 ]—a process which “guides students by asking questions about the task or suggesting relevant domain-independent strategies [ 32 ]—to support students in their compare-and-contrast thinking.

Purpose and research questions

Our primary objective of this study was to better understand what features of assessment questions elicit student critical thinking using two existing instruments in STEM: the Biology Lab Inventory of Critical Thinking in Ecology (Eco-BLIC) and Physics Lab Inventory of Critical Thinking (PLIC). We focused on biology and physics since critical thinking assessments were already available for these disciplines. Specifically, we investigated (a) how students critically evaluate aspects of research studies in biology and physics when they are individually evaluating one study at a time or comparing and contrasting two studies and (b) whether individual evaluation questions are needed to encourage students to engage in critical thinking when comparing and contrasting.

Providing undergraduates with ample opportunities to practice critical thinking skills in the classroom is necessary for evidence-based critical thinking in their future careers and everyday life. While most critical thinking instruments in biology and physics contexts have undergone some form of validation to ensure they are accurately measuring the intended construct, to our knowledge none have explored how different question types influence students’ critical thinking. This research offers new insight on the types of questions that elicit critical thinking, which can further be applied by educators and researchers across disciplines to measure cognitive student outcomes and incorporate more effective critical thinking opportunities in the classroom.

Ethics statement

The procedures for this study were approved by the Institutional Review Board of Cornell University (Eco-BLIC: #1904008779; PLIC: #1608006532). Informed consent was obtained by all participating students via online consent forms at the beginning of the study, and students did not receive compensation for participating in this study unless their instructor offered credit for completing the assessment.

Participants and assessment distribution

We administered the Eco-BLIC to undergraduate students across 26 courses at 11 institutions (six doctoral-granting, three Master’s-granting, and two Baccalaureate-granting) in Fall 2020 and Spring 2021 and received 1612 usable responses. Additionally, we administered the PLIC to undergraduate students across 21 courses at 11 institutions (six doctoral-granting, one Master’s-granting, three four-year colleges, and one 2-year college) in Fall 2020 and Spring 2021 and received 1839 usable responses. We recruited participants via convenience sampling by emailing instructors of primarily introductory ecology-focused courses or introductory physics courses who expressed potential interest in implementing our instrument in their course(s). Both instruments were administered online via Qualtrics and students were allowed to complete the assessments outside of class. The demographic distribution of the response data is presented in Table 1 , all of which were self-reported by students. The values presented in this table represent all responses we received.

Woman58.3%39.5%
Man39.4%51.3%
Non-binary/Non-gender conforming1.0%1.8%
Self-describe0.2%7.3%
Prefer not to disclose1.1%0%
American Indian or Alaska Native1.3%0.8%
Asian16.8%27.6%
Black or African American5.4%5.1%
Hispanic or Latinx19.6%8.8%
Native Hawaiian / Pacific Islander0.4%0.4%
White53.5%53.3%
Self-describe / Prefer not to disclose / Other3.1%1.7%
Ecology & Evolutionary Biology21.28%
Molecular Biology16.25%
Physiology or Neuroscience10.86%
No specialization / I don’t know16.07%
Non-Life Science Major35.55%
Engineering45.8%
Other science19.0%
Physics17.7%
Non-science6.6%
Unknown10.9%

Instrument description

Question types.

Though the content and concepts featured in the Eco-BLIC and PLIC are distinct, both instruments share a similar structure and set of question types. The Eco-BLIC—which was developed using a structure similar to that of the PLIC [ 1 ]—includes two predator-prey scenarios based on relationships between (a) smallmouth bass and mayflies and (b) great-horned owls and house mice. Within each scenario, students are presented with a field-based study and a laboratory-based study focused on a common research question about feeding behaviors of smallmouth bass or house mice, respectively. The prompts for these two Eco-BLIC scenarios are available in S1 and S2 Appendices. The PLIC focuses on two research groups conducting different experiments to test the relationship between oscillation periods of masses hanging on springs [ 1 ]; the prompts for this scenario can be found in S3 Appendix . The descriptive prompts in both the Eco-BLIC and PLIC also include a figure presenting data collected by each research group, from which students are expected to draw conclusions. The research scenarios (e.g., field-based group and lab-based group on the Eco-BLIC) are written so that each group has both strengths and weaknesses in their experimental designs.

After reading the prompt for the first experimental group (Group 1) in each instrument, students are asked to identify possible claims from Group 1’s data (data evaluation questions). Students next evaluate the strengths and weaknesses of various study features for Group 1 (individual evaluation questions). Examples of these individual evaluation questions are in Table 2 . They then suggest next steps the group should pursue (next steps items). Students are then asked to read about the prompt describing the second experimental group’s study (Group 2) and again answer questions about the possible claims, strengths and weaknesses, and next steps of Group 2’s study (data evaluation questions, individual evaluation questions, and next steps items). Once students have independently evaluated Groups 1 and 2, they answer a series of questions to compare the study approaches of Group 1 versus Group 2 (group comparison items). In this study, we focus our analysis on the individual evaluation questions and group comparison items.

Type of QuestionEco-BLIC (Owl/Mouse Scenario—Lab Group)PLIC
Individual evaluation questions

Response type:
Please characterize each of the following aspects of Group 1’s study setup as either a strength or weakness to defining the feeding behavior of mice while great-horned owl calls play:

Please characterize the following aspects of Group 1’s data collection methods as either a strength or weakness of their methods:

Group comparison items

Response type:




How do you think Group 1 and Group 2 performed in the following categories?

: :
How do you think Group 1 and Group 2 performed in the following categories related to data collection methods?

The Eco-BLIC examples are derived from the owl/mouse scenario.

Instrument versions

To determine whether the individual evaluation questions impacted the assessment of students’ critical thinking, students were randomly assigned to take one of two versions of the assessment via Qualtrics branch logic: 1) a version that included the individual evaluation and group comparison items or 2) a version with only the group comparison items, with the individual evaluation questions removed. We calculated the median time it took students to answer each of these versions for both the Eco-BLIC and PLIC.

Think-aloud interviews

We also conducted one-on-one think-aloud interviews with students to elicit feedback on the assessment questions (Eco-BLIC n = 21; PLIC n = 4). Students were recruited via convenience sampling at our home institution and were primarily majoring in biology or physics. All interviews were audio-recorded and screen captured via Zoom and lasted approximately 30–60 minutes. We asked participants to discuss their reasoning for answering each question as they progressed through the instrument. We did not analyze these interviews in detail, but rather used them to extract relevant examples of critical thinking that helped to explain our quantitative findings. Multiple think-aloud interviews were conducted with students using previous versions of the PLIC [ 1 ], though these data are not discussed here.

Data analyses

Our analyses focused on (1) investigating the alignment between students’ responses to the individual evaluation questions and the group comparison items and (2) comparing student responses between the two instrument versions. If individual evaluation and group comparison items elicit critical thinking in the same way, we would expect to see the same frequency of responses for each question type, as per Fig 1 . For example, if students evaluated one study feature of Group 1 as a strength and the same study feature for Group 2 as a strength, we would expect that students would respond that both groups were highly effective for this study feature on the group comparison item (i.e., data represented by the purple circle in the top right quadrant of Fig 1 ). Alternatively, if students evaluated one study feature of Group 1 as a strength and the same study feature for Group 2 as a weakness, we would expect that students would indicate that Group 1 was more effective than Group 2 on the group comparison item (i.e., data represented by the green circle in the lower right quadrant of Fig 1 ).

An external file that holds a picture, illustration, etc.
Object name is pone.0273337.g001.jpg

The x- and y-axes represent rankings on the individual evaluation questions for Groups 1 and 2 (or field and lab groups), respectively. The colors in the legend at the top of the figure denote responses to the group comparison items. In this idealized example, all pie charts are the same size to indicate that the student answers are equally proportioned across all answer combinations.

We ran descriptive statistics to summarize student responses to questions and examine distributions and frequencies of the data on the Eco-BLIC and PLIC. We also conducted chi-square goodness-of-fit tests to analyze differences in student responses between versions within the relevant questions from the same instrument. In all of these tests, we used a Bonferroni correction to lower the chances of receiving a false positive and account for multiple comparisons. We generated figures—primarily multi-pie chart graphs and heat maps—to visualize differences between individual evaluation and group comparison items and between versions of each instrument with and without individual evaluation questions, respectively. All aforementioned data analyses and figures were conducted or generated in the R statistical computing environment (v. 4.1.1) and Microsoft Excel.

We asked students to evaluate different experimental set-ups on the Eco-BLIC and PLIC two ways. Students first evaluated the strengths and weaknesses of study features for each scenario individually (individual evaluation questions, Table 2 ) and, subsequently, answered a series of questions to compare and contrast the study approaches of both research groups side-by-side (group comparison items, Table 2 ). Through analyzing the individual evaluation questions, we found that students generally ranked experimental features (i.e., those related to study set-up, data collection and summary methods, and analysis and outcomes) of the independent research groups as strengths ( Fig 2 ), evidenced by the mean scores greater than 2 on a scale from 1 (weakness) to 4 (strength).

An external file that holds a picture, illustration, etc.
Object name is pone.0273337.g002.jpg

Each box represents the interquartile range (IQR). Lines within each box represent the median. Circles represent outliers of mean scores for each question.

Individual evaluation versus compare-and-contrast evaluation

Our results indicate that when students consider Group 1 or Group 2 individually, they mark most study features as strengths (consistent with the means in Fig 2 ), shown by the large circles in the upper right quadrant across the three experimental scenarios ( Fig 3 ). However, the proportion of colors on each pie chart shows that students select a range of responses when comparing the two groups [e.g., Group 1 being more effective (green), Group 2 being more effective (blue), both groups being effective (purple), and neither group being effective (orange)]. We infer that students were more discerning (i.e., more selective) when they were asked to compare the two groups across the various study features ( Fig 3 ). In short, students think about the groups differently if they are rating either Group 1 or Group 2 in the individual evaluation questions versus directly comparing Group 1 to Group 2.

An external file that holds a picture, illustration, etc.
Object name is pone.0273337.g003.jpg

The x- and y-axes represent students’ rankings on the individual evaluation questions for Groups 1 and 2 on each assessment, respectively, where 1 indicates weakness and 4 indicates strength. The overall size of each pie chart represents the proportion of students who responded with each pair of ratings. The colors in the pie charts denote the proportion of students’ responses who chose each option on the group comparison items. (A) Eco-BLIC bass-mayfly scenario (B) Eco-BLIC owl-mouse scenario (C) PLIC oscillation periods of masses hanging on springs scenario.

These results are further supported by student responses from the think-aloud interviews. For example, one interview participant responding to the bass-mayfly scenario of the Eco-BLIC explained that accounting for bias/error in both the field and lab groups in this scenario was a strength (i.e., 4). This participant mentioned that Group 1, who performed the experiment in the field, “[had] outliers, so they must have done pretty well,” and that Group 2, who collected organisms in the field but studied them in lab, “did a good job of accounting for bias.” However, when asked to compare between the groups, this student argued that Group 2 was more effective at accounting for bias/error, noting that “they controlled for more variables.”

Another individual who was evaluating “repeated trials for each mass” in the PLIC expressed a similar pattern. In response to ranking this feature of Group 1 as a strength, they explained: “Given their uncertainties and how small they are, [the group] seems like they’ve covered their bases pretty well.” Similarly, they evaluated this feature of Group 2 as a strength as well, simply noting: “Same as the last [group], I think it’s a strength.” However, when asked to compare between Groups 1 and 2, this individual argued that Group 1 was more effective because they conducted more trials.

Individual evaluation questions to support compare and contrast thinking

Given that students were more discerning when they directly compared two groups for both biology and physics experimental scenarios, we next sought to determine if the individual evaluation questions for Group 1 or Group 2 were necessary to elicit or helpful to support student critical thinking about the investigations. To test this, students were randomly assigned to one of two versions of the instrument. Students in one version saw individual evaluation questions about Group 1 and Group 2 and then saw group comparison items for Group 1 versus Group 2. Students in the second version only saw the group comparison items. We found that students assigned to both versions responded similarly to the group comparison questions, indicating that the individual evaluation questions did not promote additional critical thinking. We visually represent these similarities across versions with and without the individual evaluation questions in Fig 4 as heat maps.

An external file that holds a picture, illustration, etc.
Object name is pone.0273337.g004.jpg

The x-axis denotes students’ responses on the group comparison items (i.e., whether they ranked Group 1 as more effective, Group 2 as more effective, both groups as highly effective, or neither group as effective/both groups were minimally effective). The y-axis lists each of the study features that students compared between the field and lab groups. White and lighter shades of red indicate a lower percentage of student responses, while brighter red indicates a higher percentage of student responses. (A) Eco-BLIC bass-mayfly scenario. (B) Eco-BLIC owl-mouse scenario. (C) PLIC oscillation periods of masses hanging on springs scenario.

We ran chi-square goodness-of-fit tests on the answers between student responses on both instrument versions and there were no significant differences on the Eco-BLIC bass-mayfly scenario ( Fig 4A ; based on an adjusted p -value of 0.006) or owl-mouse questions ( Fig 4B ; based on an adjusted p-value of 0.004). There were only three significant differences (out of 53 items) in how students responded to questions on both versions of the PLIC ( Fig 4C ; based on an adjusted p -value of 0.0005). The items that students responded to differently ( p <0.0005) across both versions were items where the two groups were identical in their design; namely, the equipment used (i.e., stopwatches), the variables measured (i.e., time and mass), and the number of bounces of the spring per trial (i.e., five bounces). We calculated Cramer’s C (Vc; [ 33 ]), a measure commonly applied to Chi-square goodness of fit models to understand the magnitude of significant results. We found that the effect sizes for these three items were small (Vc = 0.11, Vc = 0.10, Vc = 0.06, respectively).

The trend that students answer the Group 1 versus Group 2 comparison questions similarly, regardless of whether they responded to the individual evaluation questions, is further supported by student responses from the think-aloud interviews. For example, one participant who did not see the individual evaluation questions for the owl-mouse scenario of the Eco-BLIC independently explained that sampling mice from other fields was a strength for both the lab and field groups. They explained that for the lab group, “I think that [the mice] coming from multiple nearby fields is good…I was curious if [mouse] behavior was universal.” For the field group, they reasoned, “I also noticed it was just from a single nearby field…I thought that was good for control.” However, this individual ultimately reasoned that the field group was “more effective for sampling methods…it’s better to have them from a single field because you know they were exposed to similar environments.” Thus, even without individual evaluation questions available, students can still make individual evaluations when comparing and contrasting between groups.

We also determined that removing the individual evaluation questions decreased the duration of time students needed to complete the Eco-BLIC and PLIC. On the Eco-BLIC, the median time to completion for the version with individual evaluation and group comparison questions was approximately 30 minutes, while the version with only the group comparisons had a median time to completion of 18 minutes. On the PLIC, the median time to completion for the version with individual evaluation questions and group comparison questions was approximately 17 minutes, while the version with only the group comparisons had a median time to completion of 15 minutes.

To determine how to elicit critical thinking in a streamlined manner using introductory biology and physics material, we investigated (a) how students critically evaluate aspects of experimental investigations in biology and physics when they are individually evaluating one study at a time versus comparing and contrasting two and (b) whether individual evaluation questions are needed to encourage students to engage in critical thinking when comparing and contrasting.

Students are more discerning when making comparisons

We found that students were more discerning when comparing between the two groups in the Eco-BLIC and PLIC rather than when evaluating each group individually. While students tended to independently evaluate study features of each group as strengths ( Fig 2 ), there was greater variation in their responses to which group was more effective when directly comparing between the two groups ( Fig 3 ). Literature evaluating the role of contrasting cases provides plausible explanations for our results. In that work, contrasting between two cases supports students in identifying deep features of the cases, compared with evaluating one case after the other [ 34 – 37 ]. When presented with a single example, students may deem certain study features as unimportant or irrelevant, but comparing study features side-by-side allows students to recognize the distinct features of each case [ 38 ]. We infer, therefore, that students were better able to recognize the strengths and weaknesses of the two groups in each of the assessment scenarios when evaluating the groups side by side, rather than in isolation [ 39 , 40 ]. This result is somewhat surprising, however, as students could have used their knowledge of experimental designs as a contrasting case when evaluating each group. Future work, therefore, should evaluate whether experts use their vast knowledge base of experimental studies as discerning contrasts when evaluating each group individually. This work would help determine whether our results here suggest that students do not have a sufficient experiment-base to use as contrasts or if the students just do not use their experiment-base when evaluating the individual groups. Regardless, our study suggests that critical thinking assessments should ask students to compare and contrast experimental scenarios, rather than just evaluate individual cases.

Individual evaluation questions do not influence answers to compare and contrast questions

We found that individual evaluation questions were unnecessary for eliciting or supporting students’ critical thinking on the two assessments. Students responded to the group comparison items similarly whether or not they had received the individual evaluation questions. The exception to this pattern was that students responded differently to three group comparison items on the PLIC when individual evaluation questions were provided. These three questions constituted a small portion of the PLIC and showed a small effect size. Furthermore, removing the individual evaluation questions decreased the median time for students to complete the Eco-BLIC and PLIC. It is plausible that spending more time thinking about the experimental methods while responding to the individual evaluation questions would then prepare students to be better discerners on the group comparison questions. However, the overall trend is that individual evaluation questions do not have a strong impact on how students evaluate experimental scenarios, nor do they set students up to be better critical thinkers later. This finding aligns with prior research suggesting that students tend to disregard details when they evaluate a single case, rather than comparing and contrasting multiple cases [ 38 ], further supporting our findings about the effectiveness of the group comparison questions.

Practical implications

Individual evaluation questions were not effective for students to engage in critical thinking nor to prepare them for subsequent questions that elicit their critical thinking. Thus, researchers and instructors could make critical thinking assessments more effective and less time-consuming by encouraging comparisons between cases. Additionally, the study raises a question about whether instruction should incorporate more experimental case studies throughout their courses and assessments so that students have a richer experiment-base to use as contrasts when evaluating individual experimental scenarios. To help students discern information about experimental design, we suggest that instructors consider providing them with multiple experimental studies (i.e., cases) and asking them to compare and contrast between these studies.

Future directions and limitations

When designing critical thinking assessments, questions should ask students to make meaningful comparisons that require them to consider the important features of the scenarios. One challenge of relying on compare-and-contrast questions in the Eco-BLIC and PLIC to elicit students’ critical thinking is ensuring that students are comparing similar yet distinct study features across experimental scenarios, and that these comparisons are meaningful [ 38 ]. For example, though sample size is different between experimental scenarios in our instruments, it is a significant feature that has implications for other aspects of the research like statistical analyses and behaviors of the animals. Therefore, one limitation of our study could be that we exclusively focused on experimental method evaluation questions (i.e., what to trust), and we are unsure if the same principles hold for other dimensions of critical thinking (i.e., what to do). Future research should explore whether questions that are not in a compare-and-contrast format also effectively elicit critical thinking, and if so, to what degree.

As our question schema in the Eco-BLIC and PLIC were designed for introductory biology and physics content, it is unknown how effective this question schema would be for upper-division biology and physics undergraduates who we would expect to have more content knowledge and prior experiences for making comparisons in their respective disciplines [ 18 , 41 ]. For example, are compare-and-contrast questions still needed to elicit critical thinking among upper-division students, or would critical thinking in this population be more effectively assessed by incorporating more sophisticated data analyses in the research scenarios? Also, if students with more expert-like thinking have a richer set of experimental scenarios to inherently use as contrasts when comparing, we might expect their responses on the individual evaluation questions and group comparisons to better align. To further examine how accessible and context-specific the Eco-BLIC and PLIC are, novel scenarios could be developed that incorporate topics and concepts more commonly addressed in upper-division courses. Additionally, if instructors offer students more experience comparing and contrasting experimental scenarios in the classroom, would students be more discerning on the individual evaluation questions?

While a single consensus definition of critical thinking does not currently exist [ 15 ], continuing to explore critical thinking in other STEM disciplines beyond biology and physics may offer more insight into the context-specific nature of critical thinking [ 22 , 23 ]. Future studies should investigate critical thinking patterns in other STEM disciplines (e.g., mathematics, engineering, chemistry) through designing assessments that encourage students to evaluate aspects of at least two experimental studies. As undergraduates are often enrolled in multiple courses simultaneously and thus have domain-specific knowledge in STEM, would we observe similar patterns in critical thinking across additional STEM disciplines?

Lastly, we want to emphasize that we cannot infer every aspect of critical thinking from students’ responses on the Eco-BLIC and PLIC. However, we suggest that student responses on the think-aloud interviews provide additional qualitative insight into how and why students were making comparisons in each scenario and their overall critical thinking processes.

Conclusions

Overall, we found that comparing and contrasting two different experiments is an effective and efficient way to elicit context-specific critical thinking in introductory biology and physics undergraduates using the Eco-BLIC and the PLIC. Students are more discerning (i.e., critical) and engage more deeply with the scenarios when making comparisons between two groups. Further, students do not evaluate features of experimental studies differently when individual evaluation questions are provided or removed. These novel findings hold true across both introductory biology and physics, based on student responses on the Eco-BLIC and PLIC, respectively—though there is much more to explore regarding critical thinking processes of students across other STEM disciplines and in more advanced stages of their education. Undergraduate students in STEM need to be able to critically think for career advancement, and the Eco-BLIC and PLIC are two means of measuring students’ critical thinking in biology and physics experimental contexts via comparing and contrasting. This research offers new insight on the types of questions that elicit critical thinking, which can further be applied by educators and researchers across disciplines to teach and measure cognitive student outcomes. Specifically, we recommend instructors incorporate more compare-and-contrast questions related to experimental design in their courses to efficiently elicit undergraduates’ critical thinking.

Supporting information

S1 appendix, s2 appendix, s3 appendix, acknowledgments.

We thank the members of the Cornell Discipline-based Education Research group for their feedback on this article, as well as our advisory board (Jenny Knight, Meghan Duffy, Luanna Prevost, and James Hewlett) and the AAALab for their ideas and suggestions. We also greatly appreciate the instructors who shared the Eco-BLIC and PLIC in their classes and the students who participated in this study.

Funding Statement

This work was supported by the National Science Foundation under grants DUE-1909602 (MS & NH) and DUE-1611482 (NH). NSF: nsf.gov The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Data Availability

  • Open access
  • Published: 26 August 2024

Evaluating panel discussions in ESP classes: an exploration of international medical students’ and ESP instructors’ perspectives through qualitative research

  • Elham Nasiri   ORCID: orcid.org/0000-0002-0644-1646 1 &
  • Laleh Khojasteh   ORCID: orcid.org/0000-0002-6393-2759 1  

BMC Medical Education volume  24 , Article number:  925 ( 2024 ) Cite this article

65 Accesses

Metrics details

This study investigates the effectiveness of panel discussions, a specific interactive teaching technique where a group of students leads a pre-planned, topic-focused discussion with audience participation, in English for Specific Purposes (ESP) courses for international medical students. This approach aims to simulate professional conference discussions, preparing students for future academic and clinical environments where such skills are crucial. While traditional group presentations foster critical thinking and communication, a gap exists in understanding how medical students perceive the complexities of preparing for and participating in panel discussions within an ESP setting. This qualitative study investigates the perceived advantages and disadvantages of these discussions from the perspectives of both panelists (medical students) and the audience (peers). Additionally, the study explores potential improvements based on insights from ESP instructors. Utilizing a two-phase design involving reflection papers and focus group discussions, data were collected from 46 medical students and three ESP instructors. Thematic analysis revealed that panel discussions offer unique benefits compared to traditional presentations, including enhanced engagement and more dynamic skill development for both panelists and the audience. Panelists reported gains in personal and professional development, including honing critical thinking, communication, and presentation skills. The audience perceived these discussions as engaging learning experiences that fostered critical analysis and information synthesis. However, challenges such as academic workload and concerns about discussion quality were also identified. The study concludes that panel discussions, when implemented effectively, can be a valuable tool for enhancing critical thinking, communication skills, and subject matter knowledge in ESP courses for medical students. These skills are transferable and can benefit students in various academic and professional settings, including future participation in medical conferences. This research provides valuable insights for ESP instructors seeking to integrate panel discussions into their curriculum, ultimately improving student learning outcomes and preparing them for future success in professional communication.

Peer Review reports

Introduction

In the field of medical education, the acquisition and application of effective communication skills are crucial for medical students in today’s global healthcare environment [ 1 ]. This necessitates not only strong English language proficiency but also the ability to present complex medical information clearly and concisely to diverse audiences.

Language courses, especially English for Specific Purposes (ESP) courses for medical students, are highly relevant in today’s globalized healthcare environment [ 2 ]. In non-English speaking countries like Iran, these courses are particularly important as they go beyond mere language instruction to include the development of critical thinking, cultural competence, and professional communication skills [ 3 ]. Proficiency in English is crucial for accessing up-to-date research, participating in international conferences, and communicating with patients and colleagues from diverse backgrounds [ 4 ]. Additionally, ESP courses help medical students understand and use medical terminologies accurately, which is essential for reading technical articles, listening to audio presentations, and giving spoken presentations [ 5 ]. In countries where English is not the primary language, ESP courses ensure that medical professionals can stay current with global advancements and collaborate effectively on an international scale [ 6 ]. Furthermore, these courses support students who may seek to practice medicine abroad, enhancing their career opportunities and professional growth [ 7 ].

Moreover, ESP courses enable medical professionals to communicate effectively with international patients, which is crucial in multicultural societies and for medical tourism, ensuring that patient care is not compromised due to language barriers [ 8 ]. Many medical textbooks, journals, and online resources are available primarily in English, and ESP courses equip medical students with the necessary language skills to access and comprehend these resources, ensuring they are well-informed about the latest medical research and practices [ 9 ].

Additionally, many medical professionals from non-English speaking countries aim to take international certification exams, such as the USMLE or PLAB, which are conducted in English, and ESP courses prepare students for these exams by familiarizing them with the medical terminology and language used in these assessments [ 10 ]. ESP courses also contribute to the professional development of medical students by improving their ability to write research papers, case reports, and other academic documents in English, which is essential for publishing in international journals and contributing to global medical knowledge [ 11 ]. In the increasingly interdisciplinary field of healthcare, collaboration with professionals from other countries is common, and ESP courses facilitate effective communication and collaboration with international colleagues, fostering innovation and the exchange of ideas [ 12 ].

With the rise of telemedicine and online medical consultations, proficiency in English is essential for non-English speaking medical professionals to provide remote healthcare services to international patients, and ESP courses prepare students for these modern medical practices [ 13 ].

Finally, ESP courses often include training on cultural competence, which is crucial for understanding and respecting the cultural backgrounds of patients and colleagues, leading to more empathetic and effective patient care and professional interactions [ 14 ]. Many ESP programs for medical students incorporate group presentations as a vital component of their curriculum, recognizing the positive impact on developing these essential skills [ 15 ].

Group projects in language courses, particularly in ESP for medical students, are highly relevant for several reasons. They provide a collaborative environment that mimics real-world professional settings, where healthcare professionals often work in multidisciplinary teams [ 16 ]. These group activities foster not only language skills but also crucial soft skills such as teamwork, leadership, and interpersonal communication, which are essential in medical practice [ 17 ].

The benefits of group projects over individual projects in language learning are significant. Hartono, Mujiyanto [ 18 ] found that group presentation tasks in ESP courses led to higher self-efficacy development compared to individual tasks. Group projects encourage peer learning, where students can learn from each other’s strengths and compensate for individual weaknesses [ 19 ]. They also provide a supportive environment that can reduce anxiety and increase willingness to communicate in the target language [ 20 ]. However, it is important to note that group projects also come with challenges, such as social loafing and unequal contribution, which need to be managed effectively [ 21 ].

Traditional lecture-based teaching methods, while valuable for knowledge acquisition, may not effectively prepare medical students for the interactive and collaborative nature of real-world healthcare settings [ 22 ]. Panel discussions (hereafter PDs), an interactive teaching technique where a group of students leads a pre-planned, topic-focused discussion with audience participation, are particularly relevant in this context. They simulate professional conference discussions and interdisciplinary team meetings, preparing students for future academic and clinical environments where such skills are crucial [ 23 ].

PDs, also known as moderated discussions or moderated panels, are a specific type of interactive format where a group of experts or stakeholders engage in a facilitated conversation on a particular topic or issue [ 22 ]. In this format, a moderator guides the discussion, encourages active participation from all panelists, and fosters a collaborative environment that promotes constructive dialogue and critical thinking [ 24 ]. The goal is to encourage audience engagement and participation, which can be achieved through various strategies such as asking open-ended questions, encouraging counterpoints and counterarguments, and providing opportunities for audience members to pose questions or share their own experiences [ 25 ]. These discussions can take place in-person or online, and can be designed to accommodate diverse audiences and settings [ 26 ].

In this study, PD is considered a speaking activity where medical students are assigned specific roles to play during the simulation, such as a physician, quality improvement specialist, policymaker, or patient advocate. By taking on these roles, students can gain a better understanding of the diverse perspectives and considerations that come into play in real-world healthcare discussions [ 23 ]. Simulating PDs within ESP courses can be a powerful tool for enhancing medical students’ learning outcomes in multiple areas. This approach improves language proficiency, academic skills, and critical thinking abilities, while also enabling students to communicate effectively with diverse stakeholders in the medical field [ 27 , 28 ].

Theoretical framework

The panel discussions in our study are grounded in the concept of authentic assessment (outlined by Villarroel, Bloxham [ 29 ]), which involves designing tasks that mirror real-life situations and problems. In the context of medical education, this approach is particularly relevant as it prepares students for the complex, multidisciplinary nature of healthcare communication. Realism can be achieved through two means: providing a realistic context that describes and delivers a frame for the problem to be solved and creating tasks that are similar to those faced in real and/or professional life [ 30 ]. In our study, the PDs provide a realistic context by simulating scenarios where medical students are required to discuss and present complex medical topics in a professional setting, mirroring the types of interactions they will encounter in their future careers.

The task of participating in PDs also involves cognitive challenge, as students are required to think critically about complex medical topics, analyze information, and communicate their findings effectively. This type of task aims to generate processes of problem-solving, application of knowledge, and decision-making that correspond to the development of cognitive and metacognitive skills [ 23 ]. For medical students, these skills are crucial in developing clinical reasoning and effective patient communication. The PDs encourage students to go beyond the textual reproduction of fragmented and low-order content and move towards understanding, establishing relationships between new ideas and previous knowledge, linking theoretical concepts with everyday experience, deriving conclusions from the analysis of data, and examining both the logic of the arguments present in the theory and its practical scope [ 24 , 25 , 27 ].

Furthermore, the evaluative judgment aspect of our study is critical in helping students develop criteria and standards about what a good performance means in medical communication. This involves students judging their own performance and regulating their own learning [ 31 ]. In the context of panel discussions, students reflect on their own work, compare it with desired standards, and seek feedback from peers and instructors. By doing so, students can develop a sense of what constitutes good performance in medical communication and what areas need improvement [ 32 ]. Boud, Lawson and Thompson [ 33 ] argue that students need to build a precise judgment about the quality of their work and calibrate these judgments in the light of evidence. This skill is particularly important for future medical professionals who will need to continually assess and improve their communication skills throughout their careers.

The theoretical framework presented above highlights the importance of authentic learning experiences in medical education. By drawing on the benefits of group work and panel discussions, university instructor-researchers aimed to provide medical students with a unique opportunity to engage with complex cases and develop their communication and collaboration skills. As noted by Suryanarayana [ 34 ], authentic learning experiences can lead to deeper learning and improved retention. Considering the advantages of group work in promoting collaborative problem-solving and language development, the instructor-researchers designed a panel discussion task that simulates real-world scenarios, where students can work together to analyze complex cases, share knowledge, and present their findings to a simulated audience.

While previous studies have highlighted the benefits of interactive learning experiences and critical thinking skills in medical education, a research gap remains in understanding how medical students perceive the relevance of PDs in ESP courses. This study aims to address this gap by investigating medical students’ perceptions of PD tasks in ESP courses and how these perceptions relate to their language proficiency, critical thinking skills, and ability to communicate effectively with diverse stakeholders in the medical field. This understanding can inform best practices in medical education, contributing to the development of more effective communication skills for future healthcare professionals worldwide [ 23 ]. The research questions guiding this study are:

What are the perceived advantages of PDs from the perspectives of panelists and the audience?

What are the perceived disadvantages of PDs from the perspectives of panelists and the audience?

How can PDs be improved for panelists and the audience based on the insights of ESP instructors?

Methodology

Aim and design.

For this study, a two-phase qualitative design was employed to gain an understanding of the advantages and disadvantages of PDs from the perspectives of both student panelists and the audience (Phase 1) and to acquire an in-depth understanding of the suggested strategies provided by experts to enhance PPs for future students (Phase 2).

Participants and context of the study

This study was conducted in two phases (Fig.  1 ) at Shiraz University of Medical Sciences (SUMS), Shiraz, Iran.

figure 1

Participants of the study in two phases

In the first phase, the student participants were 46 non-native speakers of English and international students who studied medicine at SUMS. Their demographic characteristics can be seen in Table  1 .

These students were purposefully selected because they were the only SUMS international students who had taken the ESP (English for Specific Purposes) course. The number of international students attending SUMS is indeed limited. Each year, a different batch of international students joins the university. They progress through a sequence of English courses, starting with General English 1 and 2, followed by the ESP course, and concluding with academic writing. At the time of data collection, the students included in the study were the only international students enrolled in the ESP course. This mandatory 3-unit course is designed to enhance their language and communication skills specifically tailored to their profession. As a part of the Medicine major curriculum, this course aims to improve their English language proficiency in areas relevant to medicine, such as understanding medical terminology, comprehending original medicine texts, discussing clinical cases, and communicating with patients, colleagues, and other healthcare professionals.

Throughout the course, students engage in various interactive activities, such as group discussions, role-playing exercises, and case studies, to develop their practical communication skills. In this course, medical students receive four marks out of 20 for their oral presentations, while the remaining marks are allocated to their written midterm and final exams. From the beginning of the course, they are briefed about PDs, and they are shown two YouTube-downloaded videos about PDs at medical conferences, a popular format for discussing and sharing knowledge, research findings, and expert opinions on various medical topics.

For the second phase of the study, a specific group of participants was purposefully selected. This group consisted of three faculty members from SUMS English department who had extensive experience attending numerous conferences at national and international levels, particularly in the medical field, as well as working as translators and interpreters in medical congresses. Over the course of ten years, they also gained considerable experience in PDs. They were invited to discuss strategies helpful for medical students with PDs.

Panel discussion activity design and implementation

When preparing for a PD session, medical students received comprehensive guidance on understanding the roles and responsibilities of each panel member. This guidance was aimed at ensuring that each participant was well-prepared and understood their specific role in the discussion.

Moderators should play a crucial role in steering the conversation. They are responsible for ensuring that all panelists have an opportunity to contribute and that the audience is engaged effectively. Specific tasks include preparing opening remarks, introducing panelists, and crafting transition questions to facilitate smooth topic transitions. The moderators should also manage the time to ensure balanced participation and encourage active audience involvement.

Panelists are expected to be subject matter experts who bring valuable insights and opinions to the discussion. They are advised to conduct thorough research on the topic and prepare concise talking points. Panelists are encouraged to draw from their medical knowledge and relevant experiences, share evidence-based information, and engage with other panelists’ points through active listening and thoughtful responses.

The audience plays an active role in the PDs. They are encouraged to participate by asking questions, sharing relevant experiences, and contributing to the dialogue. To facilitate this, students are advised to take notes during the discussion and think of questions or comments they can contribute during the Q&A segment.

For this special course, medical students were advised to choose topics either from their ESP textbook or consider current medical trends, emerging research, and pressing issues in their field. Examples included breast cancer, COVID-19, and controversies in gene therapy. The selection process involved brainstorming sessions and consultation with the course instructor to ensure relevance and appropriateness.

To accommodate the PD sessions within the course structure, students were allowed to start their PD sessions voluntarily from the second week. However, to maintain a balance between peer-led discussions and regular course content, only one PD was held weekly. This approach enabled the ESP lecturer to deliver comprehensive content while also allowing students to engage in these interactive sessions.

A basic time structure was suggested for each PD (Fig.  2 ):

figure 2

Time allocation for panel discussion stages in minutes

To ensure the smooth running of the course and maintain momentum, students were informed that they could cancel their PD session only once. In such cases, they were required to notify the lecturer and other students via the class Telegram channel to facilitate rescheduling and minimize disruptions. This provision was essential in promoting a sense of community among students and maintaining the course’s continuity.

Research tools and data collection

The study utilized various tools to gather and analyze data from participants and experts, ensuring a comprehensive understanding of the research topic.

Reflection papers

In Phase 1 of the study, 46 medical students detailed their perceptions of the advantages and disadvantages of panel discussions from dual perspectives: as panelists (presenters) and as audience members (peers).

Participants were given clear instructions and a 45-minute time frame to complete the reflection task. With approximately 80% of the international language students being native English speakers and the rest fluent in English, the researchers deemed this time allocation reasonable. The questions and instructions were straightforward, facilitating quick comprehension. It was estimated that native English speakers would need about 30 min to complete the task, while non-native speakers might require an extra 15 min for clarity and expression. This time frame aimed to allow students to respond thoughtfully without feeling rushed. Additionally, students could request more time if needed.

Focus group discussion

In phase 2 of the study, a focus group discussion was conducted with three expert participants. The purpose of the focus group was to gather insights from expert participants, specifically ESP (English for Specific Purposes) instructors, on how presentation dynamics can be improved for both panelists and the audience.

According to Colton and Covert [ 35 ], focus groups are useful for obtaining detailed input from experts. The appropriate size of a focus group is determined by the study’s scope and available resources [ 36 ]. Morgan [ 37 ] suggests that small focus groups are suitable for complex topics where specialist participants might feel frustrated if not allowed to express themselves fully.

The choice of a focus group over individual interviews was based on several factors. First, the exploratory nature of the study made focus groups ideal for interactive discussions, generating new ideas and in-depth insights [ 36 ]. Second, while focus groups usually involve larger groups, they can effectively accommodate a limited number of experts with extensive knowledge [ 37 ]. Third, the focus group format fostered a more open environment for idea exchange, allowing participants to engage dynamically [ 36 ]. Lastly, conducting a focus group was more time- and resource-efficient than scheduling three separate interviews [ 36 ].

Data analysis

The first phase of the study involved a thorough examination of the data related to the research inquiries using thematic analysis. This method was chosen for its effectiveness in uncovering latent patterns from a bottom-up perspective, facilitating a comprehensive understanding of complex educational phenomena [ 38 ]. The researchers first familiarized themselves with the data by repeatedly reviewing the reflection papers written by the medical students. Next, an initial round of coding was independently conducted to identify significant data segments and generate preliminary codes that reflected the students’ perceptions of the advantages and disadvantages of presentation dynamics PDs from both the presenter and audience viewpoints [ 38 ].

The analysis of the reflection papers began with the two researchers coding a subset of five papers independently, adhering to a structured qualitative coding protocol [ 39 ]. They convened afterward to compare their initial codes and address any discrepancies. Through discussion, they reached an agreement on the codes, which were then analyzed, organized into categories and themes, and the frequency of each code was recorded [ 38 ].

After coding the initial five papers, the researchers continued to code the remaining 41 reflection paper transcripts in batches of ten, meeting after each batch to review their coding, resolve any inconsistencies, and refine the coding framework as needed. This iterative process, characterized by independent coding, joint reviews, and consensus-building, helped the researchers establish a robust and reliable coding approach consistently applied to the complete dataset [ 40 ]. Once all 46 reflection paper transcripts were coded, the researchers conducted a final review and discussion to ensure accurate analysis. They extracted relevant excerpts corresponding to the identified themes and sub-themes from the transcripts to provide detailed explanations and support for their findings [ 38 ]. This multi-step approach of separate initial coding, collaborative review, and frequency analysis enhanced the credibility and transparency of the qualitative data analysis.

To ensure the trustworthiness of the data collected in this study, the researchers adhered to the Guba and Lincoln standards of scientific accuracy in qualitative research, which encompass credibility, confirmability, dependability, and transferability [ 41 ] (Table  2 ).

The analysis of the focus group data obtained from experts followed the same rigorous procedure applied to the student participants’ data. Thematic analysis was employed to examine the experts’ perspectives, maintaining consistency in the analytical approach across both phases of the study. The researchers familiarized themselves with the focus group transcript, conducted independent preliminary coding, and then collaboratively refined the codes. These codes were subsequently organized into categories and themes, with the frequency of each code recorded. The researchers engaged in thorough discussions to ensure agreement on the final themes and sub-themes. Relevant excerpts from the focus group transcript were extracted to provide rich, detailed explanations of each theme, thereby ensuring a comprehensive and accurate analysis of the experts’ insights.

1. What are the advantages of PDs from the perspective of panelists and the audience?

The analysis of the advantages of PDs from the perspectives of both panelists and audience members revealed several key themes and categories. Tables  2 and 3 present the frequency and percentage of responses for each code within these categories.

From the panelists’ perspective (Table  3 ), the overarching theme was “Personal and Professional Development.” The most frequently reported advantage was knowledge sharing (93.5%), followed closely by increased confidence (91.3%) and the importance of interaction in presentations (91.3%).

Notably, all categories within this theme had at least one code mentioned by over 80% of participants, indicating a broad range of perceived benefits. The category of “Effective teamwork and communication” was particularly prominent, with collaboration (89.1%) and knowledge sharing (93.5%) being among the most frequently cited advantages. This suggests that PDs are perceived as valuable tools for fostering interpersonal skills and collective learning. In the “Language mastery” category, increased confidence (91.3%) and better retention of key concepts (87.0%) were highlighted, indicating that PDs are seen as effective for both language and content learning.

The audience perspective (Table  4 ), encapsulated under the theme “Enriching Learning Experience,” showed similarly high frequencies across all categories.

The most frequently mentioned advantage was exposure to diverse speakers (93.5%), closely followed by the range of topics covered (91.3%) and increased audience interest (91.3%). The “Broadening perspectives” category was particularly rich, with all codes mentioned by over 70% of participants. This suggests that audience members perceive PDs as valuable opportunities for expanding their knowledge and viewpoints. In the “Language practice” category, the opportunity to practice language skills (89.1%) was the most frequently cited advantage, indicating that even as audience members, students perceive significant language learning benefits.

Comparing the two perspectives reveals several interesting patterns:

High overall engagement: Both panelists and audience members reported high frequencies across all categories, suggesting that PDs are perceived as beneficial regardless of the role played.

Language benefits: While panelists emphasized increased confidence (91.3%) and better retention of concepts (87.0%), audience members highlighted opportunities for language practice (89.1%). This indicates that PDs offer complementary language learning benefits for both roles.

Interactive learning: The importance of interaction was highly rated by panelists (91.3%), while increased audience interest was similarly valued by the audience (91.3%). This suggests that PDs are perceived as an engaging, interactive learning method from both perspectives.

Professional development: Panelists uniquely emphasized professional growth aspects such as experiential learning (84.8%) and real-world application (80.4%). These were not directly mirrored in the audience perspective, suggesting that active participation in PDs may offer additional professional development benefits.

Broadening horizons: Both groups highly valued the diversity aspect of PDs. Panelists appreciated diversity and open-mindedness (80.4%), while audience members valued diverse speakers (93.5%) and a range of topics (91.3%).

2. What are the disadvantages of PDs from the perspective of panelists and the audience?

The analysis of the disadvantages of panel discussions (PDs) from the perspectives of both panelists and audience members revealed several key themes and categories. Tables  4 and 5 present the frequency and percentage of responses for each code within these categories.

From the panelists’ perspective (Table  5 ), the theme “Drawbacks of PDs” was divided into two main categories: “Academic Workload Challenges” and “Coordination Challenges.” The most frequently reported disadvantage was long preparation (87.0%), followed by significant practice needed (82.6%) and the time-consuming nature of PDs (80.4%). These findings suggest that the primary concern for panelists is the additional workload that PDs impose on their already demanding academic schedules. The “Coordination Challenges” category, while less prominent than workload issues, still presented significant concerns. Diverse panel skills (78.3%) and finding suitable panelists (73.9%) were the most frequently cited issues in this category, indicating that team dynamics and composition are notable challenges for panelists.

The audience perspective (Table  6 ), encapsulated under the theme “Drawbacks of PDs,” was divided into two main categories: “Time-related Issues” and “Interaction and Engagement Issues.” In the “Time-related Issues” category, the most frequently mentioned disadvantage was the inefficient use of time (65.2%), followed by the perception of PDs as too long and boring (60.9%). Notably, 56.5% of respondents found PDs stressful due to overwhelming workload from other studies, and 52.2% considered them not very useful during exam time. The “Interaction and Engagement Issues” category revealed more diverse concerns. The most frequently mentioned disadvantage was the repetitive format (82.6%), followed by limited engagement with the audience (78.3%) and the perception of PDs as boring (73.9%). The audience also noted issues related to the panelists’ preparation and coordination, such as “Not practiced and natural” (67.4%) and “Coordination and Interaction Issues” (71.7%), suggesting that the challenges faced by panelists directly impact the audience’s experience.

Workload concerns: Both panelists and audience members highlighted time-related issues. For panelists, this manifested as long preparation times (87.0%) and difficulty balancing with other studies (76.1%). For the audience, it appeared as perceptions of inefficient use of time (65.2%) and stress due to overwhelming workload from other studies (56.5%).

Engagement issues: While panelists focused on preparation and coordination challenges, the audience emphasized the quality of the discussion and engagement. This suggests a potential mismatch between the efforts of panelists and the expectations of the audience.

Boredom and repetition: The audience frequently mentioned boredom (73.9%) and repetitive format (82.6%) as issues, which weren’t directly mirrored in the panelists’ responses. This indicates that while panelists may be focused on content preparation, the audience is more concerned with the delivery and variety of the presentation format.

Coordination challenges: Both groups noted coordination issues, but from different perspectives. Panelists struggled with team dynamics and finding suitable co-presenters, while the audience observed these challenges manifesting as unnatural or unpracticed presentations.

Academic pressure: Both groups acknowledged the strain PDs put on their academic lives, with panelists viewing it as a burden (65.2%) and the audience finding it less useful during exam times (52.2%).

3. How can PDs be improved for panelists and the audience from the experts’ point of view?

The presentation of data for this research question differs from the previous two due to the unique nature of the information gathered. Unlike the quantifiable student responses in earlier questions, this data stems from expert opinions and a reflection discussion session, focusing on qualitative recommendations for improvement rather than frequency of responses (Braun & Clarke, 2006). The complexity and interconnectedness of expert suggestions, coupled with the integration of supporting literature, necessitate a more narrative approach (Creswell & Poth, 2018). This format allows for a richer exploration of the context behind each recommendation and its potential implications (Patton, 2015). Furthermore, the exploratory nature of this question, aimed at generating ideas for improvement rather than measuring prevalence of opinions, is better served by a detailed, descriptive presentation (Merriam & Tisdell, 2016). This approach enables a more nuanced understanding of how PDs can be enhanced, aligning closely with the “how” nature of the research question and providing valuable insights for potential implementation (Yin, 2018).

The experts provided several suggestions to address the challenges faced by students in panel discussions (PDs) and improve the experience for both panelists and the audience. Their recommendations focused on six key areas: time management and workload, preparation and skill development, engagement and interactivity, technological integration, collaboration and communication, and institutional support.

To address the issue of time management and heavy workload, one expert suggested teaching students to “ break down the task to tackle the time-consuming nature of panel discussions and balance it with other studies .” This approach aims to help students manage the extensive preparation time required for PDs without compromising their other academic responsibilities. Another expert emphasized “ enhancing medical students’ abilities to prioritize tasks , allocate resources efficiently , and optimize their workflow to achieve their goals effectively .” These skills were seen as crucial not only for PD preparation but also for overall academic success and future professional practice.

Recognizing the challenges of long preparation times and the perception of PDs being burdensome, an expert proposed “ the implementation of interactive training sessions for panelists .” These sessions were suggested to enhance coordination skills and improve the ability of group presenters to engage with the audience effectively. The expert emphasized that such training could help students view PDs as valuable learning experiences rather than additional burdens, potentially increasing their motivation and engagement in the process.

To combat issues of limited engagement and perceived boredom, experts recommended increasing engagement opportunities for the audience through interactive elements like audience participation and group discussions. They suggested that this could transform PDs from passive listening experiences to active learning opportunities. One expert suggested “ optimizing time management and restructuring the format of panel discussions ” to address inefficiency during sessions. This restructuring could involve shorter presentation segments interspersed with interactive elements to maintain audience attention and engagement.

An innovative solution proposed by one expert was “ using ChatGPT to prepare for PDs by streamlining scenario presentation preparation and role allocation. ” The experts collectively discussed the potential of AI to assist medical students in reducing their workload and saving time in preparing scenario presentations and allocating roles in panel discussions. They noted that AI could help generate initial content drafts, suggest role distributions based on individual strengths, and even provide practice questions for panelists, significantly reducing preparation time while maintaining quality.

Two experts emphasized the importance of enhancing collaboration and communication among panelists to address issues related to diverse panel skills and coordination challenges. They suggested establishing clear communication channels and guidelines to improve coordination and ensure a cohesive presentation. This could involve creating structured team roles, setting clear expectations for each panelist, and implementing regular check-ins during the preparation process to ensure all team members are aligned and progressing.

All experts were in agreement that improving PDs would not be possible “ if nothing is done by the university administration to reduce the ESP class size for international students .” They believed that large class sizes in ESP or EFL classes could negatively influence group oral presentations, hindering language development and leading to uneven participation. The experts suggested that smaller class sizes would allow for more individualized attention, increased speaking opportunities for each student, and more effective feedback mechanisms, all of which are crucial for developing strong presentation skills in a second language.

Research question 1: what are the advantages of PDs from the perspective of panelists and the audience?

The results of this study reveal significant advantages of PDs for both panelists and audience members in the context of medical education. These findings align with and expand upon previous research in the field of educational presentations and language learning.

Personal and professional development for panelists

The high frequency of reported benefits in the “Personal and Professional Development” theme for panelists aligns with several previous studies. The emphasis on language mastery, particularly increased confidence (91.3%) and better retention of key concepts (87.0%), supports the findings of Hartono, Mujiyanto [ 42 ], Gedamu and Gezahegn [ 15 ], Li [ 43 ], who all highlighted the importance of language practice in English oral presentations. However, our results show a more comprehensive range of benefits, including professional growth aspects like experiential learning (84.8%) and real-world application (80.4%), which were not as prominently featured in these earlier studies.

Interestingly, our findings partially contrast with Chou [ 44 ] study, which found that while group oral presentations had the greatest influence on improving students’ speaking ability, individual presentations led to more frequent use of metacognitive, retrieval, and rehearsal strategies. Our results suggest that PDs, despite being group activities, still provide significant benefits in these areas, possibly due to the collaborative nature of preparation and the individual responsibility each panelist bears. The high frequency of knowledge sharing (93.5%) and collaboration (89.1%) in our study supports Harris, Jones and Huffman [ 45 ] emphasis on the importance of group dynamics and varied perspectives in educational settings. However, our study provides more quantitative evidence for these benefits in the specific context of PDs.

Enriching learning experience for the audience

The audience perspective in our study reveals a rich learning experience, with high frequencies across all categories. This aligns with Agustina [ 46 ] findings in business English classes, where presentations led to improvements in all four language skills. However, our study extends these findings by demonstrating that even passive participation as an audience member can lead to significant perceived benefits in language practice (89.1%) and broadening perspectives (93.5% for diverse speakers). The high value placed on diverse speakers (93.5%) and range of topics (91.3%) by the audience supports the notion of PDs as a tool for expanding knowledge and viewpoints. This aligns with the concept of situated learning experiences leading to deeper understanding in EFL classes, as suggested by Li [ 43 ] and others [ 18 , 31 ]. However, our study provides more specific evidence for how this occurs in the context of PDs.

Interactive learning and engagement

Both panelists and audience members in our study highly valued the interactive aspects of PDs, with the importance of interaction rated at 91.3% by panelists and increased audience interest at 91.3% by the audience. This strong emphasis on interactivity aligns with Azizi and Farid Khafaga [ 19 ] study on the benefits of dynamic assessment and dialogic learning contexts. However, our study provides more detailed insights into how this interactivity is perceived and valued by both presenters and audience members in PDs.

Professional growth and real-world application

The emphasis on professional growth through PDs, particularly for panelists, supports Li’s [ 43 ] assertion about the power of oral presentations as situated learning experiences. Our findings provide more specific evidence for how PDs contribute to professional development, with high frequencies reported for experiential learning (84.8%) and real-world application (80.4%). This suggests that PDs may be particularly effective in bridging the gap between academic learning and professional practice in medical education.

Research question 2: what are the disadvantages of pds from the perspective of panelists and the audience?

Academic workload challenges for panelists.

The high frequency of reported challenges in the “Academic Workload Challenges” category for panelists aligns with several previous studies in medical education [ 47 , 48 , 49 ]. The emphasis on long preparation (87.0%), significant practice needed (82.6%), and the time-consuming nature of PDs (80.4%) supports the findings of Johnson et al. [ 24 ], who noted that while learners appreciate debate-style journal clubs in health professional education, they require additional time commitment. This is further corroborated by Nowak, Speed and Vuk [ 50 ], who found that intensive learning activities in medical education, while beneficial, can be time-consuming for students.

Perceived value of pds relative to time investment

While a significant portion of the audience (65.2%) perceived PDs as an inefficient use of time, the high frequency of engagement-related concerns (82.6% for repetitive format, 78.3% for limited engagement) suggests that the perceived lack of value may be more closely tied to the quality of the experience rather than just the time investment. This aligns with Dyhrberg O’Neill [ 27 ] findings on debate-based oral exams, where students perceived value despite the time-intensive nature of the activity. However, our results indicate a more pronounced concern about the return on time investment in PDs. This discrepancy might be addressed through innovative approaches to PD design and implementation, such as those proposed by Almazyad et al. [ 22 ], who suggested using AI tools to enhance expert panel discussions and potentially improve efficiency.

Coordination challenges for panelists

The challenges related to coordination in medical education, such as diverse panel skills (78.3%) and finding suitable panelists (73.9%), align with previous research on teamwork in higher education [ 21 ]. Our findings support the concept of the free-rider effect discussed by Hall and Buzwell [ 21 ], who explored reasons for non-contribution in group projects beyond social loafing. This is further elaborated by Mehmood, Memon and Ali [ 51 ], who proposed that individuals may not contribute their fair share due to various factors including poor communication skills or language barriers, which is particularly relevant in medical education where clear communication is crucial [ 52 ]. Comparing our results to other collaborative learning contexts in medical education, Rodríguez-Sedano, Conde and Fernández-Llamas [ 53 ] measured teamwork competence development in a multidisciplinary project-based learning environment. They found that while teamwork skills improved over time, initial coordination challenges were significant. This aligns with our findings on the difficulties of coordinating diverse panel skills and opinions in medical education settings.

Our results also resonate with Chou’s [ 44 ] study comparing group and individual oral presentations, which found that group presenters often had a limited understanding of the overall content. This is supported by Wilson, Ho and Brookes [ 54 ], who examined student perceptions of teamwork in undergraduate science degrees, highlighting the challenges and benefits of collaborative work, which are equally applicable in medical education [ 52 ].

Quality of discussions and perception for the audience

The audience perspective in our study reveals significant concerns about the quality and engagement of PDs in medical education. The high frequency of issues such as repetitive format (82.6%) and limited engagement with the audience (78.3%) aligns with Parmar and Bickmore [ 55 ] findings on the importance of addressing individual audience members and gathering feedback. This is further supported by Nurakhir et al. [ 25 ], who explored students’ views on classroom debates as a strategy to enhance critical thinking and oral communication skills in nursing education, which shares similarities with medical education. Comparing our results to other interactive learning methods in medical education, Jones et al. [ 26 ] reviewed the use of journal clubs and book clubs in pharmacy education. They found that while these methods enhanced engagement, they also faced challenges in maintaining student interest over time, similar to the boredom issues reported in our study of PDs in medical education. The perception of PDs as boring (73.9%) and not very useful during exam time (52.2%) supports previous research on the stress and pressure experienced by medical students [ 48 , 49 ]. Grieve et al. [ 20 ] specifically examined student fears of oral presentations and public speaking in higher education, which provides context for the anxiety and disengagement observed in our study of medical education. Interestingly, Bhuvaneshwari et al. [ 23 ] found positive impacts of panel discussions in educating medical students on specific modules. This contrasts with our findings and suggests that the effectiveness of PDs in medical education may vary depending on the specific context and implementation.

Comparative analysis and future directions

Our study provides a unique comparative analysis of the challenges faced by both panelists and audience members in medical education. The alignment of concerns around workload and time management between the two groups suggests that these are overarching issues in the implementation of PDs in medical curricula. This is consistent with the findings of Pasandín et al. [ 56 ], who examined cooperative oral presentations in higher education and their impact on both technical and soft skills, which are crucial in medical education [ 52 ]. The mismatch between panelist efforts and audience expectations revealed in our study is a novel finding that warrants further investigation in medical education. This disparity could be related to the self-efficacy beliefs of presenters, as explored by Gedamu and Gezahegn [ 15 ] in their study of TEFL trainees’ attitudes towards academic oral presentations, which may have parallels in medical education. Looking forward, innovative approaches could address some of the challenges identified in medical education. Almazyad et al. [ 22 ] proposed using AI tools like ChatGPT to enhance expert panel discussions in pediatric palliative care, which could potentially address some of the preparation and engagement issues identified in our study of medical education. Additionally, Ragupathi and Lee [ 57 ] discussed the role of rubrics in higher education, which could provide clearer expectations and feedback for both panelists and audience members in PDs within medical education.

Research question 3: how can PDs be improved for panelists and the audience from the experts’ point of view?

The expert suggestions for improving PDs address several key challenges identified in previous research on academic presentations and student workload management. These recommendations align with current trends in educational technology and pedagogical approaches, while also considering the unique needs of medical students.

The emphasis on time management and workload reduction strategies echoes findings from previous studies on medical student stress and academic performance. Nowak, Speed and Vuk [ 50 ] found that medical students often struggle with the fast-paced nature of their courses, which can lead to reduced motivation and superficial learning approaches. The experts’ suggestions for task breakdown and prioritization align with Rabbi and Islam [ 58 ] recommendations for reducing workload stress through effective assignment prioritization. Additionally, Popa et al. [ 59 ] highlight the importance of acceptance and planning in stress management for medical students, supporting the experts’ focus on these areas.

The proposed implementation of interactive training sessions for panelists addresses the need for enhanced presentation skills in professional contexts, a concern highlighted by several researchers [ 17 , 60 ]. This aligns with Grieve et al. [ 20 ] findings on student fears of oral presentations and public speaking in higher education, emphasizing the need for targeted training. The focus on interactive elements and audience engagement also reflects current trends in active learning pedagogies, as demonstrated by Pasandín et al. [ 56 ] in their study on cooperative oral presentations in engineering education.

The innovative suggestion to use AI tools like ChatGPT for PD preparation represents a novel approach to leveraging technology in education. This aligns with recent research on the potential of AI in scientific research, such as the study by Almazyad et al. [ 22 ], which highlighted the benefits of AI in supporting various educational tasks. However, it is important to consider potential ethical implications and ensure that AI use complements rather than replaces critical thinking and creativity.

The experts’ emphasis on enhancing collaboration and communication among panelists addresses issues identified in previous research on teamwork in higher education. Rodríguez-Sedano, Conde and Fernández-Llamas [ 53 ] noted the importance of measuring teamwork competence development in project-based learning environments. The suggested strategies for improving coordination align with best practices in collaborative learning, as demonstrated by Romero-Yesa et al. [ 61 ] in their qualitative assessment of challenge-based learning and teamwork in electronics programs.

The unanimous agreement on the need to reduce ESP class sizes for international students reflects ongoing concerns about the impact of large classes on language learning and student engagement. This aligns with research by Li [ 3 ] on issues in developing EFL learners’ oral English communication skills. Bosco et al. [ 62 ] further highlight the challenges of teaching and learning ESP in mixed classes, supporting the experts’ recommendation for smaller class sizes. Qiao, Xu and bin Ahmad [ 63 ] also emphasize the implementation challenges for ESP formative assessment in large classes, further justifying the need for reduced class sizes.

These expert recommendations provide a comprehensive approach to improving PDs, addressing not only the immediate challenges of preparation and delivery but also broader issues of student engagement, workload management, and institutional support. By implementing these suggestions, universities could potentially transform PDs from perceived burdens into valuable learning experiences that enhance both academic and professional skills. This aligns with Kho and Ting [ 64 ] systematic review on overcoming oral presentation anxiety among tertiary ESL/EFL students, which emphasizes the importance of addressing both challenges and strategies in improving presentation skills.

This study has shed light on the complex challenges associated with PDs in medical education, revealing a nuanced interplay between the experiences of panelists and audience members. The findings underscore the need for a holistic approach to implementing PDs that addresses both the academic workload concerns and the quality of engagement.

Our findings both support and extend previous research on the challenges of oral presentations and group work in medical education settings. The high frequencies of perceived challenges across multiple categories for both panelists and audience members suggest that while PDs may offer benefits, they also present significant obstacles that need to be addressed in medical education. These results highlight the need for careful consideration in the implementation of PDs in medical education, with particular attention to workload management, coordination strategies, and audience engagement techniques. Future research could focus on developing and testing interventions to mitigate these challenges while preserving the potential benefits of PDs in medical education.

Moving forward, medical educators should consider innovative approaches to mitigate these challenges. This may include:

Integrating time management and stress coping strategies into the PD preparation process [ 59 ].

Exploring the use of AI tools to streamline preparation and enhance engagement [ 22 ].

Developing clear rubrics and expectations for both panelists and audience members [ 57 ].

Incorporating interactive elements to maintain audience interest and participation [ 25 ].

Limitations and future research

One limitation of this study is that it focused on a specific population of medical students, which may limit the generalizability of the findings to other student populations. Additionally, the study relied on self-report data from panelists and audience members, which may introduce bias and affect the validity of the results. Future research could explore the effectiveness of PDs in different educational contexts and student populations to provide a more comprehensive understanding of the benefits and challenges of panel discussions.

Future research should focus on evaluating the effectiveness of these interventions and exploring how PDs can be tailored to the unique demands of medical education. By addressing the identified challenges, PDs have the potential to become a more valuable and engaging component of medical curricula, fostering both academic and professional development. Ultimately, the goal should be to transform PDs from perceived burdens into opportunities for meaningful learning and skill development, aligning with the evolving needs of medical education in the 21st century.

Future research could also examine the long-term impact of PDs on panelists’ language skills, teamwork, and communication abilities. Additionally, exploring the effectiveness of different training methods and tools, such as AI technology, in improving coordination skills and reducing workload stress for panelists could provide valuable insights for educators and administrators. Further research could also investigate the role of class size and audience engagement in enhancing the overall effectiveness of PDs in higher education settings. By addressing these gaps in the literature, future research can contribute to the ongoing development and improvement of PDs as a valuable learning tool for students in higher education.

However, it is important to note that implementing these changes may require significant institutional resources and a shift in pedagogical approaches. Future research could focus on piloting these recommendations and evaluating their effectiveness in improving student outcomes and experiences with PDs.

Data availability

We confirm that the data supporting the findings are available within this article. Raw data supporting this study’s findings are available from the corresponding author, upon request.

Abbreviations

Artificial Intelligence

English as a Foreign Language

English for Specific Purposes

Panel Discussion

Shiraz University of Medical Sciences

Harden RM, Laidlaw JM. Essential skills for a medical teacher: an introduction to teaching and learning in medicine. Elsevier Health Sciences; 2020.

Ibrahim Mohamed O, Al Jadaan DO. English for Specific purposes (Esp) Needs Analysis for Health Sciences students: a cross-sectional study at a University in the UAE. English for Specific purposes (Esp) Needs Analysis for Health Sciences Students: A Cross-Sectional Study at a University in the UAE.

Li Y, Heron M. English for general academic purposes or English for specific purposes? Language learning needs of medical students at a Chinese university. Theory Pract Lang Stud. 2021;11(6):621–31.

Article   Google Scholar  

Chan SMH, Mamat NH, Nadarajah VD. Mind your language: the importance of English language skills in an International Medical Programme (IMP). BMC Med Educ. 2022;22(1):405.

Cortez Faustino BS, Ticas de Córdova CK, de la Hernández DI. Teaching English for specific purposes: contents and methodologies that could be implemented in the English for Medical purposes (EMP) course for the doctor of Medicine Major at the University of El Salvador. Universidad de El Salvador; 2022.

BENYAMINA E-Z BOUKAHLAH. Enhancing Specialty Language learning through content-based instruction: students of Paramedical Institute of Tiaret as a case study. Université IBN KHALDOUN-Tiaret; 2023.

Prikazchikov M. Medical English course for russian-speaking dentists: a needs analysis study. Iowa State University; 2024.

Kim C, Lee SY, Park S-H. Is Korea Ready to be a key player in the Medical Tourism Industry? An English Education Perspective. Iran J Public Health. 2020;49(2):267–73.

Google Scholar  

Syakur A, Zainuddin H, Hasan MA. Needs analysis English for specific purposes (esp) for vocational pharmacy students. Budapest International Research and Critics in Linguistics and Education (BirLE). Journal. 2020;3(2):724–33.

Chan S, Taylor L. Comparing writing proficiency assessments used in professional medical registration: a methodology to inform policy and practice. Assess Writ. 2020;46:100493.

Hyland K, Jiang FK. Delivering relevance: the emergence of ESP as a discipline. Engl Specif Purp. 2021;64:13–25.

Maftuna B. The role of English in ESP. Am J Adv Sci Res. 2024;1(2):1–5.

LEON LI, HUMANIZING THE FOREIGN LANGUAGE. COURSE: NEW TEACHING METHODS FOR MEDICAL STUDENTS. Language, Culture and Change. 2022:243.

Dahm MR, Yates L. Rapport, empathy and professional identity: Some challenges for international medical graduates speaking English as a second or foreign language. Multilingual Healthcare: A Global View on Communicative Challenges. 2020:209 – 34.

Gedamu AD, Gezahegn TH. TEFL trainees’ attitude to and self-efficacy beliefs of academic oral presentation. Cogent Educ. 2023;10(1):2163087.

Saliu B, Hajrullai H. Best practices in the English for specific purpose classes at the language center. Procedia-Social Behav Sci. 2016;232:745–9.

Clokie TL, Fourie E. Graduate employability and communication competence: are undergraduates taught relevant skills? Bus Prof Communication Q. 2016;79(4):442–63.

Hartono H, Mujiyanto J, Fitriati SW, Sakhiyya Z, Lotfie MM, Maharani MM. English Presentation Self-Efficacy Development of Indonesian ESP students: the effects of Individual versus Group Presentation tasks. Int J Lang Educ. 2023;7(3):361–76.

Azizi Z, Farid Khafaga A. Scaffolding via Group-dynamic Assessment to positively affect motivation, learning anxiety, and willingness to Communicate: a Case Study of High School Students. J Psycholinguist Res. 2023;52(3):831–51.

Grieve R, Woodley J, Hunt SE, McKay A. Student fears of oral presentations and public speaking in higher education: a qualitative survey. J Furth High Educ. 2021;45(9):1281–93.

Hall D, Buzwell S. The problem of free-riding in group projects: looking beyond social loafing as reason for non-contribution. Act Learn High Educ. 2013;14(1):37–49.

Almazyad M, Aljofan F, Abouammoh NA, Muaygil R, Malki KH, Aljamaan F, et al. Enhancing Expert Panel discussions in Pediatric Palliative Care: innovative scenario development and summarization with ChatGPT-4. Cureus. 2023;15(4):e38249.

Bhuvaneshwari S, Rashmi R, Deepika K, Anirudh VM, Vijayamathy A, Rekha S, Kathiravan R. Impact of panel discussion in educating AETCOM First Module among Undergraduate Medical Students. Latin Am J Pharmacy: Life Sci J. 2023;42(6):407–12.

Johnson BR, Logan LD, Darley A, Stone RH, Smith SE, Osae SP, et al. A scoping review for Debate-Style Journal Clubs in Health Professional Education. Am J Pharm Educ. 2023;87(6):100064.

Nurakhir A, Palupi FN, Langeveld C, Nurmalia D. Students’ views of classroom debates as a strategy to enhance critical thinking and oral communication skills. 2020.

Jones EP, Nelson NR, Thorpe CT, Rodgers PT, Carlson RB. Use of journal clubs and book clubs in pharmacy education: a scoping review. Currents Pharm Teach Learn. 2022;14(1):110–9.

Dyhrberg O’Neill L. Assessment of student debates in support of active learning? Students’ perceptions of a debate-based oral final exam. Act Learn High Educ. 2024.

Dyment JE, O’Connell TS. Assessing the quality of reflection in student journals: a review of the research. Teach High Educ. 2011;16(1):81–97.

Villarroel V, Bloxham S, Bruna D, Bruna C, Herrera-Seda C. Authentic assessment: creating a blueprint for course design. Assess Evaluation High Educ. 2018;43(5):840–54.

Schultz M, Young K, Gunning K, Harvey T. Defining and measuring authentic assessment: a case study in the context of tertiary science. Assess Evaluation High Educ. 2022;47(1):77–94.

Sundrarajun C, Kiely R. The oral presentation as a context for learning and assessment. Innov Lang Learn Teach. 2010;4(2):101–17.

Wyatt-Smith C, Adie L. The development of students’ evaluative expertise: enabling conditions for integrating criteria into pedagogic practice. J Curriculum Stud. 2021;53(4):399–419.

Boud D, Lawson R, Thompson DG. The calibration of student judgement through self-assessment: disruptive effects of assessment patterns. High Educ Res Dev. 2015;34(1):45–59.

A. S. Enhancing Meaningful Learning experiences through Comprehension and Retention by students. Twentyfirst Century Publications Patiala. 2023;49.

Colton D, Covert RW. Designing and constructing instruments for social research and evaluation. Wiley; 2007.

Krueger RA, Casey MA. Focus group interviewing. Handbook of practical program evaluation. 2015:506 – 34.

Morgan DL. Handbook of interview research: Context and method. Oaks, CA, USA: Sage Publications Thousand; 2002.

Braun V, Clarke V. Conceptual and design thinking for thematic analysis. Qualitative Psychol. 2022;9(1):3.

Elliott V. Thinking about the coding process in qualitative data analysis. Qualitative Rep. 2018;23(11).

Syed M, Nelson SC. Guidelines for establishing reliability when coding narrative data. Emerg Adulthood. 2015;3(6):375–87.

Lincoln Y. Naturalistic inquiry: Sage; 1985.

Hartono H, Mujiyanto J, Fitriati SW, Sakhiyya Z, Lotfie MM, Maharani MM. English presentation self-efficacy development of Indonesian ESP students: the effects of Individual versus Group Presentation tasks. Int J Lang Educ. 2023;7(3).

Li X. Teaching English oral presentations as a situated task in an EFL classroom: a quasi-experimental study of the effect of video-assisted self-reflection. Revista Signos. 2018;51(98):359–81.

Chou M-h. The influence of learner strategies on oral presentations: a comparison between group and individual performance. Engl Specif Purp. 2011;30(4):272–85.

Harris A, Jones M, Huffman J. Teachers leading educational reform. The power of. 2017.

Agustina L. Stimulating students to speak up through presentation in business English class. J Appl Stud Lang. 2019;3(1):21–8.

Babal JC, Abraham O, Webber S, Watterson T, Moua P, Chen J. Student pharmacist perspectives on factors that influence wellbeing during pharmacy school. Am J Pharm Educ. 2020;84(9):ajpe7831.

Moir F, Yielder J, Sanson J, Chen Y. Depression in medical students: current insights. Adv Med Educ Pract. 2018;323:33.

Pavlinac Dodig I, Lusic Kalcina L, Demirovic S, Pecotic R, Valic M, Dogas Z. Sleep and lifestyle habits of medical and non-medical students during the COVID-19 lockdown. Behav Sci. 2023;13(5):407.

Nowak G, Speed O, Vuk J. Microlearning activities improve student comprehension of difficult concepts and performance in a biochemistry course. Currents Pharm Teach Learn. 2023;15(1):69–78.

Mehmood K, Memon S, Ali F. Language barriers to Effective Communication in speaking English: a phenomenological study of Pakistan International cricketers. Pakistan Lang Humanit Rev. 2024;8(1):107–14.

Buelow JR, Downs D, Jorgensen K, Karges JR, Nelson D. Building interdisciplinary teamwork among allied health students through live clinical case simulations. J Allied Health. 2008;37(2):e109–23.

Rodríguez-Sedano FJ, Conde M, Fernández-Llamas C, editors. Measuring teamwork competence development in a multidisciplinary project based learning environment. Learning and Collaboration Technologies Design, Development and Technological Innovation: 5th International Conference, LCT 2018, Held as Part of HCI International 2018, Las Vegas, NV, USA, July 15–20, 2018, Proceedings, Part I 5; 2018: Springer.

Wilson L, Ho S, Brookes RH. Student perceptions of teamwork within assessment tasks in undergraduate science degrees. Assess Evaluation High Educ. 2018;43(5):786–99.

Parmar D, Bickmore T. Making it personal: addressing individual audience members in oral presentations using augmented reality. Proc ACM Interact Mob Wearable Ubiquitous Technol. 2020;4(2):1–22.

Pasandín AMR, Pérez IP, Iglesias PO, Díaz JJG. Cooperative oral presentations in higher education to enhance technical and soft skills in engineering students. Int J Continuing Eng Educ Life Long Learn. 2023;33(6):592–607.

Ragupathi K, Lee A. Beyond fairness and consistency in grading: The role of rubrics in higher education. Diversity and inclusion in global higher education: Lessons from across Asia. 2020:73–95.

Rabbi MF, Islam MS. The effect of academic stress and Mental anxiety among the students of Khulna University. Edukasiana: Jurnal Inovasi Pendidikan. 2024;3(3):280–99.

Popa CO, Schenk A, Rus A, Szasz S, Suciu N, Szabo DA, Cojocaru C. The role of acceptance and planning in stress management for medical students. Acta Marisiensis-Seria Med. 2020;66(3):101–5.

Christianson M, Payne S. Helping students develop skills for better presentations: Using the 20x20 format for presentation training. 語学研究. 2012;26:1–15.

Romero-Yesa S, Fonseca D, Aláez M, Amo-Filva D. Qualitative assessment of a challenge-based learning and teamwork applied in electronics program. Heliyon. 2023;9(12).

Bosco TJ, Gabriel B, Florence M, Gilbert N. Towards effective teaching and learning ESP in mixed classes: students’ interest, challenges and remedies. Int J Engl Literature Social Sci. 2020;5(2):506–16.

Qiao L, Xu Y, bin Ahmad N, An Analysis Of Implementation Challenges For English, For Specific Purposes (Esp) Formative Assessment Via Blended Learning Mode At Chinese Vocational Polytechnics. Journal Of Digital Education, Communication, And Arts (DECA). 2023;6(02):64–76.

Kho MG-W, Ting S-H. Overcoming oral presentation anxiety: a systematic review of Tertiary ESL/EFL Students’ challenges and strategies. Qeios. 2023.

Download references

We confirm that no funding was received for this work.

Author information

Authors and affiliations.

Department of English Language, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran

Elham Nasiri & Laleh Khojasteh

You can also search for this author in PubMed   Google Scholar

Contributions

L.KH was involved in writing the proposal, reviewing the text, analyzing the data, and writing the manuscript. E. N was involvedin designing the research and collecting and analyzing the data. Both authors have reviewed and approved the final version of the manuscript.

Corresponding author

Correspondence to Laleh Khojasteh .

Ethics declarations

Ethics approval and consent to participate.

Our study, entitled “Evaluating Panel Discussions in ESP Classes: An Exploration of International Medical Students’ and ESP Instructors’ Perspectives through Qualitative Research,” was reviewed by the Institutional Review Board (IRB) of the School of Paramedical Sciences, Shiraz University of Medical Sciences (SUMS). The IRB reviewed the study on August 14th, 2024, and determined that formal ethics approval or a reference number was not required. This decision was based on the fact that the research posed minimal risk to participants and focused solely on their educational experiences without involving any intervention or the collection of sensitive personal data.

Consent for publication

Not Applicable.

Competing interests

We confirm that there are no known conflicts of interest associated with this publication and that this work did not receive any financial support.

Additional information

Publisher’s note.

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/ .

Reprints and permissions

About this article

Cite this article.

Nasiri, E., Khojasteh, L. Evaluating panel discussions in ESP classes: an exploration of international medical students’ and ESP instructors’ perspectives through qualitative research. BMC Med Educ 24 , 925 (2024). https://doi.org/10.1186/s12909-024-05911-3

Download citation

Received : 08 May 2024

Accepted : 14 August 2024

Published : 26 August 2024

DOI : https://doi.org/10.1186/s12909-024-05911-3

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Group oral presentations
  • Medical students
  • Panel discussions
  • ESP courses

BMC Medical Education

ISSN: 1472-6920

what are the limitations of critical thinking

IMAGES

  1. 7 Barriers to Critical Thinking and How to Destroy Them

    what are the limitations of critical thinking

  2. Barriers to Critical Thinking

    what are the limitations of critical thinking

  3. Top 7 Barriers to Critical Thinking: Examples and Solutions

    what are the limitations of critical thinking

  4. Critical Thinking Skills

    what are the limitations of critical thinking

  5. Critical Thinking Definition, Skills, and Examples

    what are the limitations of critical thinking

  6. Critical Thinking Checklist part 7 DOES IT STATE ITS OWN LIMITATIONS

    what are the limitations of critical thinking

VIDEO

  1. Critical thinking and deferring to experts

  2. Leaving Alignable?? : Generation Y (Millennials) born from 1980 to 1994; Generation Z from 1995 t…

  3. True Wisdom: Embracing Humility

  4. Transform Your Reality: Choosing Imagination Over Hallucination

  5. The Education Trap

  6. Evidence-Based Evaluation of Alternative Medicine Part 1

COMMENTS

  1. The Disadvantages of Critical Thinking: Don't Overthink It

    1. Difficulty in Decision-Making. Difficulty in Decision-Making. One of the biggest disadvantages of critical thinking is that it can be difficult to make decisions. Because critical thinkers are constantly analyzing and evaluating data to draw conclusions, this can be a time-consuming process.

  2. 12 Common Barriers To Critical Thinking (And How To Overcome Them)

    6. Egocentric Thinking. Egocentric thinking is also one of the main barriers to critical thinking. It occurs when a person examines everything through a "me" lens. Evaluating something properly requires an individual to understand and consider other people's perspectives, plights, goals, input, etc. 7. Assumptions.

  3. An Evaluative Review of Barriers to Critical Thinking in Educational

    1. Introduction. Critical thinking (CT) is a metacognitive process—consisting of a number of skills and dispositions—that, through purposeful, self-regulatory reflective judgment, increases the chances of producing a logical solution to a problem or a valid conclusion to an argument (Dwyer 2017, 2020; Dwyer et al. 2012, 2014, 2015, 2016; Dwyer and Walsh 2019; Quinn et al. 2020).

  4. The Advantages & Disadvantages of Critical Thinking

    Critical thinking is, at heart, questioning what you are told instead of taking it at face value. It is evaluating information in a rational framework where facts and reason line up to support or fail to support assertions. Critical thinking skills are highly sought, and have a number of benefits in life. However, ...

  5. 5 Barriers to Critical Thinking

    2. Lack of Knowledge. CT skills are key components of what CT is, and in order to conduct it, one must know how to use these skills. Not knowing the skills of CT—analysis, evaluation, and ...

  6. Pros and Cons of Critical Thinking

    Critical thinking involves the objective analysis and evaluation of information to form a well-reasoned judgment.At its core, critical thinking is the ability to scrutinize facts, question underlying assumptions, and explore various perspectives before arriving at a conclusion. This process is integral in making informed decisions, as it requires individuals to weigh options thoroughly and ...

  7. Advantages and Disadvantages of Critical Thinking In Education

    The following are the advantages and disadvantages of Critical Thinking In Education: Advantages. Disadvantages. Enhances problem-solving skills. Can hinder quick decision-making. Promotes independent thinking. May lead to overthinking. Encourages open-mindedness. Requires extensive time and resources.

  8. Critical Thinking

    Critical thinking is a widely accepted educational goal. Its definition is contested, but the competing definitions can be understood as differing conceptions of the same basic concept: careful thinking directed to a goal. ... The Limitations of Standardised Assessment in Critical Thinking", Assessment & Evaluation in Higher Education, 44(5 ...

  9. Are We Getting Worse at Critical Thinking?

    Critically thinking about the effects of increasing information. What the reader postulated as a potential cause for all of this was that people are perhaps becoming less and less able to filter ...

  10. Critical Thinking

    Critical thinking is the discipline of rigorously and skillfully using information, experience, observation, and reasoning to guide your decisions, actions, and beliefs. You'll need to actively question every step of your thinking process to do it well. Collecting, analyzing and evaluating information is an important skill in life, and a highly ...

  11. How to Identify and Remove Barriers to Critical Thinking

    The critical thinking process requires being aware of personal biases that affect your ability to rationally analyze a situation and make sound decisions. Allostatic Overload. Research shows that persistent stress causes a phenomenon known as allostatic overload. It's serious business, affecting your attention span, memory, mood, and even ...

  12. 10 Barriers to Critical Thinking & Tips to Overcome Them

    2.Perceived Inability to Teach It. The idea that you're not capable of teaching such a thing may just become a self-fulfilling prophecy. If you believe you can't teach critical thinking, you may not even try. If you do try, you may be plagued by self-doubt that shakes your confidence. If you've ever thought ….

  13. What Is Critical Thinking?

    Critical thinking is the ability to effectively analyze information and form a judgment. To think critically, you must be aware of your own biases and assumptions when encountering information, and apply consistent standards when evaluating sources. Critical thinking skills help you to: Identify credible sources. Evaluate and respond to arguments.

  14. What Are Critical Thinking Skills and Why Are They Important?

    According to the University of the People in California, having critical thinking skills is important because they are [ 1 ]: Universal. Crucial for the economy. Essential for improving language and presentation skills. Very helpful in promoting creativity. Important for self-reflection.

  15. CRITICAL THINKING: CHALLENGES, POSSIBILITIES, AND PURPOSE

    Critical thinking has traditionally been conceptualized from an internalist point of view, which locates its validity in rules meant to fit the contents of an individual consciousness.

  16. Succeeding in postgraduate study: Session 8: 1

    1 Barriers to critical thinking. First, let's briefly examine some barriers to critical thinking. Take another look at the visual summary below on critical and analytical thinking, which was introduced at the end of Session 3. Note the warning sign next to the 'black pit' to the lower right of this figure. Figure 1A visual summary of ...

  17. Bridging critical thinking and transformative learning: The role of

    In recent decades, approaches to critical thinking have generally taken a practical turn, pivoting away from more abstract accounts - such as emphasizing the logical relations that hold between statements (Ennis, 1964) - and moving toward an emphasis on belief and action.According to the definition that Robert Ennis (2018) has been advocating for the last few decades, critical thinking is ...

  18. Social Barriers to Critical Thinking

    I recently wrote a research paper on cognitive barriers to critical thinking (CT), discussing flaws in thinking associated with intuitive judgment, emotion, bias, and epistemological ...

  19. Critical thinking

    Critical thinking is characterized by a broad set of related skills usually including the abilities to. break down a problem into its constituent parts to reveal its underlying logic and assumptions. recognize and account for one's own biases in judgment and experience.

  20. Our kids are missing out on critical thinking

    Critical thinking is more essential today than ever. The world faces numerous challenges that warrant urgent critical reflection - from climate change and wealth inequality to ongoing conflicts and resource shortages. These crises are compounded by a growing crisis of confidence, marked by the ...

  21. Transformative Learning: Flipped Classroom and Its Impact on Writing

    Analyzing students' responses to the California Critical Thinking Level Inventory found that the experimental group outperformed the control group, indicating a substantial boost in critical thinking abilities in those who took part in the experiment. ... Limitations. The present study had certain limitations, including a restricted number of ...

  22. Is Critical Thinking Overrated? Disadvantages Of Critical Thinking

    Critical thinking/problem solving was rated 4.62 on a scale of 5. Teamwork/collaboration and professionalism/work ethic ranked just below with scores of 4.56 and 4.46, respectively. The hybrid combination of critical thinking and emotional intelligence. So, while critical thinking is mainly a rational process, humans can never be 100% rational.

  23. 5 Barriers to Critical Thinking

    Of course, these are not the only barriers to CT; rather, they are five that may have the most impact on how one applies CT. 1. Trusting Your Gut. Trust your gut is a piece of advice often thrown ...

  24. 6 Benefits of Critical Thinking and Why They Matter

    Critical thinking capacity does all that and more. 4. It's a multi-faceted practice. Critical thinking is known for encompassing a wide array of disciplines, and cultivating a broad range of cognitive talents. One could indeed say that it's a cross-curricular activity for the mind, and the mind must be exercised just like a muscle to stay ...

  25. What influences students' abilities to critically evaluate scientific

    Critical thinking and its importance. Critical thinking, defined here as "the ways in which one uses data and evidence to make decisions about what to trust and what to do" [], is a foundational learning goal for almost any undergraduate course and can be integrated in many points in the undergraduate curriculum.Beyond the classroom, critical thinking skills are important so that students ...

  26. Eight Types of Evidence

    Strengths - Collected by the senses, scientific measurement techniques can carefully and cleverly isolate the information you are seeking. Weaknesses - The same as Personal Experience, scientific measurements can be corrupted by factors you didn't anticipate. 3. Testimonial - The experience or observation of someone else; a witness.

  27. Evaluating panel discussions in ESP classes: an exploration of

    While traditional group presentations foster critical thinking and communication, a gap exists in understanding how medical students perceive the complexities of preparing for and participating in panel discussions within an ESP setting. ... This qualitative study investigates the perceived advantages and disadvantages of these discussions from ...